
Abstract. Parameters of external-cavity semiconductor
lasers, when the stationary lasing becomes unstable, were
analysed within the framework of a theoretical model of self-
starting mode locking. In this case, a train of ultrashort
pulses can be generated due to intrinsic nonlinearities of the
laser medium. A decisive role of the transverse optical éeld
nonuniformity, pump rate, and gain spectral bandwidth in the
development of the instability of stationary lasing was
demonstrated.
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1. Introduction

Generation of ultrashort light pulses is an important
problem of laser physics from both the applied and
fundamental points of view. Great progress in the éeld
of femtosecond-pulse generation in solid-state lasers has
been made recently, which is mainly due to the use of
various types of SESAM saturable absorbers, Kerr-lens
mode locking, and intracavity dispersion optimisation.
Extremely short pulses of duration approaching the optical
oscillation period have been obtained.

Note that despite enormous prospects of numerous
applications, semiconductor lasers fall considerably behind
the above-mentioned laser systems with respect to the
femtosecond-pulse generation [1]. This is due to the rela-
tively low output power of laser diodes, which hampers the
use of SESAM absorbers or the Kerr nonlinearity. On the
other hand, in high-power laser diodes the power êux
density in the active region can reach signiécant values
sufécient for various types of nonlinearities to develop
eféciently [2]. It appears rather interesting to use intrinsic
nonlinearities of the semiconductor active medium for self-
mode locking and femtosecond-pulse generation. From a
practical point of view, it is desirable for a laser to pass into
the femtosecond-pulse generation regime automatically
when the continuous pumping is switched on, i.e. for the
mode locking be self-starting without any external action.

The érst step to the development of a mode locking
model is the study of the stability of stationary lasing in a
continuously-pumped semiconductor laser. Such studies
were earlier carried out for éber and dye lasers [3, 4]. If
it turns out that there exists a range of the laser parameters
where cw lasing is unstable, then the next step, apparently,
will be to study the stability of the femtosecond-pulse
generation regime. In the case of crossing the stationary
stability region with that of the ultrashort pulse generation,
there appears a possibility of the automatic transfer to the
mode locking regime as the governing parameter, namely
the pump rate, changes under conditions that other attrac-
tors of the system phase plane are eliminated. In this paper
we restrict ourselves by considering the érst part of the
problem, namely, the study of the stability of stationary
lasing.

We will demonstrate that in the case of the transverse
optical éeld nonuniformity when the pump rate increases,
there exists a frequency range where variations in the
stationary state are unstable. The physical mechanism of
the instability under study is determined by the transverse
nonuniformity of the gain saturation due to the mode
structure of the optical éeld. The instability threshold
considerably decreases for lasers with a broad optical
gain width according to the derived expression for the
instability threshold.

We will develop an approach based on the spatiotem-
poral description of the optical éeld in the cavity within the
framework of the known Haus method [5]. This approach,
unlike the method of the éeld expansion in optical resonator
modes, appears to be preferable from the viewpoint of
describing ultrashort pulses in the mode-locking regime.
Note that, within the framework of the mode approach, the
problem of the stability of continuous single-mode oper-
ation of laser diodes has been considered in literature, in
particular, in papers [6, 7], where the self-stabilisation of the
generated mode due to the parametric interaction with
neighboring subthreshold modes determined by density
beats of the carriers at intermode frequencies, has been
investigated. The general theory of stability of quantum
oscillators, taking into account the inêuence of spatial
nonuniformity of laser emission, was studied in [8] within
the framework of the general mode approach.

In this paper, we consider a laser diode with an external
cavity (see Fig. 1) having highly-reêecting mirrors, which
provide the maximum power inside the active region. We do
not use external nonlinear elements (absorbers, Kerr media,
etc.), and nonlinear interactions occur exclusively in the
laser active medium. A model with a single cavity is
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discussed and instabilities caused by the composite cavities
due to reêections at the laser chip, are excluded. We also
exclude instabilities arising from nonzero transmission
coefécients of the cavity mirrors. Therefore, the laser in
our case consists of an amplifying medium (a semiconductor
crystal with antireêection coatings on its facets) and two
external mirrors, one of which is highly reêecting and the
other has a small transmission coefécient for the radiation
output.

2. Theoretical model

To study the stability of the stationary lasing of a laser
diode, we will use the spatiotemporal approach developed
within the theory of mode locking [5, 9, 10]. Namely, by
relating the radiation éeld amplitudes En�1 and En after
n� 1 and n cavity round trips at a certain point (for instant,
at one of the mirrors), we will obtain an equation describing
the laser generation dynamics within a large time interval
t4Tr, (Tr is a round trip time), and study the stability of
its stationary solution.

Consider érst the ampliécation of the éeld amplitude E
per one round trip. The gain g of the medium is determined
by the carrier concentration dynamics in the amplifying
layer; in the well-known approximations, it can be described
by the expression [9]

dg

dt
� ÿ gÿ g0

T0

ÿ jEj 2
T0jEsj 2

g; (1)

where Es is the saturation éeld amplitude; g0 is the
unsaturated gain; and T0 is a characteristic relaxation
time. Due to the inhomogeneity of pumping as well as to
the mode structure of the éeld in the cavity, the gain is a
function of the transverse coordinate. Solving Eqn (1)
together with the wave equation is a nontrivial problem.

Under the stationary conditions of the laser-diode
generation, the structure of transverse modes was studied
in detail in literature (see, e.g., [11 ë 13]). In the direction
perpendicular to the amplifying layer (along the y axis), the
éeld distribution is almost homogeneous, because it is
determined mainly by the geometry of the enveloping layers
of the heterostructure. But in the plane of the amplifying
layer, the transverse éeld (along the x axis) distribution is
well approximated by the Gauss ëHermite modes. In this
case, under the condition of a suféciently small gain per
round trip, so that the self-focusing effect can be neglected
in the érst approximation, the spatial dependence of the
éeld amplitude can be factorised: E(x; y; z; t) � U(z; t)
�F(x)C(y). The transverse mode F(x) satisées the equation
F 00(x)� �k 2

0 n(x)ÿ k 2�F � 0, where n(x) is the linear refrac-
tive index, whose square approximation determines the

Gauss ëHermite modes; k0 � o0=c; o0 is the carrier fre-
quency; and k is the transverse wave number. The numerical
analysis showed the proximity of actual éeld distributions to
the Gauss ëHermite modes. The stability of these distribu-
tions and their connection with light ë current characteristics
of the laser diode was thoroughly studied in [11 ë 13].

Within the framework of the slowly-varying amplitude
approximation, the radiation éeld propagation along the z
axis in the amplifying medium of a laser diode is described
by the well-known equation [14 ë 16]
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where kz is the wave number along the z axis; b2
characterises the dispersion of the refractive index in the
medium; a is the line enhancement factor; t � tÿ z=vg is
the intrinsic time; and vg is the group velocity. Distributed
losses in the cavity are taken into account by the parameter
g, and the last term is the contribution of the effects of the
Kerr nonlinearity and two-photon absorption with coefé-
cients b2 and g2ph, respectively.

To derive the propagation equation for the éeld
amplitude U(z; t), we should use the factorised éeld
approximation and then average Eqn (2) over the transverse
mode (see, e.g., monograph [17]). In the vicinity of the
stationary lasing regime, the spatial proéle of the gain from
Eqn (1) has the form g � g0=�1� jE(x; z; t)=Esj2�. Note that
a similar relation is valid in a classic scheme of mode locking
as well [5, 10], when the pulse repetition rate is assumed
small compared to T0 (the `slow' ampliéer). In this case the
gain is determined by a ratio of the intensity averaged by the
period to the saturation intensity, i.e. g � g0=(1� Iav=Is).
Thus, the spatial gain proéle is
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[in the mode locking regime the ratio of the pulse repetition
rate to T0 should be taken into account (see Section 4)]. The
result of averaging is the equation�
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R1 � 1 1ÿ R2 5 1
SLD

Figure 1. Geometry of an external-cavity laser diode with highly-
reêecting mirrors (R1 � 1) and (1ÿ R2 5 1) between which an AR-
coated superluminescent diode (SLD) is placed.
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where the parameters are introduced as follows:

x �
�
F 2�x��1ÿ F 2�x��dx�

F 2�x�dx � 1; z �
�
F 4�x�dx�
F 2�x�dx : (5)

The integration is performed over the entire transverse
cross section of the amplifying layer. Because the parameter
z � 1, we neglect it hereafter and consider the nonlinearity
coefécients g2ph and b2 to be appropriately renormalised.
The parameter x characterises the deviation of the real
transverse proéle of the laser-radiation éeld from a
homogeneous proéle. Indeed, if F(x) is a unit step function
with the envelope characterising the laser aperture, then
x � 0. In the case of the fundamental Gauss ëHermite
mode [F � exp (ÿ x 2=2a 2)] x < x � � �1ÿ ���

2
p �= ���

2
p � 0:29,

where x � corresponds to an inénite width of the active
layer. In real semiconductor heterostructures, the trans-
verse-mode wings signiécantly exceed the size of the
pumped layer, and the inhomogeneity parameter is x4
0:05ÿ 0:15. The resulting correction of the nonlinear gain
compensates for the overestimate due to the medium
saturation, which emerges as the result of substitution of
the real local value of g by its value in the mode maximum.
On the other hand, it is equivalent to the efécient
absorption saturation, which compensates for the men-
tioned overestimate of the gain saturation. In this case, the
relaxation time of an `effective absorber' is suféciently
small, because it is fast in the sense of the mode-locking
model [5, 10].

Let us use now the Haus procedure [5, 10] and obtain
the relation between the laser-éeld amplitudes at a point
z � 0 on n� 1 and n steps of the cavity round trip.
Assuming the éeld change per round trip to be small
enough, we represent the éeld amplitude on nth round
trip in the form Un(z; t) � Un(t)� DUn(z; t), where
Un(t) � Un(z � 0; t); DUn(z; t)5 Un(t) is a small change
in the amplitude during the cavity round trip. The solution
of the Eqn (4) can be formally written in the form:

Un�z; t� � Un�t� �
� z

0

dzL̂�Un�z; t�; t�Un�z; t�; (6)

where L̂(U(z; t); t) is a nonlinear operator for the éeld-
amplitude evolution, whose form is obvious from Eqn (4).
The operator L̂(U(z; t); t) depends on the z coordinate
implicitly through the éeld amplitude U(z; t) and the gain,
in turn, depends on the amplitude and the pump rate is
assumed uniform along the ampliéer length. Because the
éeld change is small, we will expand

L̂Un�z; t� � L̂0Un�t� � L̂1DUn�z; t� � ::: (7)

and keep the fundamental term, assuming that
jL̂1DUn(z; t)j5 jL̂0Un(t)j along the entire cavity length.
Here, L̂0Un(t) � L̂(Un(t); t)Un(t) and does not depend on z.
Assuming the éeld amplitude outside the active medium to
be constant (the transmission of the cavity mirrors is small
enough), we obtain the total change in the amplitude per
each round trip Un�1(t) � Un�1(z � 0; t) � Un(t)� 2lL̂0

�Un(t), where l is the length of the amplifying medium.
Because Un�1(t)ÿUn(t)5Un(t);Un�1(t); we will consider
this difference as a derivative over a new variable
s � (2l=Tr)t, which is virtually a renormalised time (the

number of the cavity round trips)*. Therefore, we énally
derive the expression
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which describes the slow evolution of the emission éeld
within a long time interval consisting of many round trip
times. As we are interested in the case of GaAs, we set

q 2g
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� ÿA2 and
qg
qo

����
o0

� 0

i.e., generation is close to the gain maximum [14 ë 16].
Equation (8) is well known in the mode-locking theory

and nonlinear optics [17, 18]. Its solutions describe both the
stationary lasing regime with a constant amplitude
jU(z; t)j2 � const, and generation of soliton-like ultrashort
pulses jU(z; t)j 2 � coshÿ2(t=tp) in the mode-locking regime,
where tp is the pulse duration. Depending on particular
conditions and relations between the parameters, both
solutions can be realised.

In the stationary regime [U(z; t) � Uc exp (iPcs)�, we
obtain from Eqn (1) the stationary gain on the axis

gc �
g0

1�U 2
c =E

2
s
; (9)

and from Eqn (8), a system of algebraic equations for the
laser-éeld characteristics
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2
c ÿ g � 0:

Relation (9) and the second equation from (10) deter-
mine the stationary éeld amplitude

U 2
c �

1

2
f���E 2

s � I0� 2 � 4E 2
s I1�1=2 ÿ �E 2

s � I0�g; (11)

where the parameters I0 � (gÿ xg0)=g2ph and I1 � (g0 ÿ g)
gÿ12ph are introduced. The requirement for the solution to be
positive is equivalent to the natural threshold condition,
when ampliécation exceeds the losses, g0 > g. In the
limiting case g2ph � 0, the solution takes the form

U 2
c

E 2
s
� g0 ÿ g

gÿ xg0
; (12)

*Note that when the éeld variations per round trip are strong, the
replacement of the difference in the éeld by the derivative over a slow
time variable s becomes invalid. Then, the discrete Puancare transforma-
tion needs to be studied. This problem is of certain interest for a separate
investigation. Here, we restrict ourselves by the mentioned simple appro-
ximation.
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and, correspondingly, the existence condition for the
stationary lasing regime is

xg0 < g < g0: (13)

To study the stability condition, we consider the
evolution of small deviations dg, du from the stationary
solution depending on the increase in the number of cavity
round trips s. By substituting g � gc � dg and U �
�Uc � du(z; t)� exp (iPcz), into Eqns (1) and (8), we obtain
a system of equations for dg, du

d
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For a time-periodic perturbation, we look for solutions in
the form dg � Geiot+c.c., du � feiot � heÿiot. Then we
have
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For the functions F � f� h�, H � fÿ h� we obtain the
system of equations:
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The corresponding dispersion equation for the instability
increment l (F;H / e ls) has the form�
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In the absence of the linear-refractive-index dispersion
b2 � 0 Eqn (18) splits into two equations, and we obtain
two solutions. The érst solution with the increment
l1 � ÿ(A2=4)o

2 is always stable. The increment of the
second solution, depending on the pump level, can become
positive in a certain frequency range, so that perturbations
at these frequencies become unstable. By neglecting the
two-photon absorption g2ph ! 0 and taking into account
relations (12), (15), and (16), we obtain the dependence of
the instability increment on the ratio of the absorption and
pump levels r � g=g0:

Rel2 � g0
1ÿ r

1ÿ x

�
xÿ �1ÿ x�3r 2

rÿ x

� 1

�1ÿ x� 2 � �rÿ x� 2�oT0� 2
�
ÿ A2

4
o 2: (19)

One can see from (19) that the instabilities of the
stationary lasing are due to the transverse inhomogeneity
of the laser mode; in the limit x! 0 we have
Rel2 ! l1 < 0. Near the generation threshold (r � 1), sta-
tionary solution (12) is also stable within the entire range of
perturbations. When the pump increases, at certain ratios of
the parameters g0 and A2, a frequency domain emerges
where perturbations increase exponentially. In the high-
pump limit (r! x), the stationary solution becomes stable
again.

3. Results of calculations

Consider now the parameters at which instability domains
exist. It is evident that the pump intensity should play an
important role in developing instabilities. Figure 2 shows
the dependences of the normalised instability increment on
the perturbation frequency for four values of the pump
intensity. One can clearly see that at small intensities the
increment is negative within the entire frequency domain,
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0

0.133

0.09

Figure 2. Frequency dependences of the real part of the instability
increment for different values of the normalised output power;
A2 � 60 fs2 mmÿ1, g � 25 cmÿ1.
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and the stationary lasing regime is always stable. However,
when the pump increases, one observes the emergence of
frequency ranges where the increment becomes positive,
and the stationary regime becomes unstable. In an explicit
form, this transition is shown in Fig. 3, where the
dependences of instabilities on the pump intensity for
four frequencies oT0 are plotted.

The threshold instability conditions for the stationary
solution are determined by the condition max (Rel)jr�const
� 0 within the whole domain of perturbation frequencies
oT0 > 0 at a éxed pump level. For convenience we will use
below the parameter I � U 2

c =E
2
s � (1ÿ r)=(rÿ x), which is a

normalised peak intensity in the stationary regime. It is easy
to see that under condition

A2

4gT 2
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the increment of Eqn (15) is a function monotonically
decreasing with frequency and its maximum value (achiev-
able at o � 0) is negative
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With an increase in the line width, i.e., when the coefécient
A2 decreases, so that
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the increment of Eqn (19) achieves a maximum at the
frequency
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,

and we obtain the following implicit relation for the
threshold intensity of the stable stationary regime at a given
line width
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5
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�
1ÿ

�
1ÿ �1� Ith�x
�1� xIth�2

�1=2�2
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Above the threshold (I > Ith), there emerges a frequency
range o, where the increment of Eqn (19) becomes positive,
Rel2 > 0.

We can see that the gain spectrum width plays an
important role in developing instabilities, i.e. an increase
in the gain spectrum width contributes to developing
instabilities. The same dependence was also observed in
other laser systems [3, 4]. To obtain the dependence of the
threshold of the instability development on the spectral gain
width, we approximate the gain by the parabola

g�o� � g0

�
1ÿ 2�oÿ o0�2

Do 2

�
; (22)

where g0 � g(o0); Do is the spectrum width at half
amplitude. Then we have

A2 �
g0

Do 2
; (23)

and expression (21) for the stability threshold has the from:
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Expression (24) assumes that, at a given output power and
the gain spectrum width Dl < Dlcr, the stationary regime is
stable, while at Dl > Dlcr the solution becomes unstable.
By using expresion (24), it is possible to solve the reverse
problem, i.e. at a given gain spectrum width, we can
determine the critical output power above which the
stationary lasing becomes unstable.

Figure 4 presents the dependences of the critical gain
spectrum width Dlcr on the output power P for various
values of the parameter x and the saturation power of 14 W
(the saturation energy is 10 pJ). One can clearly see that,
when Dlcr increases, the critical output power, at which the
instability emerges, drastically drops. For instance, for
Dlcr � 5 nm the instability develops at P � 1 W, whereas
for Dlcr � 30 nm the stationary regime is unstable at powers
of a few tens of mW, depending on the transverse éeld
nonuniformity.
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Figure 3. Dependences of the real part of the instability increment on the
normalised output power for different values of the frequency;
A2 � 60 fs2 mmÿ1, g � 25 cmÿ1.
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Figure 4. Dependences of the critical gain spectrum width Dlcr on the
output power P for different transverse éeld inhomogeneities; l0 �
950 nm, T0 � 700 fs, the saturation power is 14 W.
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4. Mode-locked pulses

In addition to the stationary solution discussed above,
evolution equation (8) allows for a mode-locked solution
[5, 10]. Generally speaking, both solutions can be realised
either separately or simultaneously, depending on given
parameters of the problem.

As we saw above, at a certain spectral gain width the
stationary lasing regime fails when the pump increases, and
the external-cavity semiconductor laser can operate in the
self-mode locking regime. The second type of solutions of
Eqn (8) corresponds to this regime. This solution is well
known [17, 19] and is a train of ultrashort pulses of the form

U�s; t� � Up�sech�t=tp��1�ij exp�iZs�: (25)

Assuming the pulse duration tp and the pulse repetition rate
Tm � Tr=m (m � 1, 2, 3,... is the number of pulses in the
cavity) to be small compared to the characteristic gain
relaxation time, i.e., tp;Tm 5T0, we can approximately
assume [5, 14] that the average value of the gain is

g � gav �
g0

1� kIp=Is
; (26)

where Ip is the pulse peak intensity and k � tp=Tm 5 1.
Herewith, in accordance with the transverse mode averag-
ing procedure, we should replace x! kx in Eqn (8).

The substitution of Eqn (25) into Eqn (8) gives the
relations for the pulse parameters:

t 2 � A2�1ÿ j 2� ÿ 4b2j
2�gÿ gav�

;

Z � 1

2
� ag

av
� 1

t 2
�A2j� �1ÿ j 2�b2��;

(27)

U 2
p �

1

2t 2
3A2j� 2�2ÿ j 2�b2
akgavx=E 2

s ÿ 2b2
;

2ÿ j 2

3j
� ÿ�A2 � 2ab2�gavkx=E 2

s ÿ �A2g2ph � 4b2b2�
2�b2A2 ÿ b2g2ph� ÿ �aA2 ÿ 2b2�gavkx=E 2

s
:

In the limit of a small transverse mode inhomogeneity
b2 4 agavkx=2E

2
s , the solution corresponds to the solutions

known as dissipative solitons [19]. If we neglect the two-
photon absorption and dispersion of the linear refractive
index b2, g2ph ! 0, relations (27) take the form

2ÿ j 2

3j
� ÿ gavkx=E

2
s

2b2 ÿ agavkx=E 2
s
; t 2 � A2�1ÿ j 2�

2�gÿ gav�
;

(27a)

U 2
p � ÿ

1

2t 2
3A2j

2b2 ÿ agavkx=E 2
s
; Z � agav

2
� A2j

2t 2
;

and for x! 0 we have j � ÿ ���
2
p

. The pulse duration is
t 2 � A2=2(gav ÿ g), and its amplitude is determined by the
Kerr nonlinearity U 2

p � 3(gav ÿ g)=
���
2
p

b2. In the opposite
limit, b2 5 agavkx=2E

2
s , the effect of the transverse éeld

inhomogeneity dominates, and for the average intensity we
obtain

Ip
Is
� 3

���
2
p

ax
gav ÿ g
gav

: (28)

Bearing in mind the characteristic values of the parameters
A2 � 60 fs2 mmÿ1 and g � 25 cmÿ1, we can see that the
solutions of Eqns (25) and (27a) give the pulse duration in
the range of hundreds of femtoseconds [(A2=2g)

1=2 �
110 fs]. The study of the self-mode locking regime and
its stability is beyond the scope of this work and will be
published elsewhere.

5. Conclusions

We have considered here the development of instabilities of
stationary lasing in an external-cavity semiconductor laser
for further studying the possibility of obtaining the
femtosecond pulse generation. Theoretical calculations
have been based on the known Haus approach borrowed
from the mode-locked laser theory which is modiéed for a
laser diode active medium. The existence of laser param-
eters at which stationary lasing becomes unstable has been
demonstrated.

The instability development has been shown to be
affected mainly by transverse inhomogeneities of the optical
éeld, the pump intensity above the threshold, and the laser
spectral gain width. In the limit of the complete transverse
éeld homogeneity and near the lasing threshold, stationary
lasing was stable in the entire domain of perturbations. In
the case of the éeld inhomogeneity and with an increase in
the pump level, at certain values of the unsaturated gain, a
frequency domain emerges where perturbations of the
stationary solution increase exponentially. An increase in
the spectral gain width of the laser medium leads to a
decrease in the pump threshold intensity at which insta-
bilities of stationary lasing develop.

Note that the instability of lasing in laser diodes with
continuous pumping can be observed in various forms,
including the regime of the stable generation of ultrashort
pulses (self-mode locking regime), the dynamic chaos
regime, the pulse-repetition-rate doubling (tripling), the
unstationary spike regime, etc. Therefore, the next step
of our study is the search for laser parameters at which there
exists a stable generation regime of a regular train of
ultrashort pulses. In other words, it is necessary to inves-
tigate the self-starting mode locking regime in external-
cavity laser diodes and study their stability.
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