
Abstract. A theoretical model is developed and an algorithm
is proposed for calculating far-éeld light scattering by a
transparent dielectric particle signiécantly larger than a
wavelength. The accuracy of this algorithm is close to that of
the discrete dipole approximation. The calculation time for
this algorithm in the case of particles with the size parameter
higher than 50 is much lower than that for the discrete dipole
approximation. Scattering diagrams for spheroidal particles
of different sizes, orientations and refractive indices are
calculated. The proposed algorithm has a great potential for
quick calculations of parameters of light scattering by large
biological particles such as erythrocytes and their aggregates,
bacteria, etc.
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approximation, ray-wave approximation, discrete dipole approxi-
mation, erythrocytes.

1. Introduction

A spheroid (ellipsoid of rotation) is the simplest model of a
particle for which the light scattering depends on its spatial
orientation. Spheroids are more adequate models of
numerous biological particles, in particular erythrocytes
and their linear aggregates, than spheres [1]. A normal
erythrocyte can be modeled by an oblate spheroid, while an
erythrocyte deformed in the shear êow or an aggregate of
erythrocytes such as a rouleaux ë by a prolate spheroid [2].
The correct choice of a light scattering phase function of
both a single erythrocyte and a cell aggregate and of other
spheroidal particles is important for modeling light
propagation in blood and blood-containing tissues [1, 3].
This is also important for the interpretation of measure-
ment data obtained with êow cytometers [4], laser Doppler
velocimeters and particle sizers [5], in particular at their
application to the study of blood-cell and liquid-droplet
suspensions (sprays).

The general analytic solution of the problem of a plane
electromagnetic wave scattered by an arbitrary spheroid is
known [6, 7]. This solution can be regarded as a general-

isation of the Mie theory on the case of a spheroid. The T-
matrix method ([8], Chapter 6) yields precise solutions of the
problem of light scattering by any nonspherical particles, in
particular by spheroids. However, these solutions are quite
cumbersome. Thus a number of authors have considered the
problem of light scattering by a spheroid in various
approximations. In particular, in papers [9 ë 11] a simpler
analytic solution is proposed describing the light scattering
in the approximation of a highly elongated spheroid with
the relative refractive index n > 1:2. In paper [12], the
appropriateness of the distribution of the phase function
extremuma is analysed for a particular case of a uniform
spheroid, whose rotation axis coincides with the direction of
the incident wave, and the relative refractive index 1:025 <
n < 1:200. Investigation is performed within the framework
of Wentzel ëKramers ëBrillouin, Rayleigh ëGans ëDebye,
Fraunhofer and anomalous diffraction approximations [2].
The equation in generalised coordinates is obtained, which
relates the extremuma location to the parameters of the
spheroid. In papers [13, 14], the diffraction on, reêection
from and transmission through an arbitrarily oriented
spheroid of various components of polarised light are
calculated within the framework of the ray optics approx-
imation. Cross-polarisation effects are found that are
manifested by the rotation of the polarisation plane of
the scattered waves. Calculations of the phase function for
n � 1:333 are presented. In papers [15, 16], the phase
functions and integral cross sections of light scattered by
spheroids are calculated in the Rayleigh ëGans ëDebye
approximation. The analysis is performed by means of
the éeld expansion into a three-dimensional spatial spec-
trum. In paper [17], the effect of nonsphericity and the
relative refractive index on the angles, corresponding to the
maxima of the scattering intensity (angles of a rainbow) is
studied.

A number of modern numerical techniques such as
discrete-dipole approximation (DDA) and énite difference
time domain method (FDTM) allow solving the problem of
light scattering by arbitrary nonspherical particles, including
spheroids, with a high precision [8, 18]. However, the
laboriousness of these calculations highly depends on the
size parameter 2pnd=l (d is the characteristic size of the
particle and l is the light wavelength). In partucular, when
implemented on a contemporary personal computer, the
DDA method requires signiécant time expenditures to
calculate the light scattering by optically soft spheroids
with size parameters higher than 100 or by smaller spheroids
with n > 1:5. That is why the search for approximate
methods of a suféciently precise and fast solution of the
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problem that does not require signiécant computational
resources still remains urgent. One of such methods is
considered in this paper. The fastness of calculations of
light scattering by particles is necessary if the parameters of
these particles quickly change in time by this or that reason
(for instance, in the case of biological particles affected by
external factors).

2. Methods

Consider a transparent homogeneous spheroidal particle
with the refractive index n2, surrounded by a medium with
the refractive index n1 (Fig. 1). The particle is illuminated
by a plane monochromatic light wave at the wavelength l.
We need to calculate the angular distribution of the
intensity of light scattered by the particle. We will neglect
the absorption of light by the particle as well as by the
surrounding medium, which is true for biological tissues in
the wavelength range from 600 to 1000 nm (the so-called
`transparency window'). Our model of the light wave as a
wave with ideal temporal and spatial coherence is
applicable if the coherence length and coherence radius
of the incident laser beam exceed well the particle size.

2.1 Discrete-dipole approximation

The discrete-dipole approximation is applicable for particles
whose size is comparable with the optical wavelength. In
this approach, the particle of any shape is replaced by a set
of point dipoles. The distance between the neighboring
dipoles should be small compared to the optical wave-
length. Each dipole oscillates under the action of the
incident light wave as well as of the electric éelds, radiated
by all other dipoles of the ensemble. The dipole momentum
of the dipole is

d1 � aiEi; (1)

where i is the dipole number; ai is its polarisability; Ei is the
electric éeld strength in the point of space where the dipole
is located. The electric éeld strength is presented as a sum

Ei � Einc � Ed (2)

of the incident éeld Einc and the éeld

Ed �
X
j6�i

Ej (3)

created in the given point of space by all other dipoles of
the ensemble. The expression for the electric éeld strength
Ej, induced by the jth dipole at the point where the ith
dipole is located, can be written in the form
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Here rij is vector directed from the jth dipole to the ith one;
k is the wave number; o is the optical wave frequency; and t
is the time.

The system of linear coupled equations (1) ë (4) consists
of equations, whose number is equal to the number of
dipoles in the ensemble and, in principle, it enables one to
énd the dipole momentum for each individual dipole of the
ensemble. In other words, one can énd a self-consistent
radiation éeld of the dipole ensemble, arising under the
action of the incident optical wave. Unfortunately, the
numerical solution of the equations becomes unstable, if
the number of the dipoles becomes too large. As noted in
[18], at present the calculations can not be performed for the
ensembles in which the total number of dipoles exceeds 106.
This imposes limitations for the size of the particles, which
can be considered within the framework of the DDA. In
practice this method has troubles in calculations of light
scattering by particles with the size parameter higher than
100.

To calculate the light scattering with the DDA techni-
que, we used the ADDA software (Amsterdam Discrete
Dipole Approximation) developed by A. Hoekstra and
coworkers [19 ë 21]. With the help of this code, we have
calculated light scattering by dielectric spheroids with
different sizes, refraction indices and spatial orientations.
The calculations were performed by using an Intel Pentium
4 PC (1.73 GHz frequency, and 512 Mb RAM). Compar-
ison of the results obtained with the DDA code and the Mie
theory for spherical particles shows almost an ideal agree-
ment [22]. Unfortunately, the calculation time grows rapidly
as a function of the particle size. For example, it was around
50 seconds for a sphere with the relative refractive index
n � 1:05 and the diameter 4 microns, and it was about
7 hours for a sphere of the same material with the diameter
8 microns.

2.2 Geometrical optics approximation

This approximation is valid for particles, whose size is
much larger than the optical wavelength. In the geometrical
optics approximation (GOA) the light illuminating the
particle is presented as a set of partial rays. Each of the rays
obeys the geometrical optics laws of reêection and
refraction at the particle boundaries. The ray is described
by a set of parameters associated usually with the plane
wave, namely, by the amplitude, phase and propagation
direction.

Here we use the following procedure to calculate the
reêection and refraction of light. An incident ray is assumed
to be unpolarised. We calculate intensities of reêected and
refracted rays by using Snell's law and Fresnel formulae.
Then we change the reêected and refracted rays by
unpolarised rays of the same intensities. This gives a
possibility to describe the reêection and refraction events
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Figure 1. Schematic representation of a spheroid. The dashed line shows
the symmetry axis of the spheroid.
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in terms of the light intensity only without introducing such
parameters as amplitudes of the orthogonal components of
the éeld and phase shift between them. This approach can
be called the scalar approximation or the approximation of
unpolarised rays. In this approach the energy reêection
coefécient is deéned by the expression (see, for example,
[23])

R � 1

2

�
sin2�aÿ b�
sin2�a� b� �

tan2�aÿ b�
tan2�a� b�

�
; (5)

where a is the angle of incidence of the ray at the interface
between two media; b is the angle of refraction. The energy
transmission coefécient has the form

T � �1ÿ R� cos a
cos b

: (6)

The factor cos a= cos b in equation (6) takes into account
the change in the optical beam cross-section area due to
refraction.

One of the partial rays is shown in Fig. 2a. It impinges
onto the particle surface at an angle a. In the point M1 at the
particle surface the incident ray splits into reêected and
refracted rays. The refracted ray reaches the particle surface
in the point M2, where it experiences reêection and
refraction of light. Then the described process goes on.
As a result, the incident ray energy is distributed among the
rays emerging from the particle. The corresponding energy
distribution can be calculated. The calculation is performed
independently for each incident partial ray. Then we sum
the scattered waves to obtain the resulting scattering
diagram. The summation can be performed for the rays
with complex amplitudes (coherent case) or for the partial
rays with intensities (incoherent case) [24]. In our calcu-
lations, the total number of partial rays was 106 and 15
internal reêections inside the particle were taken into
account. In many cases these values can be essentially
decreased without the loss of the calculation accuracy.

To estimate the accuracy of the GOA, we calculated the
angular distribution of the intensity of light scattered by
spherical particles. The results were compared with data,
obtained by using the Mie theory and DDA [22]. Analysis of
the scattering pattern in the far-éeld zone, calculated for a
sphere of 5 microns in diameter and the relative refraction
index n � 1:05, shows that the calculation accuracy of the
GOA is signiécantly lower than that of the DDA. We

believe that one of the reasons is that the GOA does not
take into account the diffraction of rays emerging from the
particle.

2.3 Ray-wave approximation

Diffraction of light emerging from the particle can be
described with the help of the Huygens ëFresnel principle
and Kirchhoff's diffraction integral. To do this, we consider
an element of the particle surface, from which the optical
rays come outside, as the origin of the elementary spherical
waves. The incident light and the light inside the particle are
presented by a set of rays, as before. We refer to this
approach, which combines the elements of ray and wave
optics, as the ray-wave approximation (RWA).

Let us present the complex amplitude of the éeld E(P) in
the observation point P in the form of an integral over the
particle surface S (Kirchhoff integral ë see, for example
[23]):

E�P� � 1

4p

�
S

�
G
qE
qv
ÿ E

qG
qv

�
dS: (7)

Here E is the éeld amplitude at the particle surface; q=qv is
a derivative taken along the normal to the particle surface;

G � exp�ÿikr�
r

(8)

is the Green function; r is the distance between the particle
surface element dS and the observation point P. The éeld
amplitude at the particle surface is presented as the sum of
amplitudes of partial waves (rays):

E �
X
j

Ej�M� exp�ÿikjr�: (9)

By substituting equations (9) and (8) into (7), we obtain

E�P� � i

l

�
S

E�M� exp�ÿikr�
r

dS; (10)

E�M� �
X
j

Ej�M�Kj; (11)

Kj �
1

2
mjj �

1

2
mq0; (12)

where m is the unit vector of the external normal to the
particle surface in the point M; jj is the unit vector directed
along the jth ray; q0 is the unit vector directed from point
M to point P (Fig. 3). The values Ej (M) can be calculated
with the help of expressions presented in [24]. In this paper
Fresnel formulae are presented in the form suitable for
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Figure 2. Schematics of light scattering in geometrical optics (a) and ray-
wave (b) approximations.
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Figure 3. Schematics of vector directions for calculating Kirchhoff's
diffraction integral.
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solving our problem, in which we need to introduce many
local coordinate systems.

Expression (7) for Kirchhoff's diffraction integral is
written in the usual scalar form, which means the change
of all the rays emerging from the particle, by the polarised
rays with equal polarisations.

The calculation result is the relative scattering intensity,
or the scattering phase function, deéned as follows:

f �y;j� � I�y;j�
I0

4pR 2
0

s
; (13)

where I is the scattered light intensity; y is the scattering
angle; j is the angle, which determines orientation of the
scattering plane with respect to the plane of the incident
light beam and the spheroid axis of symmetry; I0 is the
incident light intensity; R0 is the observation sphere radius;
s is the scattering cross section, which is deéned as a ratio
of the incident beam power P0 and its intensity I0. For a
spheroidal particle

s � paA; (14)

A2 � a 2 cos 2 y0 � b 2 sin2 y0; a and b are the spheroid
semiaxes; y0 is the tilt angle of the spheroid axis of
symmetry relative to the incident beam axis (Fig. 4).

To control the calculation accuracy, we used the
integral, deéned by the equation

P

P0

� 1

4p

� 2p

0

dj
� p

0

f �y;j� sin ydy; (15)

where P is total power of the scattered light. In our
calculations, the ratio P=P0 was close to unity (the
difference being below 4%).

As a simple test problem, we have considered the
scattering of a plane light wave by a dielectric cylinder,
assuming that the incident optical wave propagates along
the cylinder axis of symmetry [22]. In this case the scattering
pattern can be calculated analytically by expressions (10) ë
(12) and is very close to the diffraction pattern of light at a
round aperture (Airy pattern). This was conérmed by the
calculation, performed with the help of the DDA. Of course,

such scattering pattern could not be obtained within the
framework of the GOA, consequently, the RWA has an
obvious advantage compared to the GOA.

Note, that earlier a somewhat similar approach for
calculating the light scattering by a spheroid was proposed
in papers [25 ë 27] and was called the physical optics
approximation.

3. Results and discussion

As noted above, the description of light scattering by
erythrocytes located in blood plasma is an important
applied problem. Therefore, in our calculations, we
supposed the size parameters and relative refractive index
of spheroids to be close to the parameters of erythrocytes in
blood. Note that a normal erythrocyte can be regarded as a
biconcave disc with a diameter of about 6.5 mm, minimum
and maximum thicknesses of about 1.0 and 2.3 mm,
respectively. The refractive index of an erythrocyte sub-
stance relative to blood plasma is � 1:05. The optical
radiation wavelength is supposed to be equal to 0.633 mm
which corresponds to the wavelength of a He ëNe laser.
Note that the light wavelength is an order of magnitude less
than the linear size of an erythrocyte.

We have calculated the light scattering by spheroids for
different sizes and relative refractive indices of spheroids, as
well as for different orientations of the spheroid and the
scattering plane. Calculations are performed for the far-éeld
zone (R0 � 100 mm) by using different approximations:
DDA, RWA and GOA. The results are shown in
Figs 5 ë 8. For better clearness, in all illustrations, the
orientation of the spheroid symmetry axis (dashed line)
is shown in relation to the direction of the incident beam
(arrows). The calculation time when using the RWA was
usually around 15 ë 20 min.

One can see from Figs 5 and 6 that the RWA describes
the light scattering by a spheroid much more precisely than
the GOA. Since the incident ray is parallel to the particle
symmetry axis, the scattering diagram does not depend on
the angle j, deéning the orientation of the scattering plane.

One can see from Figs 7a, b that the angle coordinates
and the widths of the maxima and minima of the light
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Figure 4. Laboratory system of coordinates xyz for calculating the light
scattering by a particle: O ë the origin of coordinates and centre of the
spheroid; S0 ë spheroid axis of symmetry; y0 ë tilt angle of the spheroid
symmetry axis relative to the incident optical beam direction; y and j ë
angular coordinates of the observation point P.
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Figure 5. Diagrams of laser radiation scattering by a spheroid upon its
illumination along the symmetry axis (y0 � 0) obtained by using the
DDA and GOA (both coherent and noncoherent cases). The spheroid
semiaxes a � 4 mm and b � 1 mm, the relative refractive index n � 1:05.
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intensity change depending on the orientation of the
scattering plane, especially at low scattering angels. This
is due to the difference in transverse particle sizes at
different scattering planes. Curves shown in Fig. 7a relate
to the scattering plane in which the lateral size of the particle
is small. Curves in Fig. 7b, conversely, relate to the
scattering plane in which the lateral size of the particle is
large. As is well known from the diffraction theory, the

angular distribution of the light intensity in the far-éeld
zone is deéned by the angular radiation spectrum. The
width of the angular spectrum Dy is related to the lateral size
d of the scattering particle in the scattering plane: Dy � l=d.
Therefore, one can expect that the larger this size d the
smaller the width of the angular scattering spectrum. Data
presented in Fig. 7 conérm this conclusion.

Data shown in Fig. 7c relate to the case in which the
scattering plane (x � 0) is perpendicular to the system
symmetry plane (y � 0). One can see that the angular
distributions of intensities are symmetrical relative to the
incident beam direction. This can be explained by the fact
that in this case the cross section of the spheroid in the
scattering plane is represented by an ellipse with the large
semiaxis perpendicular to the incident beam.

Data shown in Fig. 7d relate to the case in which the
scattering plane coincides with the symmetry plane of the
system (y � 0). One can see that the angular distributions of
the intensities are nonsymmetrical relative to the incident
beam direction. This can be explained by the fact that in this
case the cross section of the spheroid in the scattering plane
is represented by an ellipse with the large semiaxis located at
an angle of 458 relative to the incident beam.

In the calculations presented above, the scattering
particle was supposed to be optically soft, i.e. the relative
refractive index n � 1:05. This corresponds to the case of
light scattering by an erythrocyte in blood plasma. It is
interesting to know how the scattering diagram is trans-
formed with increasing the optical density of the particle. As
an example, a scattering diagram for a spheroid with relative
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Figure 6. Diagrams of laser radiation scattering by a spheroid upon its
illumination along the symmetry axis (y0 � 0) obtained by using the
DDA and RWA. The spheroid semiaxes a � 3:25 mm and b � 1:15 mm,
the relative refractive index n � 1:05.
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Figure 7. Diagrams of laser radiation scattering by a spheroid obtained by using the DDA and RWA at y0 � 908, j � 0 (a), y0 � 908, j � 908 (b),
y0 � 458, j � 908 (c) and y0 � 458, j � 0 (d). The spheroid semiaxes a � 3:25 mm and b � 1:15 mm, the relative refractive index n � 1:05.
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refractive index n � 1:33 is shown in Fig. 8. One can see that
in this case the curves calculated with the help of the RWA
and DDA match well. The calculation time in the case of the
RWA remains the same (� 15 min) while in the case of the
DDA it signiécantly increases (� 170 min). For a particle
with the same shape and relative refractive index n � 1:5,
the calculation by the DDA method requires more than 1
day on a conventional personal computer.

With increasing the particle refractive index, the visi-
bility of the interference maxima and minima in the
scattering pattern decreases, while the intensity of scattering
decreases slower at large scattering angels, i.e. the angular
spectrum of scattering becomes wider (compare Figs 6 and
8) and the general scattering pattern becomes `smoothed'.

The qualitative characteristics of the angular distribution
of intensities of the scattered light in the forward half-space,
especially at small scattering angles, conform to the general
principles of the diffraction theory. Reêection of the
incident light plays a decisive role for the back half-space.

One can see from Figs 6 ë 8 that the calculation results
obtained by using the RWA and DDA methods agree well.

We have also considered the problem of the effect of the
longitudinal size of the spheroid on the scattering pattern.
The scattering diagrams for the case of the spheroids with
equal cross sections, but different sizes in the direction of the
incident beam were constructed. The comparison of these
diagrams allowed us to conclude that the longitudinal size of
the particle inêuences the visibility of the interference
maxima and minima in the scattering pattern, however,
it does not inêuence their position in the region of small
scattering angles (y4 308), namely, the contrast of the
scattering pattern decreases with increasing the spheroid
size in the direction of the laser beam.

4. Conclusions

Thus in this work, a theoretical model is developed and a
numerical algorithm is proposed for calculating the light
scattering by transparent dielectric particles with the size
parameter highly exceeding the light wavelength. The

results of calculations show that the presented algorithm
is comparable in precision with such a method as the DDA,
however, it signiécantly exceeds the latter in the calculation
rate for particles with the size parameter higher than 100.
For example, for particles with the size parameter 85 and
the relative refractive index 1.33, the calculation time for
the RWA was about 20 min, while for the DDA ë about
three hours. This algorithm is promising for fast calcu-
lations of light scattering diagrams by such particles as
erythrocytes and their aggregates.
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Figure 8. Diagrams of laser radiation scattering by a spheroid upon its
illumination along the symmetry axis (y0 � 0) obtained by using the
DDA and RWA. The spheroid semiaxes a � 3:25 mm and b � 1:15 mm,
the relative refractive index n � 1:33.
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