
Abstract. An inhomogeneous ring optical resonator of a
special type is considered, which contains two identical
dielectric plates of énite thickness separated by an arbitrary
distance. The refraction coefécient of these plates is
signiécantly higher than that of the medium élling the rest
of the resonator. This system can be treated as a ring
resonator formed by two linear resonators coupled through
the plates conéning them. The classical spectral problem for
such a resonator is solved in the plane-wave approximation. It
is shown that in the case of a comparatively low reêectance
from the plates, it is possible to obtain analytically a
physically acceptable description of the spectrum of eigen-
frequencies and modes. The method for solving the spectral
problem is proposed in which the analytic approach is
combined with the numerical experiment. It is shown that the
resonator spectrum is simple and is formed by a sequence of
doublets. The modes corresponding to these doublets are real
and orthogonal. Conditions are found under which the
splitting of eigenfrequencies in doublets disappears.

Keywords: inhomogeneous ring optical resonator, splitting of eigen-
frequencies, coupled resonators.

1. Introduction

The study an inhomogeneously élled ring resonator attracts
attention for several reasons. On the one hand, the main
reasons for the appearance of internal synchronisation
zones in ring lasers have not been revealed so far (it is
obvious that synchronisation is caused by the inhomoge-
neity but a detailed study of the role of the inhomogeneity
structure is absent). On the other hand, no deénite answer
is given to the question whether it is possible to use a
specially produced inhomogeneity (which inevitably causes
backscattering) to eliminate (or partially `reduce) this
synchronisation.

It is difécult to estimate the role of natural inhomoge-
neities, because, in fact, they are residual uncontrollable
defects. Such inhomogeneities, producing radiation back-
scattering, play an undesirable role. They are studied, as a
rule, by using some models (models of point or multipoint
reêectors, surface or bulk distributed scatterers). Based on

these particular investigations, attempts are made to draw
generalised conclusions (see, for example, [1 ë 4]). Quite a
different matter is specially produced structural inhomoge-
neities that are fully determined and functionally
substantiated. Such inhomogeneities can cause forward
and backward scattering in several cross sections of the
resonator and the waves appearing in this case can interfere
in a required way. There is nothing unexpected here; it is
enough to recall multilayer optical heterostructures in which
bleaching is observed. Investigations in this direction are
undoubtedly reasonable; however, we are not aware of any
works dedicated to this problem. We can, however, mention
paper [5], but the approach it uses is specialised taking into
account the type of the inhomogeneities being considered.

The study of structural inhomogeneities is difécult a
fortiori because it involves the solution of the spectral
problem for a differential operator on an interval with
periodic boundary conditions, and this problem in math-
ematics belongs to the most complicated one. The aim of
this paper is to solve approximately this problem for one
particular type of the inhomogeneity by using a special
investigation technique (allowing, however, generalisation)
proposed for this purpose. This technique can be also used
to study structural inhomogeneities of general type.

Let us specify the problem. Consider a ring resonator
with a perimeter L containing a linear low-Q resonator of
length L1 formed by two identical dielectric plates (forming
plates) of thickness L0 each with the refractive index n. The
refractive index of the other part of the resonator medium is
n0 < n and its length is L2 � Lÿ 2L0 ÿ L1. Thus, the ring
resonator is formed by two coupled linear resonators of
different lengths. The forming plates scatter radiation
backward with the reêection coefécient R and forward
with the transmission coefécient T. If n=n0 ! 1, we have
R! 0, T! 0. If n=n0 4 1, we have jRj ! 1, T! 0. Let us
determine the eigenfrequency and mode spectrum of this
structure.

Despite the simplicity of the inhomogeneity under study,
the solution of the spectral problem for it is unknown. The
general approach presented in the literature is based on the
use of the Schr�odinger equation with the asymptotic of
solutions fundamentally different from that of solutions of
the wave equation, which makes it impossible to adapt
known general results to this particular case [6].

2. Reêection and transmission coefécients
of forming plates

Consider these coefécients in the form: R � r exp (ÿ ia),
T � t exp (ÿ ib). Because the losses are absent, r 2 � t 2 � 1.
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The forming plates are of énite thickness, optically
homogeneous, and placed between identical optically
homogeneous media. In this situation, R and T can be
found exactly in the explicit form. The corresponding
expressions are presented, for example, in [1]:
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where y � kL0n is the reduced frequency (the phase
incursion on a forming plate); k is the wave number of
radiation in vacuum.

Figure 1a shows the change in the moduli of reêection
and transmission coefécients and Fig. 1b ë the change in
their phases as a function of the reduced frequency.

For further calculations we will also need the function

F�y� � ÿR 2�y� � T 2�y� exp�ÿi2y�. (3)

Let us calculate this function and present the results in
Fig. 2.

3. Mathematical formulation
of the spectral problem

Consider the intervals 04 x4L1 and 04 x4L2 of a
change in the coordinate x within the resonator perimeter.
Let us represent the éeld in the érst interval in the form

u �1��x� � E �1�ÿ exp�ikn0x� � E
�1�
� exp�ÿikn0x�, (4)

and in the second ë in the form

u �2��x� � E �2�ÿ exp�ikn0�xÿ L1 ÿ L0��

�E
�2�
� exp�ikn0�xÿ L1 ÿ L0��. (5)

The amplitudes entering the expressions for éelds (4) and
(5) satisfy the relations
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We use here the reêection and transmission conditions for
forming plates and the periodicity condition. We can obtain
from vector relations (6) and (7) that
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Figure 1. Dependences of the moduli (a) and phases (b) of reêection
R � r exp�ÿia� (solid curves) and transmission T � t exp�ÿib� (dashed
curves) coefécients of forming plates on the reduced frequency y at
n=n0 � 5=3.
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Figure 2. Dependences of the modulus (a) and phase (b) of the function
F on the reduced frequency y at n0 � 1, n=n0 � 5=3.
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This equation is homogeneous and, hence, only at
eigenfrequencies k there exists a nonzero vector

E
�2�
�

E �2�ÿ

 !
,

satisfying this equation. The eigenfrequencies, obviously,
should be the roots of the matrix determinant

After énding the eigenfrequency, we obtain the ratio
E
�2�
� =E �2�ÿ , and then by using (5), we determine the éeld

(mode) with an accuracy to an arbitrary factor in the
interval 04 x4L2.

4. Approximate estimate of eigenfrequencies

The eigenfrequencies k should be the roots of the
determinant of the above-presented matrix, i.e. satisfy the
equation��

exp�ikn0�L2 � L1�� � R 2
�ÿ T 2 exp�ÿi2knL0�

	2
ÿR 2�exp�ikn0L2� � exp�ikn0L1��2 � 0. (9)

In the limiting case R � 1, T � 0, when the ring reso-
nator is decomposed into two linearly uncoupled resonators,
this equation degenerates into a couple of equations

exp�ikn0�L2 � L1�� � 1 � ��exp�ikn0L2� � exp�ikn0L1��,

which have a countable sequence of eigenfrequencies. It is
obvious that the frequencies coincide with the roots of
equations exp (ikn0L2) � �1 and exp (ikn0L1) � �1. It is
easy to show that other real eigenfrequencies are absent.
The set of these eigenfrequencies is not empty if only the
lengths L1 and L2 are multiple of each other. From the
physical point of view, this assumption does not introduce
limitations. Hereafter, without the loss of generality, we will
assume that L1 � m1L0 and L2 � m2L0, where m1 and m2

are integers.
We can obtain from (9) the right values of eigenfre-

quencies in another limiting case: R � 0, T � 1 (the ring
resonator is homogeneous). Indeed, Eqn (9) then degener-
ates into the expression

fexp�ikn0�L2 � L1�� ÿ exp�ÿi2knL0�g2 � 0, (10)

which allows one to obtain an equidistant sequence of the
eigenfrequencies of a homogeneous ring resonator satisfy-
ing the equation exp�ikn0(L2 � L1 � 2L0)� � 1 (we took into
account that n � n0 at R � 0). It follows from the structure

of expression (10) that these eigenfrequencies are double
degenerate.

At small enough values of jRj, the last term in (9) can be
treated as perturbation. We will consider below only small
jRj, which is quite realistic (see Fig. 1) at least for 1 <
n=n0 4 5=3. By neglecting temporarily the last term in (9),
we obtain a truncated equation

��
exp�ikn0�L2 � L1�� � R 2

�ÿ T 2 exp�ÿi2knL0�
	2 � 0. (11)

We will seek for the eigenfrequencies in the form
k � k0 � dk, where k0 is any root (they form a countable
set) of truncated equation (11) and dk is an addition of the
order jRj. Because an inhomogeneous resonator has no
losses, the numbers k, k0, and, hence, dk should be real. This
circumstance will be used below. It is obvious that the root
k0 of equation (10) is doubly degenerate and satisées the
equation

exp�ik0n0�L2 � L1�� � ÿR 2 � T 2 exp�ÿi2k0nL0�. (12)

Function F(y) (3) has a period p. As follows from Fig. 2,
its modulus in the interval 0 < y4 p is exactly equal to 1 at
y � p and 1:254y4 1:83. The dependence argF(y) is
discontinuous and monotonically increases in the domain
of continuity. At y � 0, the modulus and the phase are not
deéned. The numerical experiment by changing n and n0 in
broad enough (experimentally achievable) ranges showed
that the curve in Fig. 2a did not change at all, while the
curve in Fig. 2b remained qualitatively invariable, its shape
changing insigniécantly only in the regions of a monotonic
increase. Therefore, we can conclude that the real roots of
equation (12) are only those k0 that for 1:254y4 1:83 or
y � p simultaneously satisfy the conditions

k0�y� �
2pq1 � argF�y�
n0�L1 � L2�

, k0�y� �
y� pq2
n0L0

(13)

(q1 and q2 are integers).
The eigenfrequencies of the initial inhomogeneous res-

onator can be found from equation (9), which can be written
in the form:

exp�ikn0�L2 � L1�� � F�y�

� �R�exp�ikn0L2� � exp�ikn0L1�� (14)

The two signs in (14) correspond to a couple of eigen-
frequencies k0 � dk. This means that the frequency
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. (8)
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spectrum of the inhomogeneous resonator is simple
(degeneracy is lifted).

We will énd the splitting (of the double root k0) by the
perturbation method. To do this, we represent the left-hand
side of (14) as a linear function of dk by using expression
(12), and replace the right-hand side of (14) by its value at
k � k0:�

in0�L2 � L1� exp�ik0n0�L2 � L1�� ÿ
dF�y�
dk

����
k�k0

�
dk

� �Rjk�k0 �exp�ik0n0L2� � exp�ik0n0L1��. (15)

Here
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ÿ 2iT 2 exp�ÿi2y�
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nL0.

We obtain from (15) that

dk � �R
�
in0�L2 � L1� exp�ik0n0�L2 � L1��

ÿ
�
ÿ 2R

dR

dy
� 2T

dT

dy
exp�ÿi2y�ÿ2iT 2

� exp�ÿi2y�
�
nL0

�ÿ1����
k�k0
�exp�ik0n0L2� � exp�ik0n0L1��.

This expression, taking equation (12) into account, will take
the énal form:

dk�y� � � 2

nL0

D�y� cos
�
y
n0
n

L2 ÿ L1

2L0

�
, (16)

where D(y) is a periodic function of y

D�y� � R
�ÿ R 2 � T 2 exp�ÿi2y��1=2�i L2 � L1

L0

��ÿ R 2 � T 2 exp�ÿi2y��� �2R dR
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dT
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exp�ÿi2y�

� 2i
n

n0
T 2 exp�ÿi2y�

��ÿ1����
k�k0

. (17)

As was shown above, the additions dk should be real. It
follows from (17) that this requirement is equivalent to the
condition argD(y) � 0, �p for a period of change of y.
Dependence (17) is presented in Fig. 3.

One can see from Fig. 3b that at y � p=2 and y � p, the
phase of function (17) is equal to ÿp. The exact calculation
shows that for none of the values of y the phase vanishes.
Modulus (17) at y � p is exactly equal to zero, i.e. the
splitting is absent. Therefore, the only possible values, at
which the splitting is real, are y � p=2� pq2. It is important
that the curves in Fig. 3, as follows from the numerical
experiment, very weakly change their shape (qualitatively
invariable) in extremely broad ranges of the parameters
(L1 � L2)=L0 and n=n0. However, for any values of these
parameters, the relations argD(p=2� pq2)� � ÿp and
jD�p� pq2)j � 0 are exactly fulélled. As shown above,

the values of k0(p=2) calculated by expression (13) are
also real. Conditions (13) can be reduced to the condition

k0

�
p
2

�
� 2pq1 � 1

n0�L1 � L2�
, (18)

if the relation

n0
n

L1 � L2

L0

� 2
2q1 � 1

2q2 � 1
(19)

between the inhomogeneity parameters is fulélled. Expres-
sions (18) and (19) are equivalent to (13).

Thus, if condition (19) is fulélled, two sequences

k0

�
p
2

�
� dk

�
p
2
� pq2

�
(20)

are the real eigenfrequencies of the inhomogeneous ring
resonator.

5. Splitting of eigenfrequencies

Of special interest is the splitting 2jdk(p=2)j of the
eigenfrequency doublets. Let us analyse it numerically by
using expressions (15) and (18), (19). Below we present the
calculation algorithm for the radiation wavelength l0 �
0.638 mm at L0 � 3� 10ÿ3 m, (L1 � L2)=L0 � 110 and
n0 � 1.

Under these conditions, k0(p=2) � 2p=l0. In accordance
with (18), we énd the nearest integer q1 satisfying the
relation

q1 �
k0�p=2�n0�L1 � L2� ÿ 1

2p
� �2p=l0�n0�L1 � L2� ÿ 1

2p
.
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Figure 3. Dependences of the moduli (a) and phase (b) of the function D
on the reduced frequency y at �L1 � L2�=L0 � 110 and n=n0 � 5=3.
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This is a rather large integer of the order of Q1 � n0�
(L1 � L2)=l0. Let n0=n be 3/5; then, in view of Eqn (13)

q2 � 2q1

�
n0
n

L1 � L2

L0

�ÿ1
,

where the value of q2 should be rounded off to the nearest
integer. The number q2 is of the order Q2 � 2nL0=l0, i.e. is
also very large. The calculation by expression (17) yields
D(p=2)jk�k0�p=2� � ÿ4:781� 10ÿ3. Expression (15) makes it
possible to énd the splitting 2jdk(p=2)j. It depends on the
normalised difference (L1 ÿ L2)=L0 and is maximal at
L1 � L2. This maximum value of the splitting is equal to
1:1� 10ÿ2 mÿ1. Of great interest is the dependence of the
splitting on the normalised difference (L1 ÿ L2)=L0 for
other parameters of the inhomogeneity being éxed (Fig. 4).

It follows from Fig. 4 that by displacing the dielectric
plates with the refractive index n > n0 with respect to each
other, we can obtain substantially different splittings of the
eigenfrequency doublets. At (L1 ÿ L2)=L0 � (2q� 1)2n=n0
(q � 0, 1, 2, . . .), the splitting virtually vanishes, i.e. the
`bleaching of the ring resonator takes place. Because of
the periodicity of the dependence D(y), the curve in Fig. 4
does not change after the substitution D(p=2)!
D(p=2� pq2), i.e. when the frequency y � p=2� pq2 corre-
sponding to the real value k0(p=2) � 2p=l0 is used.
Therefore, the eigenfrequency doublet splitting is independ-
ent of the position of the doublet centre but is determined by
the type of the resonator inhomogeneity.

6. Resonator modes

Let us estimate the modes of the resonator under study in
the region 04 x4L2. As is known, they are characterised
by the components of the vector

E
�2�
�

E
�2�
�

 !
.

This ratio can be obtained from matrix determinant (8)

E
�2�
�
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� (21)
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����
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,

at k equal to one of the eigenvalues. According to (14),

R�exp�ikn0L2� � exp�ikn0L1��
exp�ikn0�L2 � L1�� � R 2 ÿ T 2 exp�ÿi2knL0�

����
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� �1.

The we obtain from (21) that

E
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����
k�k0�dk

. (22)

Thus, the modes corresponding to the doublet of
eigenvalues k0 � dk are determined by the expression

u �2��x���
k�k0�dk � E �2�ÿ exp�iknL0� exp

�
ikn0

L2

2

�

�
�
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�
ikn0
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2

�
exp�ÿikn0�xÿ L1 ÿ L0��
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with an accuracy to an arbitrary constant.
The above modes are the standing waves

u �2��x� � cos

�
�k0 � dk�

�
n0�xÿ L1 ÿ L0� ÿ nL0 ÿ n0

L2

2

��
,

u �2��x� � sin

�
�k0 ÿ dk�

�
n0�xÿ L1 ÿ L0� ÿ nL0 ÿ n0

L2

2

��
.

If the resonator has a vanishing inhomogeneity, i.e. n! n0,
dk! 0, and R! 0, the doublet eigenfrequencies merge
into a doubly degenerate eigenvalue to which two
orthogonal modes

u �2��x� � cos

�
k0n0

�
xÿ L1 ÿ 2L0 ÿ

L2

2

��
,

u �2��x� � sin

�
k0n0

�
xÿ L1 ÿ 2L0 ÿ

L2

2

��
correspond.

The corresponding pair of counterpropagating travelling
waves (two linear combinations of orthogonal standing
waves) is also an admissible pair of modes for the same
degenerate eigenfrequency.

7. Conclusions

The eigenfrequencies of the ring resonator formed by a
cascade combination of two linear low-Q resonators
coupled through dielectric plates are real (in this system
losses are absent) and form a countable sequence of
doublets. The centres of the doublets correspond to the
frequencies k0(p=2) � (2pq1 � 1)=�n0(L1 � L2)�. The doublet
splitting is determined by the expression

dk
�
p
2
� pq2

�
� 2

nL0
D
�
p
2

�
cos

��
p
2
� pq2

�
n0
n

L2 ÿ L1

2L0

�

0 5 10 15 z

0.005

0.010

2jdkj

Figure 4. Dependence of the splitting 2jdk�p=2�j in the eigenfrequency
doublet on the parameter z � �L2 ÿ L1�=L0.
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for the ratio between the inhomogeneity parameters
described by expression (19). At any q2, there exist such
values (n0=n)(L2 ÿ L1)=(2L0) for which splitting becomes
negligibly small. This phenomenon can be treated as
`bleaching' of the system of two coupled (through forming
plates) linear resonators. In other words, because of the
interference of forward and backward waves, backscatter-
ing `disappears' despite the inhomogeneity (multilayer type)
of the ring resonator.

The modes of the resonator under study are real, i.e. they
are orthogonal standing waves. It is typical that for a
doublet of weakly split eigenfrequencies, the mode distri-
butions are signiécantly different (phase shifted by p=2), and
this difference is preserved up to passing to the homoge-
neous resonator.
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