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Eigenfrequencies and eigenmodes of a ring optical resonator

with thin dielectric plates

V.F. Soudakov

Abstract. A ring optical resonator containing arbitrarily
placed dielectric plates is considered. The resonator inhomo-
geneity introduced by the plates is insignificant: the thickness
of plates and the excess of their refractive index over the
average refractive index of the resonator obey the condition
of smallness. It is shown that the eigenfrequency spectrum of
this resonator is simple and represents an equidistant
sequence of weakly split frequency doublets. Splitting in
each doublet is found. Modes in the form of perturbed
standing waves are quantitatively described. The formalism of
the shift matrices along the trajectories of the differential
equation, which makes it possible to obtain the result in the
simplest way, is used to solve the above spectral problem.
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1. Introduction

Parameters of laser radiation are mainly determined by the
resonator. In a uniform (scattering is absent) reciprocal ring
optical resonator (ROR) both a pair of counterpropagating
(travelling) and a pair of orthogonal standing waves can be
independent. Depending on the operation regime, any of
these wave pairs can participate in generation. The presence
of the resonator nonreciprocity excludes the generation of
standing waves. When the nonreciprocity and scattering act
simultaneously (in the nonreciprocal and nonuniform
ROR), mixed-type waves are generated, the standing
wave coefficient depending on the nonreciprocity and
inhomogeneity parameters. This is the essence of the
problem of ring lasers, which is known as the ‘coupling
of counterpropagating waves via scattering’. It is important
to find the dependence of the coupling strength and
character on the inhomogeneity parameters, because it
opens up the possibility for decreasing directly this
dependence (for some applications of ring lasers, the
standing wave coefficient should be close to zero).

For this reason, numerous attempts have been made to
study the influence of the inhomogeneity in the ROR (at
least in the reciprocal resonator). Because this problem
cannot be solved analytically for the inhomogeneity of the
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general type, we chose rather simple inhomogeneity models:
a small dielectric prism [1], a small dielectric sphere [2], a
thin cylinder of finite length with the axis parallel to the
resonator axis [3], i.e. lumped scatterers. In paper [4] a
simple inhomogeneity model imitating the action of two
scattering centres was considered, i.e. the simplest multiple
scatterer. For a number of applications of ring lasers it is
necessary to give a more general description of inhomoge-
neities (see, for example, [5]). This can be only done by using
the perturbation theory in some or other interpretation.
Thus, we can study the ROR in the case of rather complex
inhomogeneity distributions (but within the applicability of
the perturbation theory).

In this paper we consider one of the variants of such an
inhomogeneity in the form of three dielectric plates arbi-
trarily placed along the ROR perimeter. These plates can, in
particular, imitate parasitic scattering centres but can also
represent elements of the resonator design. Some assump-
tions are made about the plate parameters, which allow one
to treat them as a small perturbation in a uniform ROR.
The ROR frequency spectrum and modes are studied (it is
shown that the results can be applied to the case of an
arbitrary number of plates). As is known (see, for example,
[6]), the solution of the spectral problem for a ROR makes it
possible to obtain important laser radiation parameters
(amplitudes of stationary oscillations, limiting cycle
strength, boundaries of the single-frequency lasing region,
etc.).

2. Formulation of the problem

Let us assume that the ROR is one-dimensional, x is the
coordinate of a point on the axis, and L is the resonator
perimeter (0 < x < L). The refractive index of the filling
medium 7n(x) = no[1 + s(x)]"/* is piecewise constant. The
function s(x) =0 for x;+0x < x < x;;; and s(x)=S>0
for x; <x<x;4+0x, where i=1,2,3, x4=L,x; =0.
This distribution of the refractive index can simulate the
action of three scattering centres inside the ROR and
corresponds to three dielectric plates of thickness dx located
at arbitrarily points x;. In the one-dimensional appro-
ximation (infinitely extended plates), the stationary waves u
with the frequency w =kc (¢ is the speed of light in
vacuum) in this structure satisfy the wave equation

and boundary conditions of the periodic type
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dz ~ d=

The problem consists in determining the approximate
values of eigenfrequencies x (expressed in inverse centi-
metres) and real modes corresponding to them
(distributions of the standing wave type). The approxima-
tion is provided by assuming that the parameter x,Sdx is
small, where x, are eigenfrequencies of the uniform ROR
(for S = 0), which are used as a zero approximation for the
eigenfrequencies of the nonuniform ROR.

3. Shift matrices and matrices of the ROR
round trip

The wave equation along the entire length of the resonator
has the form

@—l— 2u(x) =0
dx? Xmx) =5

where 32 = &% = k*nd(1 + S) in intervals (x;, x; 4+ 8x) and
y? =k’ =k>ni in intervals (x;+ dx, Xiy1). In the phase

space (u, y = du/dx), the vector equation

&0)=(2 00

corresponds to this equation. We will solve the vector
equation by using the shift matrix U(x"”, x’) along the phase
trajectories (see, for example, [7]). In the case of constant
coefficients y, this expression has the form:

cosfy(x" — x")] isinmx" )

U(X”,X’): /
—xsinfy(x" —x")]  cosfz(x" —x")]

The shift matrix allows one to shift the solution from point
x = x' to the poin x = x":

u(x" u(x’
( ( ”)> —U(x”,x/)< ( /)>
y(x") y(x7)
Starting from point x = x; = 0, we will successively pass

to points x; + dx, x;,1. The shift in intervals (x;, x; + 0x) for
¥ = K can be written in the form:

u(x; + 9x) _ u(x;)
= U(x; + dx, x;) ,
y(x; + 6x) y(x;)
and the shift in intervals (x; + dx, x;,;) for y =k has the
form:

(”(XM)) = Uiy, x4 6%) <”(xi + 6x) >
y(xig1) y(x; + 6x)

U(L, x;)AU(x;,0) =

—r{coskL + Scoskx;cos[k(L — x;)]}

—sinkL — Scoskx;sin[k(L — x;)]

In the matrix U, we set y = «, and in the matrix U, y = &.

The matrix of the ROR round trip is a shift matrix from
point x = x; = 0 to the same point with the coordinate x =
x4 =L:

3
U(L,0) = HU(le,xi—i—6x)U(x,~+6x,x,»). (1)
i1

We will simplify this matrix taking into account the
following first-order approximations (E is the unit matrix):

dU(xivxi)

U(x; + 8x,x;) = U(x;, x; )
('xl + 'xﬂ xl) ('xl’xl) + dx X
— gy QW) @)
dx
dU(x. )
U(Xig1, X +0x) = U(xj41, X)) — %53@ 3)
Because
dU(x;, x;) 0 1)\ _
dx 7 <—fc2 O> =4,

all U(x; + 8x,x;) are identical and equal to E + 48x. By
using this expression and Eqns (2), (3), we can rewrite
expression (1) in the form:

U(L,0) = Uy(L,0) + { 3 U(L, x;)AU(x;,0)
i=1

i=

"
= dU Xiv1, Xi
,Z U(L&ﬂ)%

i=1

U(x,-,O)} dx. ()]
UO(L7 O) = U(L7 X3)U(X3,X2)U(X2,X1)
_ ( cos kL
—KksinkL

Let us calculate the terms in (4) for the round-trip transit
matrix. The direct calculation proves that

coskL

U(L,x,-H)MU(xi,O)
dx
in kL ! L
_K< — SN K EK ) (6)
—Kkcoskl —sinkL

The product of the matrices can be represented in a more
convenient form:

1 . .
E{ [cos kL — Ssin kx;sin[i(L — x;)]} 7

—sinkL — Ssin kx; cos[i(L — x;)]
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By substituting (5)—(7) into expression (4) we can
represent it in the form:

not produce conditions for the appearance of internal
resonators (equivalent high Q linear resonators do not

L, . 1
U(L,0) = ( coskL Kska) +3K< —sinxL KCOSKL>6x
—KksinkL coskL —KkcoskL —sinkL
3 . . , 1 i o
ok —sinxL — Scoskx; sin[k(L — x;)] K{COSKL Ssinxx; sin[k(L — x;)]} 5. ®)

i=l \ —x{coskL + Scos kx; cos[k(L — x;)]}

4. Eigenfrequencies of a nonuniform ROR

The round trip matrix allows one to determine the
eigenfrequencies of a nonuniform ring resonator. The
eigenfrequencies k should be so that

u@)) (u®)>

U, L = .

on(3) = (4o

Because the determinant of any shift matrix is 1, the

eigenfrequencies should be so that SpU(L,0) = 2. Due to
(5), (8), the matrix trace of the ring resonator round trip is

SpU(L,0) = SpUy(L,0) — 3Skdxsin kL

=2coskL — 3SkdxsinkL.

Thus, the eigenfrequencies should be the roots of the
equation

2coskL — 3Skdxsin kL = 2. 9)

The eigenfrequencies of a uniform ROR are the roots of
9) for =0, ie. xg, =2mp/L, where p> 0 is a large
integer. The eigenfrequencies Kpi of a nonuniform ROR
for a small perturbation Sk,6x < 1 are close to eigenfre-
quencies of a uniform ROR and produce a doublet: K[,i =
Kop(1 F&), where 0<e<1. From (9) we obtain the

expression
(Kope LT 38kp0x(Kgpe L) = 0,

to determine ¢, i.e. we have 0 <& = 3Sdx/L. Thus, the
range of eigenfrequencies of a nonuniform ROR consists of
a sequence of doublets with frequencies

3S6x> (10)

+
K, :KOP(] :FT

and a relative frequency range in the doublet (x, —
Kp+)/K0p = 2(3S6x/L), which are independent of its central
frequency.

As any other perturbation, the inhomogeneity under
study causes splitting of the double-degenerate eigenfre-
quencies of a uniform ROR. As a result, the frequency
spectrum of the nonuniform ROR proves to be simple. In
this case, the splitting is proportional to the density of the
total ‘area’ of the refractive index inhomogeneity in thin
plates, which is uniformly distributed along the resonator
perimeter. Therefore, the inhomogeneity under study does

—sinkL — Ssin kx; cos[k(L — x;)]

appear in the ROR). The splitting is independent of the
location of inhomogeneities. By summarising the obtained
result, we can ascertain that no matter how many thin
inhomogeneities are there inside the ring resonator and how
they are located with respect to each other, their effect on
the frequency spectrum is additive and equivalent to the
uniformly distributed inhomogeneity (which is not, how-
ever, reduced to the change in the refractive index upon
uniform filling). In the terms of phenomenological coupling
coefficients of counterpropagating waves, ‘thin’ inhomoge-
neities correspond to the complex conjugate coupling
coefficients (this follows from the doublet splitting), which
is natural because the inhomogeneity of the dielectric
constant is considered.

5. Eigenmodes of a nonuniform ROR

In a uniform ROR, two orthogonal modes, which can be
chosen arbitrarily, for example cosk,x and sinryx,
correspond to each frequency. In a nonuniform ROR, a
single mode correspond to each eigenfrequency. Let us
determine modes for each of the doublet frequency. To
simplify calculations, we assume that the inhomogeneities
are distributed uniformly: x;,;— x; = AX = L/3. The round
trip matrix U(L,0) can be approximately represented in the
form

U(L,0) = [B+ (BA — C)8x],

where
(6AX) L sin(xAX)
cos(x —sin(x
B K
—ksin(kAX)  cos(kAX)
an
1
—sin(kAX - AX
C sin(kAX) - cos(kAX)
—Kkcos(kAX) —sin(kAX)

The periodic boundary conditions uy = u(0), yo = du(0)/dx
should satisfy the equality

B+ (BA -~ C)BX}(%) - Gz)

Thus, the vector

()

(12)
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is the eigenvector for the above matrix and its components i (ot + +
. . = — AX) + Sk, 6 AX
should satisfy the system of equations o top [sin(rey” AX) + Sicy 8x cos (1 AX)]
1
cos(kAX ) — Skdxsin(kAX) —1  —sin(kAX) ~ —KOP(KOPEAX){I F(lFe
K
—k[sin(kAX) + Skdx cos(kAX)] cos(kAX) — 1
1
X [1 fE(KOPSAX)Z} } (18)

(13)

(3)-e
Yo

which can be easily derived if we use explicit expressions
(11) and (12). The zero solution of this system exists at
K= Kpi =xo(1 F¢&), where, as was shown above,
KopAX = 2mp, £ = S6x/AX < 1. Under these conditions

1
cos(i, AX) ~ {1 - E(KOI’SAXY} ,

sin(k, AX ) & FrgeAX.

We will use the first line of matrix (13) to determine one of
eigenvectors. Let

1
Uy = —K—SIH(K;&AX),
4

Yo = cos(x,,iAX) - Sxpin sin(chiAX) -1
This gives approximately

uy = +eAX + ¢°AX,
(14)

1
Yo = <_§:|: 1 - 8) (KOPSAX)Z.

The mode distribution in the range under study can be
obtained by shifting the derived eigenvector:

1

Zsin Kx> < o )
K .
COS KX Yo

COS KX

(o)
y(x) —Ksin Kx

It follows that

(15)

1 .
u(x) = uy cos K,X + —Yosini,x.
P

By substituting expressions (14) into (15) and selecting the
upper sign, we obtain for the corresponding normalisation
an expression for the mode, which corresponds to the
eigenfrequency K; = Q2up/AX)(1 —¢):

u(x) = COS(K;X) + %KopeAXsin (K;x). (16)

Let us use the second line of the matrix in expression (13) to
determine the second eigenvector. Its components can be
selected in the form:

1
Uy = COS(K;AX) -1 —E(KopﬁAX)z, 17

The mode distribution for the eigenfrequency x, is then
determined as

1
u(x) = ug cos(x, x) + K—_yo sin(x, x)
P

(19)

1 .
R 1t €08 (K0, X) -+ — Y sin(xg,X).
K()p
If in (18) we take the lower sign, we obtain the mode

u(x) = —2(igpeAX) Kl + %g> sin(ic, x) + % (opeAX)

. 1
X cos(zc;x)} = sin(x, x) + Z(ICOPCAX) cos(x, x). (20)
Here the mode is normalised so that, as in (16), the
coefficient at the first term be equal to unity.

6. Conclusions

In the case of a weak intracavity inhomogeneity in the form
of three arbitrarily located thin dielectric plates, the
spectrum of the ROR eigenfrequencies represents an
equidistant sequence of doublets. The doublet centres
coincide with eigenfrequencies of a uniform (without plates)
resonator kg, = 2np/L. The splitting within each doublet is
proportional to xj, and depends on the degree of the
inhomogeneity:  «, — k" = 2K, = 21, (3S6x/L).  The
splitting is independent of the mutual location of thin
plates and is determined only by the average density of the
total inhomogeneity, which is distributed uniformly along
the resonator perimeter. This regularity is preserved in the
case of an arbitrary (not equal to three) number of similar
inhomogeneities. The modes of each doublet are close to
real modes corresponding to the double degenerate
eigenfrequency of a uniform initial ROR. One can see
from expressions (16), (20) that along with the main
component (of the same type as that in the uniform
resonator), a small additional standing wave orthogonal to
it is present in the normalised modes of each doublet. The
relative contribution of these small components is of the
same order as that of the splitting in the corresponding
doublet of eigenfrequencies. The mode properties in the
intervals between thin inhomogeneities are also independent
of the mutual location and the number of these inhomo-
geneities.

An alternative description of modes is their representa-
tion in the form of travelling waves. In a uniform ROR two
modes exist at each eigenfrequency in the form of a pair of
independent travelling waves or a pair of orthogonal
standing waves. Modes of a nonuniform reciprocal ROR
can be only standing waves but they can always be expanded
in the counterpropagating travelling waves. However, such
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waves are not independent. If a laser with the resonator
under study is used, we could observe waves propagating in
the same direction (or counterpropagating waves) and
corresponding to one doublet of eigenfrequencies.

References

1.

bl

Zeiger S.G., Klimontovich Yu.L., Landa P.S., Lariontsev E.G.,
Fradkin E.E. Volnovye protsessy v lazerakh (Wave Processes in
Lasers) (Moscow: Nauka, 1974) Ch. V-1X.

Haus H., Statz H., Smith W. IEEE J. Quantum Electron., 21 (1),
78 (1985).

Skryabin D.V., Radin A.M. Opt. Spektrosk., 77 (1), 109 (1994).
Soudakov V.F. Kvantovaya Elektron., 35 (12), 1146 (2005)

[ Quantum Electron., 35 (12), 1146 (2005)].

Klochan E.L., Kornienko L.S., Kravtsov N.V., Lariontsev E.G.,
Shelaev A.N. Zh. Eksp. Teor. Fiz., 65 (4), 1344 (1973).
Kravtsov N.V., Lariontsev E.G. Kvantovaya Elektron., 30 (2), 105
(2000) [ Quantum Electron., 30 (2), 105 (2000)].

Bellman R. Introduction to Matrix Analysis (New York:
McGraw-Hill, 1960; Moscow: Nauka, 1969) Ch. X.



