
Abstract. It is shown that four-mode interaction in quasi-
synchronous cascade frequency conversion on a quadratic
nonlinearity can be described in terms of an effective cubic
nonlinearity, which reduces the problem to solving the system
of two coupled nonlinear Schr�odinger equations (NSEs) with
respect to the amplitudes of waves involved in both nonlinear
processes. Analytic solutions of a new type found for this
system have the form of cnoidal waves with components
representing the sum and difference of the identical
fundamental solutions of the NSE with shifted arguments.
The obtained solutions cover the entire range of variation of
boundary conditions, allowing the optimisation of the
conversion eféciency in any particular situation.

Keywords: quadratic nonlinearity, cascade frequency conversion,
effective cubic nonlinearity, stationary nonlinear Schr�odinger equa-
tion, multicomponent cnoidal wave.

1. Introduction

Cnoidal waves (CWs) are self-consistent periodic solutions
of nonlinear differential equations of the second and higher
orders {nonlinear Schr�odinger equation (NSE), Korteweg-
de Vries (KdV), sine-Gordon (SG), and other equations
[1 ë 7]} and are in fact the modes of the corresponding
nonlinear problems. When CWs contain several compo-
nents, we are dealing with multicomponent CWs (MCWs).
The term MCW is used in nonlinear hydrodynamics [1, 8]
and plasma physics [2, 9], in the description of the packets
of electronic wave functions (excitons, biexcitons, super-
conducting pairs, etc.), and in the physics of one-
dimensional chains (conjugated polymers) [10] and two-
dimensional planes (ferromagnetics and high-temperature
semiconductors) [11]. The concept of MCWs in optics is
also quite universal because equations of this type usually
appear when the lowest terms in the expansion of a
nonlinear polarisation wave are taken into account.
Multicomponent CWs are the solutions of one-dimensional
problems on the dispersionless propagation of pulse trains

in optical ébres [3 ë 6, 12] and on the parametric generation
in the synchronous pumping regime [13], and of two-
dimensional problems on the diffractionless propagation of
wave fronts with a special periodic transverse structure in
photorefractive crystals [7, 14] and crystals with quadratic
nonlinearity [15].

It was shown in [16] that the NSE solutions in the form
of MCWs play a key role in a classical problem of nonlinear
optics ë the description of parametric up and down
frequency conversion in quadratically nonlinear media
[17]. It was found that the exact analytic solution of the
problem of stationary interaction between three modes with
frequencies o1ÿ3 can be obtained by using a new approach
of increasing the order of a system of truncated nonlinear
equations. In this case, the problem is reduced to the
solution of three independent NSEs, each of them being
coupled with two others only via boundary conditions and
describing a complex CW formed from quadrature compo-
nents. The possibility of such a reduction of the initial
problem was interpreted as the passage to the description of
the result of competition of processes of merging
(o1 � o2 ! o3) and decay (o3 ! o1 � o2) of photons
proceeding on a quadratic nonlinearity by means of the
effective cascade cubic Kerr nonlinearity [18].

By using the approach similar to [16], we show below
that, when wave mismatches can be neglected (quasi-phase
matching), the parametric interaction of four modes during
cascade frequency conversion on a quadratic nonlinearity
also can be described in terms of the effective cubic
nonlinearity. In this case, the initial problem is reduced
to a standard system of two coupled NSEs with respect to
the complex amplitudes of the waves involved in two
nonlinear processes [14, 19]. It is also shown that this
system can be transformed to two identical independent
equations, which determines its solution in the unusual form
of the sum and difference of two identical solutions of the
same NSE with shifted arguments. Due to a complete
overlap of the range of possible variations in the boundary
conditions, the analytic solutions obtained in this way
provide the possibility of optimisation of the conversion
eféciency in any particular situation.

2. Cascade frequency conversion and effective
cubic nonlinearity

Consider the parametric interaction of four (the subscript
i � 1ÿ 4) plane collinear monochromatic waves ë modes in
a quadratically nonlinear medium. Similarly to [16], we
assume that the modes have frequencies o1, o2 � o1,
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o3 � o1� o2 � 2o1 and o4 � o1 � o3 � 3o1, wave vec-
tors k1ÿ4, and complex amplitudes A1ÿ4. Let us assume that
conditions for nonlinear processes of two types o1 � o2;3 !
o3;4 with the wave mismatches Dk1;2 � k1 � k2;3 ÿ k3;4 and
nonlinear coupling constants b1;2, respectively, are realised
in the medium. By assuming that the nonlinearity is not of
the resonance type and directing the z axis along k1ÿ4, we
write the system of truncated equations describing the
interaction of the modes in the form

qA1

qz
� ÿib1A �2A3 exp�ÿiDk1z� ÿ ib2A

�
3A4 exp�ÿiDk2z�, (1a)

qA2

qz
� ÿib1A �1A3 exp�ÿiDk1z�, (1b)

qA3

qz
� ÿi2b1A1A2 exp�iDk1z� ÿ i2b2A

�
1A4 exp�ÿiDk2z�, (1c)

qA4

qz
� ÿi3b2A1A3 exp�iDk2z�. (1d)

It is easy to verify that, although system (1) has éve
second-order integrals J0ÿ4 � const, which correspond to
the law of conservation of energy êux

J0 � I1 � I2 � I3 � I4 (2)

and the Manley ëRowe relations

J1 � I1 ÿ 2I2 ÿ 1
2
I3, J2 � I1 ÿ I2 � 1

3
I4,

J3 � I1 � 1
2 I3 � 2

3 I4, J4 � I2 � 1
2 I3 � 1

3 I4, (3)

only two of them are independent (here, Ii �AiA
�
i are

proportional to the intensities of waves). Therefore, we can
write, for example, that

I2 ÿ I20 � 1
2 �I1 ÿ I10� ÿ 1

4 �I3 ÿ I30�,

I4 ÿ I40 � ÿ 3
2
�I1 ÿ I10� ÿ 3

4
�I3 ÿ I30� (4)

(Ii0 � AiA
�
i jz�0).

Following the approach used in [16], we make the
change of variables

Ai�z� � ~Ai�z� exp�ÿiaiz� (5)

and choose constants ai providing the fulélment of
conditions

Da1;2 � a1 � a2;3 ÿ a3;4 � Dk1;2. (6)

By substituting (5) into (1) and taking (6) into account, we
obtain

q ~A1

qz
ÿ ia1 ~A1 � ÿib1 ~A �2 ~A3 ÿ ib2 ~A �3 ~A4, (7a)

q ~A2

qz
ÿ ia2 ~A2 � ÿib1 ~A �1 ~A3, (7b)

q ~A3

qz
ÿ ia3 ~A3 � ÿi2b1 ~A1

~A2 ÿ i2b2 ~A �1 ~A4, (7c)

q ~A4

qz
ÿ ia4 ~A4 � ÿi3b2 ~A1

~A3. (7d)

Let us construct now the functional H so that system (7)
would follow from relations

q ~Ai

qz
� ÿi oi

o1

qH

q ~A �i
. (8)

This gives the expression

H � b1 ~A1
~A2

~A �3 � b1 ~A �1 ~A �2 ~A3 � b2 ~A1
~A3

~A �4 � b2 ~A �1 ~A �3 ~A4

ÿ a1 ~A1
~A �1 ÿ a2 ~A2

~A �2 ÿ 1
2
a3 ~A3

~A �3 ÿ 1
3
a4 ~A4

~A �4 (9)

for the functional, which for Dk1;2 � 0 (a1ÿ4 � 0) represents
the part of the Hamiltonian describing the interaction of
the éeld with the medium, i.e. the time-averaged free energy
density [20]. By differentiating (9) and substituting (7) into
the result obtained, it is easy to verify that qH=qz � 0 and,
therefore, H � H0 � const is another integral of system (7).
Note that, after passing to real variables, i.e. after
introducing phases ji with the help of expressions

~Ai �
����
Ii

p
exp�iji�, (10)

functional (9) can be rewritten in the form

H � 2b1
������������
I1I2I3

p
cosDj1 � 2b2

������������
I1I3I4

p
cosDj2

ÿ a1I1 ÿ a2I2 ÿ 1
2 a3I3 ÿ 1

3 a4I4, (11)

where Dj1;2 � j1�j2;3 ÿ j3;4. As a result, the equations
will take the form known from [20]

qIi
qz
� oi

o1

qH
qji

,
qji

qz
� ÿ oi

o1

qH
qIi

. (12)

Following the approach used in [16], we pass from (7) to
a system of second-order equations. By differentiating (7)
and excluding the érst derivatives, taking (4) into account,
we obtain the system of equations

q 2 ~A1

qz 2
� ÿ�b 2

1 � 3b 2
2 �j ~A1j2 ~A1 �

3

2
�b 2

1 ÿ 3b 2
2 �j ~A3j2 ~A1

��b 2
1 J1 � 3b 2

2 J3 ÿ a 2
1 � ~A1 � �a1 ÿ a2 � a3�b1 ~A �2 ~A3

��a1 ÿ a3 � a4�b2 ~A �3 ~A4, (13a)

q 2 ~A2

qz 2
� ÿ4b 2

1 j ~A2j2 ~A2 ÿ b 2
1 �2I10 ÿ 4I20 ÿ I30� ~A2

� b1b2 ~A3
~A3

~A �4 ÿ 2b1b2 ~A �1 ~A �1 ~A4

ÿ�a1 ÿ a2 ÿ a3�b1 ~A �1 ~A3 ÿ a 2
2

~A2, (13b)

q 2 ~A3

qz 2
� ÿ3�b 2

1 � 3b 2
2 �j ~A1j2 ~A3 �

1

2
�b 2

1 ÿ 3b 2
2 �j ~A3j2 ~A3

��b 2
1 J1 � 3b 2

2 J3 ÿ a 2
3 � ~A3 � 2�a1 � a2 � a3�b1 ~A1

~A2

ÿ 2�a1 ÿ a3 ÿ a4�b2 ~A �1 ~A4, (13c)

q 2 ~A4

qz 2
� 4b 2

2 j ~A4j2 ~A4 ÿ b 2
2 �6I10 � 3I30 � 4I40� ~A4

ÿ 6b1b2 ~A1
~A1

~A2 ÿ 3b1b2 ~A �2 ~A3
~A3
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� 3�a1 � a2 � a4�b2 ~A1
~A3 ÿ a 2

4
~A4. (13d)

One can easily see that only for Dk1;2 � 0 Eqns (13a) and
(13c) can be reduced to a closed system of two coupled
NSEs for the éeld amplitudes A1;3, by describing their
interaction via the effective cubic nonlinearity. For
Dk1;2 6� 0, the right-hand side of equations contains terms
proportional to the products ~Ai

~Aj and ~Ai
~A �j , and, therefore,

such a reduced description cannot be used. Note that Eqns
(13b) and (13d) also can be transformed to a similar closed
system, however, under more severe restrictions. Apart
from the condition Dk1;2 � 0, it is necessary to require that
A1;3 would be real.

3. Quasi-synchronous interaction

The condition Dk1;2 � 0 cannot be fulélled in the general
case due to dispersion [17]. Because of this, the so-called
phase-matching conditions are provided to realise cascade
processes [21]. This can be achieved by producing, for
example, a periodic structure in a nonlinear medium, in
which the sign of coupling constants b1;2 periodically
changes [22], b1;2 ! b1;2g(z). Here, g(z) is a sign alternating
function with a spatial period L � (2m1;2 � 1)(2p=Dk1;2
speciéed by the coherence lengths of two nonlinear
processes, and m1;2 are positive integers. By expanding

g�z� �
Xm��1

m�ÿ1
gm exp

�
i2pm

z

L

�
to a Fourier series and taking into account the amplitudes
of four synchronous modes, we obtain after averaging (1)
the system

qA1

qz
� ÿig1A �2A3 ÿ ig2A

�
3A4, (14a)

qA2

qz
� ÿig1A �1A3, (14b)

qA3

qz
� ÿi2g �1A1A2 ÿ i2g2A

�
1A4, (14c)

qA4

qz
� ÿi3g �2A1A3. (14d)

Here, g1;2 � hb1;2 exp (ÿ iDk1;2z)iz are averaged and (in the
general case) complex nonlinear coupling constants for
processes o1 � o2;3 ! o3;4, respectively.

After averaging, the passage from (14) to second-order
equations gives the required closed system of two nonlinear
equations for the amplitudes A1;3 waves in the form

q 2A1

qz 2
� ÿG�jA1j2A1 �

3

2
GÿjA3j2A1

��jg1j2J1 � 3jg2j2J3�A1, (15a)

q 2A3

qz 2
� ÿ3G�jA1j2A3 �

1

2
GÿjA3j2A3

��jg1j2J1 � 3jg2j2J3�A3, (15b)

with the boundary conditions

A1jz�0 � A10,
qA1

qz

����
z�0
� ÿig1A �20A30 ÿ ig2A

�
30A40, (16a)

A3jz�0 � A30,
qA3

qz

����
z�0
� ÿi2g �1A10A20 ÿ i2g2A

�
10A40, (16b)

where G� � jg1j2 � 3jg2j2. In this case, although equations
for the wave amplitudes A2;4 are not reduced to the
analogous system [see (13)], their intensities can be found
from relations (4). Note that analysis of the solutions of
systems of nonlinear equations of this type is a subject of
recent extensive studies [12, 19, 23].

Following [16], we consider now the moduli and phases
of the required solutions:

Aj�z� � Xj�z� exp�ijj�z��. (17)

By substituting the result of differentiating of (17) into (15)
and separating the real and imaginary parts, we obtain the
system of equations

q 2X1

qz 2
ÿ X1

�
qj1

qz

�2
� ÿG�X 3

1 �
3

2
GÿX

2
3X1

��jg1j2J1 � 3jg2j2J3�X1, (18a)

2
qX1

qz
qj1

qz
� X1

q 2j1

qz 2
� 0, (18b)

q 2X3

qz 2
ÿ X3

�
qj3

qz

�2
� ÿ3G�X 2

1X3 �
1

2
GÿX

3
3

��jg1j2J1 � 3jg2j2J3�X3, (18c)

2
qX3

qz
qj3

qz
� X3

q 2j3

qz 2
� 0. (18d)

Because the solutions for which X1;3(z) � 0 are not of
interest for us, two known integrals [16] for phases j1;3

follow from (18b) and (18d). Moreover, it is easy to show
that these integrals are also not independent and can be
expressed in terms of H:

X 2
1

qj1

qz
� I10j

0
10 � ÿ

1

2
H, X 2

3

qj3

qz
� I30j

0
30 � ÿH, (19)

where

H � g �1A1A2A
�
3 � g1A

�
1A
�
2A3 � g �2A1A3A

�
4

� g2A
�
1A
�
3A4 � const. (20)

Hereafter, the notations j1;3jz�0 � j10;30, qj1;3=qzjz�0 �
j 010;30, and X 2

i jz�0 � Ii0 are used.
As in the interaction of three modes [16], it follows from

(18b), (18d), and (19) that, if at least one point z0 exists on
the z axis at which X1;3jz�z0 � 0 and qX1;3=qzjz�z0 6� 0, then
qj1;3=qz � 0 at all points for which X1;3(z) 6� 0. In these
situations the phases j1;3 can change on the z axis only
abruptly, which can be taken into account by assuming that
X1;3(z) 6� jA1;3(z)j and can be negative. If this is not the case,
j1;3(z) can be found by integrating (19):

j1�z� � j10 ÿ
1

2
H

� z

0

Xÿ21 �z 0�dz 0,

j3�z� � j30ÿH
� z

0

Xÿ23 �z 0�dz 0.
(21)
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4. Analytic solutions of the problem

Thus, we have shown that the initial problem is reduced to
the solution of a closed system of two ordinary differential
equations describing the interaction of the waves A1;3 in
terms of the effective cubic nonlinearity and after the
substitution

z � ~z=
�������
G�

p
(22)

can be represented in the form

q 2X1

q~z 2
� 1

4G�

H 2

X 3
1

� ÿX 3
1 �

3

2

Gÿ
G�

X 2
3X1 � J13X1, (23a)

q 2X3

q~z 2
� 1

G�

H 2

X 3
3

� ÿ3X 2
1X3 �

1

2

Gÿ
G�

X 3
3 � J13X3, (23b)

where

J13 �
jg1j2J1 � 3jg2j2J3
jg1j2 � 3jg2j2

.

Consider below only situations when at least one point
z0 exists on the z axis at which the amplitude A1;3 of at least
one of the waves vanishes (one of these two waves is
completely depleted or is absent in the input plane
z � 0), and therefore, H � 0 and j1;3(z) � j10;30 (see above).

Note at once that in a particular case jg1j2 � 3jg2j2, the
obtained system is reduced to

q 2X1

q~z 2
� ÿX 3

1 �
1

2
�J1 � J3�X1, (24a)

q 2X3

q~z 2
� ÿ3X 2

1X3 �
1

2
�J1 � J3�X3, (24b)

i.e. to the well-known problem of the independent periodic
variation of the amplitude X1 in a medium with the Kerr-
type nonlinearity [14]. Nevertheless, the oscillation period
of X1(~z) depends on the initial intensities of all other waves
(on the sum of integrals J1 � J3), while the dependence
X3(~z) is determined by solving the second-order Lame
equation [24].

The solutions of (24a) in the standard form [14] for the
nonlinearity of this type are described by the expressions

X1 �
������
I10

p
cn�b~z; k�, (25a)

X3 �
��������
I3M

p
sn�b~z; k�dn�b~z; k� (25b)

for b 2 � I20 ÿ 1
3 I40, k

2 � 1
2 I10(I20 ÿ 1

3 I40)
ÿ1, 2(I20 ÿ 1

3 I40)5
I10 5 0, and

X1 �
������
I10

p
dn�b~z; k�, (26a)

X3 �
��������
I3M

p
sn�b~z; k�cn�b~z; k� (26b)

for b 2 � 1
2
I10, k

2 � 2Iÿ110 (I20 ÿ 1
3
I40), and I10 5 2(I20 ÿ 1

3
I40).

Here, k is the modulus of the elliptic Jacoby functions
sn(z; k), cn(z; k), and dn(z; k) [25], and the parameter I3M is
determined by the boundary conditions and depends not
only on the initial intensities Ii 0 of all the waves but also on
relation between their phases ji 0 [see (16b)]. Note that all
the other solutions of system (24), including situations when
I20 ÿ 1

3 I40 4 0, are reduced to a simple translation of

solutions (25) and (26) along the ~z axis. Here and below,
the expressions for dependences I2;4(z) are not written
because they can be determined from relations (4).

To analyse situations when jg1j2 6� 3jg2j2, we will pass to
the normalised variables

X1 � ~X1, X3 �
��������������������
2jG�=Gÿj

p
~X3, (27)

in which system (23) has the form

q 2 ~X1

q~z 2
� ÿ ~X 3

1 � 3 ~X 2
3

~X1 � J13 ~X1, (28a)

q 2 ~X3

q~z 2
� ÿ3 ~X 2

1
~X3 � ~X 3

3 � J13 ~X3. (28b)

Here, the signs `�' correspond to cases jg1j2 > 3jg2j2 and
jg1j2 < 3jg2j2, respectively. Note that the integrability and
the type of solutions of systems of this type are determined
by the relation between coefécients at nonlinear terms [25].

The case jg1j2 < 3jg2j2 is simple to analyse because it is
known [25] that the next change of variables

~Y� � ~X1 � ~X3 or ~Y� � ~X3 � ~X1 (29)

in this situation separates the variables, which reduces the
system of equations (28) to two independent NSEs with the
nonlinearity of the focusing type

q 2 ~Y�
q~z 2

� ÿ ~Y 3
� � J13 ~Y�. (30)

It is easy to verify that both equations are related to each
other only via the boundary conditions and have the same
proportionality coefécients in linear terms. The identity of
these coefécients excludes the use of standard solutions for
systems of two NSEs, in which Y� are proportional to the
different fundamental solutions cn(z; k) and dn(z; k) of the
Lame equation [14]. Because both these solutions become
degenerate only for k � 1, when both functions pass to
cosh z, we obtain that either ~X1 � 0 or ~X3 � 0, which
corresponds to the parametric bleaching regime, when
I1ÿ4 � const.

However, there also exist two other possibilities. First,
the solutions of two equations in (30) can be proportional to
the same elliptic function but shifted with respect to each
other along the ~z axis, i.e.

~Y� � A cn�b~z� b~z0; k� or ~Y� � A dn�b~z� b~z0; k�. (31)

Here, ~z0 is the parameter characterising the shift value,
which is assumed symmetrical with respect to the point
~z0 � 0 for functions ~Y�, respectively. This corresponds to
the presence of the extrema of intensities I1;3 in the input
plane. This possibility determines the four nontrivial
solutions of system (28) for jg1j2 < 3jg2j2:

~X1;3 � A cn�b~z0; k�
cn�b~z; k�

1ÿ k 2sn 2�b~z0; k�sn2�b~z; k� , (32a)

~X3;1 � ÿA sn�b~z0; k�dn�b~z0; k�
sn�b~z; k�dn�b~z; k�

1ÿ k 2sn2�b~z0; k�sn2�b~z; k�
(32b)

for b � A 2 ÿ J13, k 2 � 1
2
A 2(A 2 ÿ J13)

ÿ1, and
A 2 5max (J13, 2J13) and
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~X1;3 � A dn�b~z0; k�
dn�b~z; k�

1ÿ k 2sn2�b~z0; k�sn2�b~z; k� , (33a)

~X3;1 � ÿk 2A sn�b~z0; k�cn�b~z0; k�

� sn�b~z; k�cn�b~z; k�
1ÿ k 2sn2�b~z0; k�sn2�b~z; k� (33b)

for b � 1
2A

2, k 2 � 2(A 2 ÿ J13)A
ÿ2, and 2J13 5A 2 5 J13.

Here, the values of constants A and ~z0 should be chosen to
satisfy boundary conditions (16), which give the domains of
existence of solutions (32) and (33). Note that after the
return to initial variables X1;3, the symmetry of expressions
(32) and (33) with respect to the permutation of subscripts 1
and 3 is violated due to the renormalisation of the
amplitude ~X3.

Second, the solution of one of the equations in system
(30) can be a constant, while the solution of the second one
can be proportional to one of the fundamental solutions
cn(z; k) and dn(z; k) of the érst-order Lame equation, i.e.

~Y� � A � const (34a)

and

~Y� � B cn�b~z; k� or ~Y� � B dn�b~z; k�. (34b)

This possibility determines the four additional solutions of
system (28) for jg1j2 < 3jg2j2:

~X1;3 �
1

2

h �������
J13

p
� B cn�b~z; k�

i
or

~X3;1 �
1

2

h �������
J13

p
� B cn�b~z; k�

i
(35)

for b 2 � B 2 ÿ J13, k 2 � 1
2B

2(B 2 ÿ J13)
ÿ1, and B 2 5 2J13

5 0 or

~X1;3 �
1

2

h �������
J13

p
� B dn�b~z; k�

i
or

~X3;1 �
1

2

h �������
J13

p
� B dn�b~z; k�

i
(36)

for b 2 � 1
2B

2, k 2 � 2(B 2 ÿ J13)B
ÿ2, and 2J13 5B 2 5

J13 5 0. Here, the value of B also should be chosen to
satisfy boundary conditions (16). Note that, as before, the
return to the initial variables X1;3 violates the symmetry of
expressions (35) and (36) with respect to the permutation of
subscripts due to the renormalisation of the amplitude ~X3.

In the case when jg1j2 > 3jg2j2, the approach described
above also can be applied. To use it, we érst make the
formal substitution ~z � iz

~
[26] and will seek the solution in

classes of functions for which either

~X1�iz
~
� � iX

~
1�iz

~
�, ~X3�iz

~
� � X

~
3�z

~
� (37a)

or

~X1�iz
~
� � X

~
1�z

~
�, ~X3�iz

~
� � iX

~
3�z

~
�, (37b)

where X
~
1;3(z

~
) and ~X1;3(~z) are real. Note that elliptic func-

tions sn(z; k), cn(z; k), and dn(z; k), which satisfy well-
known relations sn(iz; k) � i sn(z; k 0) cnÿ1(z; k 0), cn(i z; k) �
cnÿ1(z; k 0) and dn(i z; k) � dn(z; k 0) cnÿ1(z; k 0), where
k 0 � (1ÿ k 2)1=2 [24], belong to these two classes. After

this substitution, system (28) can be rewritten in one of the
two forms corresponding to the chosen class of solutions:

q 2X1
~

qz 2
~

� ÿX1
~

3 ÿ 3X3
~

2
X1
~
ÿ J13X1

~
, (38a)

q 2X3
~

qz 2
~

� ÿ3X1
~

2
X3
~
ÿ X3

~

3 ÿ J13X3
~

(38b)

or

q 2X1
~

qz 2
~

� X1
~

3 � 3X3
~

2
X1
~
ÿ J13X1

~
, (39a)

q 2X3
~

qz 2
~

� 3X1
~

2
X3
~
� X3

~

3 ÿ J13X3
~

. (39b)

It is easy to see that now, after the substitutions

Y�
~
� X3

~
� X1

~
, (40)

which are analogous to (29), we obtain the two possible
pairs of independent NSEs,

q 2Y�
~

qz 2
~

� ÿY�
~

3 ÿ J13Y�
~

(41a)

or

q 2Y�
~

qz 2
~

� Y�
~

3 ÿ J13Y�
~

. (41b)

Equations in pairs (41a) and (41b) are again coupled with
each other only via the boundary conditions and have
identical proportionality coefécients in linear terms. How-
ever, these pairs correspond now to situations with the
nonlinearities of the focusing (41a) and defocusing (41b)
types. For the same reason, the solutions of equations in
each pair should be proportional to the same elliptic
function, but now, taking conditions (37) into account, the
shift of their arguments should be imaginary (orthogonal to
the ~z axis):

Y�
~
� A cn�bz

~
� ibz0

~
; k�, (42a)

Y�
~
� A dn�bz

~
� ibz0

~
; k� (42b)

or

Y�
~
� A sn�bz

~
� ibz0;

~
k�. (42c)

Here, z0
~

is a parameter characterising the shift of the
argument of functions Y�

~
, which is assumed symmetric

with respect to the location of the z
~

axis in the complex
plane. The possibilities listed above determine the three
nontrivial solutions of system (28) for jg1j2 > 3jg2j2:

~X1 � ÿA sn�b~z0; k�dn�b~z0; k�

� sn�b~z; k 0�dn�b~z; k 0�
cn2�b~z; k 0� � k 2sn2�b~z0; k�sn2�b~z; k 0� , (43a)

~X3 � A cn�b~z0; k�
cn�b~z; k 0�

cn2�b~z; k 0� � k 2sn2�b~z0; k�sn2�b~z; k 0�
(43b)

for b 2 � A 2 � J13, k 2 � 1
2
A 2(A 2 � J13)

ÿ1, where A 2 5
max (ÿ 2J13, 0);
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~X1 � ÿk 2A sn�b~z0; k�cn�b~z0; k�

� sn�b~z; k 0�
cn2�b~z; k 0� � k 2sn2�b~z0; k�sn2�b~z; k 0� , (44a)

~X3 � A dn�b~z0; k�
cn�b~z; k 0�dn�b~z; k 0�

cn2�b~z; k 0� � k 2sn2�b~z0; k�sn2�b~z; k 0�
(44b)

for b 2 � 1
2
A 2, k 2 � 2Aÿ2(A 2 � J13), and 2jJ13j5A 2 5 jJ13j

for J13 4 0;

~X1 �A sn�b~z0; k�
dn�b~z; k 0�

cn2�b~z; k 0� � k 2sn2�b~z0; k�sn2�b~z; k 0� , (45a)

~X3 � ÿA cn�b~z0; k�dn�b~z0; k�

� sn�b~z; k 0�cn�b~z; k 0�
cn2�b~z; k 0� � k 2sn2�b~z0; k�sn2�b~z; k 0� (45b)

for b 2 � J13 ÿ 1
2A

2, k 2 � A 2(2J13 ÿ A 2)ÿ1, and A 2 4 J13
for J13 5 0.

However, these solutions do not exhaust all possible
situations speciéed by the boundary conditions. The matter
is that due to variations in I10ÿ40, the coefécient J13 in (41)
can become negative. In the case of a nonlinearity of a
focusing type, solutions (43) and (44) correspond to sit-
uations J13 < 0. In the case of a nonlinearity of a defocusing
type, the solution (45) of Eqns (41b) does not exist. At the
same time, it is easy to verify that although the function

sn�iz; k�dn�iz; k�
cn�iz; k� � i

sn�z; k 0�dn�z; k 0�
cn�z; k 0�

is not the fundamental solution of the Lame equation and
has singularities on the z axis, it also satisées each of the
equations (41b). In this case, the presence of singularities of
this function due to the shifts of its arguments does not
prevent a search for solutions in the form

Y�
~
� Asn�bz

~
� ibz0;

~
k�dn�bz

~
� ibz0;

~
k��cn�bz

~
� ibz0;

~
k��ÿ1,

(46)

which leads immediately to the expressions

~X1�~z� � A sn�b~z0; k�cn�b~z0; k�dn�b~z0; k�
�
cn2�b~z; k 0�

� dn2�b~z; k 0� � k 2sn2�b~z; k 0���cn2�b~z0; k�cn2�b~z; k 0�

� sn2�b~z0; k�dn2�b~z0; k�sn2�b~z; k 0�dn2�b~z; k 0��ÿ1, (47a)

~X3�~z� � A
�
dn2�b~z0; k� ÿ k 2sn2�b~z0; k�cn2�b~z0; k�

�
� sn�b~z; k 0�cn�b~z; k 0�dn�b~z; k 0��cn2�b~z0; k�cn2�b~z; k 0�

� sn2�b~z0; k�dn2�b~z0; k�sn2�b~z; k 0�dn2�b~z; k 0��ÿ1 (47b)

for b 2 � 1
2
A 2, k 2 � 1

2
(A 2 � J13)A

ÿ2, and A 2 5 jJ13j. As
before, the values of constants A and ~z0 should be chosen to
satisfy boundary conditions (16), which determines the
domains of existence of solutions in forms (43) ë (45) and
(47). Note that in the case of jg1j2 > 3jg2j2, the symmetry of
expressions for ~X1;3 with respect to the permutation of
subscripts 1 and 3 is violated from the outset by require-
ment (37), while solution (47) itself has no longer

singularities on the ~X1;3 axis due to the out-of-phase shifts
of arguments Y�

~
.

The choice of the form in which to seek the solutions of
the problem for J13 < 0 is ambiguous. Thus, it follows from
analysis performed in [26] that the function
cn(iz; k) � cnÿ1(z; k 0) also satisées Eqns (41b). Therefore,
we can seek their solutions in the form

Y�
~
� A cnÿ1�bz

~
� ibz0

~
; k�, (48)

which immediately leads to the expressions,

~X1 �
�
cn2�b~z; k 0� � k 2sn2�b~z0; k�sn2�b~z; k 0��A

� cn�b~z0; k�cn�b~z; k 0��cn2�b~z0; k�cn2�b~z; k 0�

� sn2�b~z0; k�dn2�b~z0; k�sn2�b~z; k 0�dn2�b~z; k 0��ÿ1, (49a)

~X3 �
�
cn2�b~z; k 0� � k 2sn2�b~z0; k�sn2�b~z; k 0��A

� sn�b~z0; k�dn�b~z0; k�sn�b~z; k 0�dn�b~z; k 0�

� �cn2�b~z0; k�cn2�b~z; k 0�� sn2�b~z0; k�dn2�b~z0; k�

� sn2�b~z; k 0�dn2�b~z; k 0��ÿ1 (49b)

for b 2 � A 2 ÿ J13, k 2 � 1
2 (A

2 ÿ 2J13)(A
2 ÿ J13)

ÿ1, A 2 5
max (J13,2J13). The values of constants A and ~z0 should be
again chosen to satisfy conditions (16). The symmetry of
~X1;3 with respect to the permutation of subscripts 1 and 3 is
still violated by condition (37), while solution (49) itself also
has no singularities on the z axis due to the shifts of
arguments Y�

~
.

5. Conclusions

Based on the approach used in [16], we have shown that in
the cases when wave mismatches can be neglected (quasi-
phase matching), the parametric interaction of four modes
during the cascade frequency conversion on a quadratic
nonlinearity can be described in terms of the effective cubic
nonlinearity. In this case, the initial problem is reduced to
the solution of a system of two coupled NSEs for the
complex amplitudes of the waves involved in all nonlinear
processes [14, 19]. This system is completely integrable and
can be split into two identical NSEs by a simple change of
variables, which allows one to énd its solutions in a quite
unusual form as a sum and difference of the two identical
solutions of NSEs for focusing or defocusing nonlinearities
with shifted arguments. The analytic solutions obtained in
this way cover the entire range of variations of boundary
conditions, which allows one to analyse in detail the role of
the latter and to optimise the conversion eféciency in each
particular situation.

The analytic solutions obtained in this paper, could be,
of course, also derived by other methods. Thus, we obtained
the complete family of solutions similar to (25), (26), (32),
(33), (45), (47) and also solutions (43) and (44) shifted by a
quarter of the period along the z axis for a particular case
I30 � 0 and ji0 � const in the form

~X1 �
1

k
A sn�b~z0; k�dn�b~z0; k�

� cn�b~z; k 0�
sn2�b~z; k 0� � sn2�b~z0; k�cn2�b~z; k 0� , (50a)
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~X3 �
1

k
A cn�b~z0; k�

sn�b~z; k 0�dn�b~z; k 0�
sn2�b~z; k 0� � sn2�b~z0; k�cn2�b~z; k 0� (50b)

for b 2 � A 2 � J13, k 2 � 1
2A

2(A 2 � J13)
ÿ1, where A 2 5

max (ÿ2J13, 0), and
~X1 � A sn�b~z0; k�cn�b~z0; k�

� cn�b~z; k 0�dn�b~z; k 0�
sn2�b~z; k 0� � sn2�b~z0; k�cn2�b~z; k 0� , (51a)

~X3 � A dn�b~z0; k�
sn�b~z; k 0�

sn2�b~z; k 0� � sn2�b~z0; k�cn2�b~z; k 0� (51b)

for b 2 � 1
2A

2, k 2 � 2Aÿ2(A 2 � J13), and 2jJ13j5A 2 5 jJ13j
for J13 4 0 by using the cumbersome traditional method
[17] of the successive solution of a classical system of
truncated érst-order differential equations (14).

Note also that the analytic solutions of a system of two
NSEs of type (28) have been obtained by us also probably
for the érst time, while the method for constructing
particular solutions of systems of two NSEs in the form
of a sum and difference of identical fundamental solutions
with shifted arguments is quite universal and, as far as we
know, have not been used so far. This method can be used in
the cases when the problem to be solved admits the
separation of variables [25], which takes place, for example,
in the description of the self-consistent dispersionless
propagation of the trains of orthogonally polarised laser
pulses along single-mode optical ébres [3 ë 6, 12, 19, 27].
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