
Abstract. An original method is proposed to calculate the
formation of speciéed far-éeld intensity distributions by a
bimorph mirror in the case of initial transverse-multimode
beams. The method is based on the Gerchberg ë Saxton
algorithm with replacement of the phase function in the plane
of the control element by a function that takes into account
both the intensity and phase distributions of each mode. The
numerical results on the formation of a beam with the third-
order super-Gaussian intensity distribution from beams
composed of two or four lowest transverse modes are
discussed. The experimental results on using the conventional
Gerchberg ë Saxton algorithm to form a desired intensity
distribution from single-mode laser beams using a liquid-
crystal modulator are presented.

Keywords: Gerchberg ë Saxton algorithm, formation of a speciéed
laser intensity distribution, bimorph mirror, liquid crystal modula-
tor.

1. Introduction

The wide use of lasers in modern industrial technologies
(laser processing, lithography, and printing) [1, 2], medicine
[3], and chemistry [4, 5], as well as in navigation,
information, and location systems [6], put in the forefront
the problem of optimisation of laser radiation parameters.
The requirements imposed on laser radiation can be greatly
different depending on a particular problem. For example,
metal cutting requires, as a rule, tight focusing of a laser
beam on the metal surface [7]. The main condition for laser
thermal processing of materials is the uniform intensity
distribution over the beam cross section [8]. In addition,
because the laser radiation power is an important factor for
the possibility and eféciency of such technological proc-
esses, it is often preferable to use multimode lasers. Thus,
the control of the spatial structure (i.e., of the intensity
proéle) of multimode laser radiation is of particular
practical interest.

One of the most widespread methods for forming a
speciéed intensity proéle of laser radiation is the use of
special phase optical elements or systems. At present, there
are many analytical [9 ë 11] and numerical [12] methods of
calculating phase elements. Numerical methods are more
universal because, unlike analytical methods, they allow one
to solve complex nontrivial problems of formation of
intensity proéles. Among the known numerical methods,
we should point out the iterative Gerchberg ë Saxton algo-
rithm [13], which has a number of advantages, namely, a
simple implementation and a suféciently high speed and
accuracy. According to this algorithm, the phase function of
an optical element is calculated from transverse intensity
distributions speciéed in particular (input and output)
planes of the system. A detailed scheme of the algorithm
is given in Section 2 of this paper. However, the method for
calculating the phase function by this algorithm was initially
designed for single-mode laser radiation and the calculation
mechanism for multimode radiation was not developed. In
papers published to date [12, 14, 15], the Gerchberg ë
Saxton algorithm was used to reconstruct the phase function
of only single-mode radiation, and there are no examples of
application of this algorithm for multimode radiation.
Therefore, the aim of this paper is to develop a universal
method to control the intensity proéle of transverse-multi-
mode emission based on the Gerchberg ë Saxton algorithm.

2. Experimental realisation of the Gerchberg ë
Saxton algorithm for the formation of transverse
single-mode radiation

The Gerchberg ë Saxton algorithm for calculating the
phase function traditionally consists of the following basic
steps [13] (Fig. 1).
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Figure 1. Scheme for solving the phase reconstruction problem by the
Gerchberg ë Saxton algorithm. A and B are the input and output planes.



(i) For the phase j �0�(r, y), chosen as the initial approx-
imation, and the given absolute éeld amplitude distribution
jA(r, y)j � ������������

I(r, y)
p

in the input plane, one calculates the
complex amplitude A 0(r 0, y 0) in the output plane (here, r
and y are the radius vector and the azimuthal angle in the
input plane and r 0 and y 0 are the same parameters in the
output plane). The conditions for the beam propagation
from the input to the output plane are assumed to be
known.

(ii) The modulus of the éeld amplitude calculated in the
output plane is replaced by the square root of the desired
intensity distribution I 0(r 0, y 0) in this plane.

(iii) The backward beam propagation from the output to
the input plane is calculated.

(iv) The calculated amplitude in the input plane ~A(r, y) is
replaced by the square root of the given intensity distribu-
tion in the input plane and the calculated phase ~j �n�(r, y) is
taken as the next approximation, j �n�1�(r, y) � ~j �n�(r, y).

Then, the iteration procedure is repeated. As a rule, as a
parameter characterising the algorithm convergence, one
chooses the root-mean-square deviation of the intensity
distribution calculated in the output plane from the required
distribution. According to Parseval's theorem [12], the root-
mean-square error should gradually decrease with increasing
the number of iterations, and the calculated intensity
distribution jA 0 �n�(r 0, y 0)j2 should reach the required dis-
tribution I 0(r 0, y 0).

We used the Gerchberg ë Saxton algorithm to exper-
imentally form speciéed intensity distributions of laser
radiation by a liquid-crystal (LC) modulator. Such modu-
lators are currently widely used to control and correct laser
radiation [16, 17]. They can serve as a base for creating
controllable lenses [18], prisms [19], and diffraction gratings.
In experiments on the formation of single-mode laser beams,
we used an electrically controlled Holoeye-SLM-LC-2002
modulator (Fig. 2). This modulator is a phase optical
element, which can change the wave-front phase of the
propagating laser beam and consists of a liquid crystal
placed between transparent electrodes [20]. One electrode of
the modulator is solid and the other consists of a set of
transparent electrodes ë cells. The LC modulator is con-
trolled by a VGA or SVGA video signal, which is
transformed into an electric signal with the use of a special
control unit. The black point of the control video signal
corresponds to the minimum phase delay of the LC cell, and
the white point corresponds to the maximum delay. The

speciécation and the technical characteristics of the mod-
ulator used are as follows:

The scheme of the experimental setup used to form
speciéed intensity distributions is shown in Fig. 3. A diode
laser beam (l � 0:65 mm) propagates through an expanding
telescope (10�) and a LC modulator and is focused by a lens
( f � 0:35 m) on a CCD camera array. The LC modulator
and the CCD camera array are placed in the focal planes of
the lens. Hence, the distributions of the complex éeld
amplitude in the plane of the LC modulator A(r, y) (plane
A in Fig. 3) and on the CCD camera array A 0(r 0, y 0) (plane
B) are related by the Fourier transform. The éeld amplitude
distribution jA(r, y)j � ������������

I(r, y)
p

in the plane A is known, and
the desired intensity distribution in the plane B is given as
jÂ(r 0, y 0)j � ������������������

I 0(r 0, y 0)
p

. Applying the Gerchberg ë Saxton
algorithm to the scheme shown in Fig. 1, we can calculate
the beam phase proéle in the plane A corresponding to the
phase delay introduced by the LC modulator and needed to
form the required intensity distribution in the plane B. Some
examples of intensity distributions obtained by this way on
the CCD camera are shown in Fig. 4.

The above experiment demonstrates how the traditional
Gerchberg ë Saxton algorithm can be used to transform
transverse-single mode laser radiation. However, as men-
tioned above, many technological processes require the use
of multimode lasers.

3. Application of the Gerchberg ë Saxton
algorithm in the case of multimode radiation

Before discussing the formation of a speciéed intensity
distribution, let us assume that we deal with a transverse
multimode radiation coupled out of a stable laser resonator
through a Brewster window. We assume that the transverse
modes do not interfere due to the difference in their
frequencies (the frequency degeneracy of the TEM01 and
TEM10 modes is eliminated by an astigmatism introduced

Figure 2. A Holoeye-SLM-LC-2002 modulator.
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Figure 3. Scheme of the experimental setup for forming speciéed
intensity distributions: ( 1 ) laser; ( 2 ) expanding telescope; ( 3 ) LC
modulator; ( 4 ) lens; ( 5 ) CCD camera.
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into the cavity by the Brewster window [21, 22]). Hence, in
what follows, we consider the multimode radiation intensity
as a sum of intensities of individual modes.

Let us elucidate the proposed modiéed algorithm of
formation of multimode radiation in the focal plane of a
lens on the example of a super-Gaussian beam with the
intensity distribution

I 0
ÿ
r 0; y 0

� � I 00 exp
�
ÿ 2

�
r 0

w 0

�2p �
(1)

(where I 00 is the peak intensity in the origin of coordinates
of the output plane; w 0 is the characteristic beam size
determined at the level of eÿ2 of the peak intensity; and
p � 3) formed from a beam summed of two transverse
cavity modes with the intensity distribution

I1�r; y� � 0:4E 2
00 � 0:6jE01j2 (2)

or of four transverse cavity modes with the intensity
distribution

I2�r; y� � 0:15E 2
00 � 0:35jE01j2 � 0:15E 2

10 � 0:35jE02j2. (3)

Here, E00, E01, E10, and E02 are the amplitudes of transverse
cavity modes TEM00, TEM01, TEM10, and TEM02, respec-
tively, which can be written in the form [1, 23]

E00�r; y� � E0 exp�ÿr 2=2�;

E01�r; y� � E0 exp�ÿr 2=2� exp�iy�;

E10�r; y� � E0�1ÿ r 2� exp�ÿr 2=2�;

E02�r; y� � E0r
2 exp�ÿr 2=2� exp�i2y�;

where E0 is the éeld amplitude in the beam centre;
r � r

���
2
p

=w; and w is the characteristic size of the TEM00

mode. The numerical coefécients in expresions (2) and (3)
characterise the power ratios of modes in the beam and are
chosen arbitrarily.

The numerical calculations were performed for a model
optical scheme similar to the experimental scheme shown in
Fig. 3. We assume that the éeld A(r, y) in the input plane A
and the éeld A 0(r 0, y 0) in the output plane B are related by
an integral relation that is more universal than the Fourier
transform and allows one, if necessary, to position the A
and B planes at distances L1 and L2 that need not be equal
to the focal distance f of lens ( 4 ). This integral relation has
the form

A 0
ÿ
r 0; y 0

� � exp�ikz�
ilf

� 2p

0

dy
� R0

0

exp

�
ik

2B

�
Dr 02 � Ar 2

ÿ 2r 0r cos�yÿ y 0���jA�r; y�j exp�ij�r; y��rdr, (4)

where k is the wave number; l is the radiation wavelength; z
is the distance between the planes; R0 is the radius of the
input aperture; and A, B, and D are the elements of the
ABCD beam matrix, which, for the given scheme, are
A � 0, B � f, and D � 1ÿ (L1=f ).

The steps 1 ë 4 of the iterative algorithm were performed
according to the scheme shown in Fig. 1. At the érst
iteration, we gave an initial plane-phase approximation
for each mode and calculated their propagation from the
input to the output plane. The transverse amplitude
distribution for each mode in the output plane was replaced
by the square root of the desired intensity distribution with a
corresponding weight coefécient that characterises the
percentage of the mode power in the radiation. The phase
of each mode calculated in the output plane was unchanged.
Then, we calculated the backward propagation of modes
and replaced the calculated mode amplitudes in the input
plane ~A

�n�
i (r, y) by the known amplitudes. The phase proéle

j �n�i (r, y) of the ith mode was calculated by the expression

j �n�i �r; y� � arctan
Im
�

~A
�n�
i �r; y�

�
Re
�

~A
�n�
i �r; y�

� .

a b c

Figure 4. Given intensity distributions (a), calculated grey scale (0 is
black and 255 is white) phase distributions of the LC transparent (b), and
obtained intensity distributions (c).
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The difference between our and traditional algorithms is
that, next to j �0�, we calculate j �n�1�(r, y) phase approx-
imations in the input plane, which are needed to form a
required intensity distribution. We suggest to calculate the
new phase approximation j �n�1�i (r, y) based on the follow-
ing empirical consideration: the effect of a phase element on
the mode propagation is maximum in the beam points
where the mode intensity is maximum. Thus, the new phase
approximation (phase function) j �n�1�(r, y) at the (n� 1)
iteration, which is similar for all modes, is determined by
the expression

j �n�1��r; y� �
XN
i�1

ai�r; y�j �n�i �r; y�, (5)

where ai(r, y) � Ii (r, y)=
PN

i�1 Ii (r, y); i � 1, . . . ,N; N is the
number of modes in the initial beam, Ii (r, y) is the ith mode
intensity; and j �n�i (r, y) is the phase of the ith mode
calculated at the nth iteration. We assumed that the wave
front calculated by this method was reproduced at each
iteration by an ideal phase transparent (i.e., the reprodu-
cibility error was zero).

It is necessary to note that the vortex component of the
phase distribution of the TEM01 and TEM02 modes
remained constant: for calculating a new approximation
of the corrector phase, the TEM01 and TEM02 modes were
introduced into expression (5) without vortex components.

As a parameter characterising both the algorithm
convergence and the error in the formation of a speciéed
intensity distribution, we chose the deviation of the intensity
distribution formed in the output plane from the desired
distribution,

DI �n� �
� 2p

0
dy 0

� R1

0

n
I 0
ÿ
r 0; y 0

�ÿX
i�1

�
A 0 �n�i

ÿ
r 0; y 0

��
2
o2

r 0dr 0

�
�� 2p

0

dy 0
� R1

0

�
I 0
ÿ
r 0; y 0

��2
r 0dr 0

�ÿ1
, (6)

where R1 is the output aperture radius andPN
i�1�A 0 �n�i (r 0, y 0)�2 is the multimode beam intensity dis-

tribution obtained at the nth iteration of the Gerchberg ë
Saxton algorithm.

As functional (6) reaches the minimum or a predeter-
mined small value, we consider that the wave front needed
to form radiation is calculated and can be reproduced by a
real phase element. In our case, such an element was an 18-
electrode semipassive bimorph êexible mirror [24, 25],
whose parameters (response function) were used for numer-
ical simulation. In the simulation, we used a scheme that
was similar to the scheme shown in Fig. 3 with a bimorph
mirror instead of the LC modulator in the plane A. The
mirror design and the conéguration of its electrodes are
shown in Fig. 5. The mirror surface proéle can be repre-
sented in the form

F�r; y� �
XK
k�1

VkFk�r; y�, (7)

where Vk is the voltage at the kth electrode; K � 18 is the
number of electrodes; and Fk(r, y) is the response function
of the kth electrode (as the response function, we use the
mirror surface deformation caused by the action of only
one control drive). For convenience, the mirror response

functions were represented in the form of the Zernike
polynomial expansion. The functional characterising the
error of reproducibility of the calculated wave front j(r, y)
by the bimorph êexible mirror has the form

J �
� 2p

0

dy
� R0

0

h
j�r; y� ÿ

XK
k�1

VkFk�r; y�
i2
rdr, (8)

where R0 is the mirror radius equal to the radius of the
input aperture.

Thus, the calculation of required control voltages at the
electrodes is reduced to the minimisation of the functional J,
i.e. to the determination of such voltages Vk for which all
the partial derivatives become zero, qJ=qVk � 0.

4. Algorithm convergence and the main results

It is known that, when using the Gerchberg ë Saxton
algorithm, even small variations in the characteristics of
the chosen optical system or in the laser radiation
parameters can signiécantly affect the formation error. In
this connection, it was necessary to énd a parameter
responsible for the algorithm convergence and for the
achievable formation error. As such a parameter, we
suggest to use the parameter b that takes into account
the characteristics of the laser radiation and optical system,

b � pw0w
0

f l
, (9)

where w0 is the characteristic beam size in the input plane
determined at the level of eÿ2 of the peak intensity and w 0

is the characteristic beam size to be obtained in the output
plane (at the level of eÿ2). As follows from the deénition,
under certain conditions, the chosen parameter b becomes
similar to the so-called beam quality factor M 2 [26]. Similar
to the parameter b, the M 2 factor is calculated by
expression (9) with the only difference that the character-
istic beam size w 0 in the output plane is real instead of
desired. In the cases when the real beam size coincides with
the beam size to be obtained, as, for example, in the case of
successful realisation of the Gerchberg ë Saxton algorithm,
the b parameter can be considered to be identical to the M 2

factor.
One more advantage of the b parameter is that, having

calculated the phase function for a particular optical system,
we can assert that this function will be the same for an
optical system that has a different geometry and beam
parameters in the input and output planes but the same b
parameter as the initial system [27].
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Figure 5. Construction of the bimorph êexible mirror and conéguration
of its electrodes: ( 1 ) focusing/defocusing electrode; ( 2 ) common ground
electrode; ( 3 ) segmented electrodes; and ( 4 ) piezoceramic discs.
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We analysed the accuracy of formation of a beam with
the super-Gaussian intensity distribution from beams given
by expressions (2) and (3) as a function of the b parameter.
To change b, we changed the initial beam size w0. The other
values that determine the b parameter were constant.
Table 1 lists the formation errors DI �n� at the last iteration
(after which the solution accuracy ceases to improve) for
different b parameters in the case of two- and four-mode

initial radiation. One can see that the best result for the two-
mode beam was obtained at b � 2:2. This corresponds to
the following calculation parameters: l � 1:06 mm, L1 �
5 m, and L2 � f � 0:45 m. The characteristic beam sizes w0

and w 0 in the input and output planes were, respectively, 8.3
and 0.4 mm with R0 � 15 mm and R1 � 0:9 mm. The
minimum error (5%) of the formation by an ideal corrector
was achieved at the tenth iteration. The intensity distribu-
tion to be formed and the intensity proéles obtained in the
output plane before and after using the Gerchberg ë Saxton
algorithm are shown in Figs 6a, b. The results of numerical
simulation of formation of the given transverse intensity
distribution by a bimorph êexible mirror and the corre-
sponding shape of the mirror surface are given in Figs 6c, d.
The error in the reproducibility of the given phase proéle by
the mirror was 0.5%. The error in the formation of the
given intensity distribution by the bimorph mirror was
5.3%.

The best formation result for the four-mode beam was
achieved at b � 3:05. The error in the intensity distribution
formation decreases from 17% at the érst iteration to 1.5%
after 20 iterations. The error of reproducibility of the given
phase distribution by the êexible mirror was 1.5%. In this
case, the error in the formation of a beam with the super-
Gaussian intensity proéle by the bimorph mirror was 1.6%.
The calculation parameters of the beam and optical scheme
were as follows: l � 1:06 mm, L1 � 5 m, L2 � f � 0:45 m,
R0 � 20 mm, R1 � 0:9 mm, w0 � 11:6 mm, and w 0 �
0.4 mm. The desired intensity distribution and the beam
intensity proéles obtained in the output plane before and

Table 1. Gerchberg ë Saxton algorithm convergence as a function of the
b parameter.

Two-mode initial radiation Four-mode initial radiation

b DI �n� (%) b DI �n� (%)

2.20 5 2.64 2.8

2.55 9 3.05 1.5

2.93 8.6 3.52 6.2

4.00 8.2 3.96 10

4.37 8.2 4.40 8.8

5.10 7.9 4.85 9.3

5.83 8.6 5.28 12.1

6.55 8.9 5.72 11.2

6.93 10.8 6.16 11.9

7.30 14.7 6.60 12.8

8.37 16.6 7.00 13.9

9.05 13.6 7.44 14.6

9.46 18.6 7.90 16.8

10.20 23 8.33 19.9

10.52 23.1 9.20 20.4
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Figure 6. Formation of the third-order super-Gaussian intensity distribution from two-mode radiation: required intensity distribution (a); required
intensity proéle ( 1 ) and proéles obtained before ( 2 ) and after ( 3 ) using the GerchbergëSaxton algorithm with the help of an ideal corrector (b);
intensity distribution formed by a bimorph mirror (c); and shape of the bimorph mirror surface (d) (z1 is the distance from the output aperture centre
and z2 is the distance from the input aperture centre).
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after application of the Gerchberg ë Saxton algorithm with
the use of an ideal corrector are shown in Figs 7a, b. The
intensity distribution obtained in the output plane with the
use of the bimorph mirror (numerical simulation) and the
mirror surface shape are shown in Figs 7c, d.

It should be noted that there are limits (b � 2:20 in the
case of two-mode beams and b � 2:64 for four-mode beams)
below which the formation problem cannot be solved. The
absence of the algorithm convergence in these cases is
explained by the impossibility to focus the beam into a
spot smaller than diffraction-limited for a given beam.

5. Conclusions

In this paper, we have experimentally demonstrated the
formation of various speciéed intensity distributions using
the Gerchberg ë Saxton algorithm. A modiéed scheme of
this algorithm is proposed to solve the problem of
formation of required intensity distributions in the case
of transverse-multimode laser beams. The formation of
beams with the super-Gaussian intensity distribution from
beams composed of two (TEM00 and TEM01) or four
(TEM00, TEM01, TEM10 and TEM02) transverse cavity
modes is numerically simulated. A êexible bimorph mirror
has been used as a phase element. The smallest error in the
formation of the super-Gaussian intensity distribution by
the bimorph mirror is 5.3% and 1.6% in the case of two-
and four-mode radiation, respectively. We have introduced
a parameter b that allowed us to predict the error in the

formation of a given intensity proéle, as well as the
Gerchberg ë Saxton algorithm convergence on the whole.
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