
Abstract. Dynamics of soliton-like wave packets in ébres
with a travelling refractive-index-change wave is studied. It is
shown that both a soliton-like propagation regime of a pulse
and a self-compression regime in the region of normal group
velocity dispersion are possible. It is also shown that in the
case of a copropagating or counterpropagating pulse and
optically inhomogeneous wave nonreciprocal effects appear.

Keywords: a ébre with a travelling refractive-index wave, soliton-
like wave packets, nonreciprocal effects, self-compression.

1. Introduction

Optical properties of ébres with the refractive indix
changing over the ébre length and in time have been
actively studied for the last decades [1 ë 4]. Interest in them
is explained by the fact that ébres with length- and time-
modulated parameters énd a wide application as highly
efécient control systems of optical and, érst of all, laser
radiation [5]. As a rule, when studying the inêuence of the
travelling refractive-index wave on the optical radiation
dynamics, quasi-monochromatic wave packets and effects
related to a change in their polarisation and to a shift of the
carrier frequency are considered [6, 7]. At the same time,
pulsed regimes of radiation propagation in nonlinear ébres
with a refractive-index wave have been hardly investigated
except paper [8]. As a result, possibilities of the dynamics
control of compression, duration and spectral width of
pulses interacting with the refractive-index wave as well as
the possibility of formation of soliton-like wave packets of
the Schr�odinger type in such ébres have not been
considered.

In this paper, we study the dynamics of parameters of an
optical pulse produced by two unidirectional modes and
propagating in a ébre with a cubic nonlinearity, in which the
refractive index changes periodically in length and time
according to the harmonic law. It is shown that the
dynamics of the parameters of this pulse depends in a
complex way on the parameters of the ébre and radiation
coupled into it and is mainly determined by the intermode

dispersion realised in these ébres. We discuss the possibility
of formation of a soliton-like wave packet in the spectral
region with a normal material dispersion of the medium as
well as the nonreciprocal character of the pulse compression
in the ébre, which is associated with the copropagation or
conterpropagation of a pulse and a refractive-index wave.

2. General relations

Consider a ébre with the refractive index n depending on
time and coordinate as

n�r; z; t� � n0�r��1�m cos�2pz=Lÿ Ot��: (1)

Here, n0(r) is a function determining the radial distribution
of the optical inhomogeneity in the ébre; m5 1 is the
modulation depth; O and L is the frequency and the spatial
period of a refractive-index wave. We assume that the
perturbation induced in the ébre has a large period (i.e.
L4 l, where l is the radiation wavelength) and provides
the coupling between copropagating waves. In this case, the
total éeld E of the pulse propagating in the length- and
time-modulated ébre can be represented in the form

E�r; z; t� � 1

2

X
j

fejAj�t; z�Uj�r�

� exp�i�ojtÿ bjz�� � c.c}, (2)

where j � 1, 2 is the mode number; ej are the unit vectors of
the mode polarisation; Aj(t; z) are time envelops of mode
pulses; Uj(r) is the proéle functions describing the éeld
distribution of the corresponding mode across the ébre
cross section; oj and bj � b(oj) are the carrier frequencies
and wave numbers of wave modes producing a single wave
packet and propagating in the ébre. If oj 4mO and
bj4 2pm=L, the pulse propagation in the ébre under study
can be described by a system of equations

qAj

qz
ÿ xj

v
qAj

qt
ÿ idj

2

q 2Aj

qt 2
� i�gsjjAjj2 � gcjjA3ÿjj2�Aj

� isA3ÿj exp�ÿixj�dbzÿ dot��: (3)

Here, xj � (ÿ1) j; t � tÿ z=u is the time in the running
coordinate system; u � 2u1u2=(u1 � u2); uj � (qbj=qojo�oj

)ÿ1

are the group velocities of mode pulses; vÿ1 � (u1 ÿ u2)
� (2u1u2)

ÿ1 is the detuning of inverse group velocities of
modes; dj � q 2bj=qo

2jo�oj
are group velocity dispersions of
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mode pulses; s is the intermode coupling coefécient
determined by the overlap integral of mode functions of
the ébre proéle; gsj and gcj are the parameters of the self-
phase and cross-phase modulation determined by the
overlap integrals of the proéle functions of the correspond-
ing wave packets taking into account the distributions of
the optical inhomogeneity across the cross section and the
modulation depth by the ébre length [9]; db � b1ÿ
b2 ÿ 2p=L and do � o1ÿ o2ÿ O are intermode detunings;
L � 2puph=O; uph is the rate of the refractive-index-change
grating or the rate of the refractive-index wave. Note that
Eqns (3) are of the maximum general type virtually for all
systems with a strong linear coupling of copropagating
waves.

The solution of system (3) in the general case can be
presented in the form of superposition of partial pulses:

A1�t; z� � �a1�t; z� exp�iqz� � a2�t; z� exp�ÿiqz��

� exp�i�dzÿ dot�=2�;
(4)

A2�t; z� � �wa1�t; z� exp�iqz� � wÿ1a2�t; z� exp�ÿiqz��

� exp�ÿi�dzÿ dot�=2�;
where

q �
�
s 2 � d 2

4

�1=2
; d � db ÿ do=v; w � �2q� d�c� 2s

2qÿ d� 2sc
;

c � A20=A10; Aj 0 are the peak initial amplitudes of mode
pulses producing a single wave packet.

The amplitude dynamics of the corresponding partial
pulses in the second approximation of the dispersion theory,
when the inequality do 4 1=t0 is fulélled (t0 is the initial
duration of radiation coupled into the ébre) limiting the
phase detuning of mode pulses by the width of their
spectrum, is described according to (3) and (4) by the
equations:

qaf
qz
ÿ xf d
2qv

qaf
qt
ÿ i

Df

2

q 2af

qt 2

� i�Gsf jaf j2 � Gcf ja3ÿf j2�af � 0; (5)

where f � 1, 2 is the partial pulse number and xf � (ÿ1) f.
We introduced into (5) the effective group-velocity dis-
persion Df and effective parameters of self- and cross-
modulation of the corresponding partial pulse:

Df �
d1 � d2

2
� xf

q

�
s 2

q 2v 2
� d�d1 ÿ d2�

4

�
; (6a)

Gsf � ��q� xf d=2��gs1 � wÿ2xf gc1� � �qÿ xf d=2��

� �wÿ2xf gs2 � gc2��=�2q�; (6b)

Gcf � f�2q� xf d�gs1 � �q� xf d=��w 2xf ÿ 1�gc1

� �q�w 2xf � 1� ÿ xf �d=2��w 2xf ÿ 1��gs2 ÿ xf dgc2g=�2q�: (6c)

In this case, the initial conditions for the partial pulse
taking (4) into account take the form

af �t; 0� �
1

2

�
A10 � xf

�
d
2q
A10 ÿ

s
q
A20

��
y�t� � af 0y�t�;(7)

where y(t) is the function determining the shape of the time
envelope of a pulse.

3. Degeneracy case

Of most interest from the point of view of obtaining the
analytic solutions of Eqns (5) is the degenerate situation in
which the behaviour of the entire wave packet can be
described only by using only one partial pulse. It is for this
situation that it is possible to obtain optimal dispersion and
nonlinear parameters of a pulse propagating in the ébre
[10]. The coupling between the copropagating modes is
most eféciently realised under full phase-matching con-
ditions when d � 0. In this case, the degeneracy takes place
upon symmetric (c � 1) or antisymmetric (c � ÿ1) exci-
tation of the ébre, when a20 � 0 and a10 6� 0 or a10 � 0 and
a20 6� 0, respectively. The amplitude of one of the partial
pulses is equal to zero not only at the initial moment but
also during the pulse propagation for all the mentioned
types of the ébre excitation [11].

In the general case of detuning from phase matching, the
degenerate situation according to (7) is also possible for the
non-symmetric excitation of the ébre. Thus, if the condition
c � (ÿxf q� d=2)=s is fulélled, af 6� 0, a3ÿf � 0, and the
system of equations (5) also degenerates into one nonlinear
Schr�odinger equation [12, 13]:

qaf
qz
ÿ iDf

2

q 2af

qt 2f
� iGsfjaf j2af � 0; (8)

where tf � tÿ z=uf is the running time related to the
corresponding partial pulse; uÿ1f � uÿ1 ÿ xf d=(2qv) is the
group velocity of the partial pulse. The derived equation
describes the pulse dynamics in the cubically nonlinear
medium with the effective dispersion Df and nonlinearity
Gsf. The frequency O of the travelling refractive-index wave
affecting in this way the wave-packet dynamics in the ébre
enters this equation via the detuning d. The speciéc feature
of the wave-packet propagation in the ébre under study
described by expression (8) is the self-action leading to a
temporal broadening of the wave packet or its compression
as well as production of stable wave packets of Schr�odinger
solitons whose appearance is caused by the balance between
the action of the effective nonlinearity and the inêuence of
the effective dispersion of the waveguide medium [12 ë 15].
In the case of strong intermode coupling, dispersion
properties are determined by the effective partial pulse
dispersion Df caused by the material dispersion, intermode
coupling and detuning from phase matching. In the case of
anomalous effective dispersion (Df < 0) and the presence of
focusing properties of a waveguide medium with respect to
the corresponding partial pulse (Gsf > 0), expression (8) has
the solution determining the so-called bright solitons of a
secant-hyperbolic shape. In this case, the solution of
Eqn (8) for the partial pulse amplitude has the form

af �t; z� � af 0sech�t=tf � exp�ÿiGz�; (9)

where the pulse phase, duration and the initial amplitude
are related by 2G � Gsfa

2
f 0 � jDf j=t 2f . One can see that its
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duration is determined by the effective dispersion and
nonlinearity:

tf �
� jDf j
Gsf a

2
f 0

�1=2
�
� jDf jt0
GsfWf

�1=2

�
�
Wsf

Wf

�1=2

t0; (10)

where Wsf � jDf j=(Gsf t0) is the energy of soliton produc-
tion. According to (7), the partial pulse energy Wf �
a 2
f (t; 0)t0 is proportional to the energy W0 � (A 2

10 � A 2
20)t0

coupled into the ébre:

Wf �
�
1� xf

dÿ 2sc
2q

�2
W0

4�1� c 2� : (11)

It follows from (11) that Wf �W0=2 at d � 0 and c � �1.
If the partial pulse energy Wf is rather close to Wsf, the
soliton propagation regime of the partial pulse, and, hence,
of the entire wave packet is realised. At Wf <Wsf, the pulse
spreads and at Wf >Wsf, it is compressed and the
approximating relation

t0
tmin
�
�
t0GsfWf

jDf j
�1=2

(12)

is valid for the degree of its compression [12 ë 14]. Here, tmin

is the minimal pulse duration. In the case of mode phase
matching (d � 0), the effective nonlinearity parameters for
both partial pulses turn equal and according to (6b) the
expression for them assumes the form Gsf � (gc1�
gc2 � gs1 � gs2)=2. At gsj � gs and gcj � gc this expression
takes the form Gsf � gc � gs. The dependence of the
effective dispersion and nonlinearity on the detuning and
intermode coupling and the ébre excitation type makes it
possible to control eféciently the degree of compression
t0=tmin, which mainly determines the pulse dynamics in the
ébre.

Figure 1 presents the dependence t0=tmin on the inter-
mode coupling coefécient s upon phase matching of modes
(d � 0) and symmetrical (c � 1) excitation of the ébre at
which a1 6� 0 and a2 � 0. The plotted dependences are
obtained for different input pulse powers P0 � A 2

10�
A 2

20 � 2A 2
10. The phase matching condition d � 0 is fulélled

at the frequency of the refractive-index wave

O � uph
vÿ uph

�vDbÿ Do�; (13)

where Db � b1 ÿ b2; Do � o1 ÿ o2. One can see from the
presented dependences that in the case under study the
degree of compression the higher the larger the input pulse
power and the intermode coupling quantity. This is
explained by the decrease in the effective dispersion for
the corresponding partial pulse, which takes place in the
case of phase matching when the intermode coupling
coefécient s increases.

We will analyse numerically relations (6) and (12) for the
general case of degeneracy taking place c � (q� d=2)=s,
when a1 6� 0 and a2 � 0. In this case, the energy of the érst
pulse is W1 �W0s

2=�q(2q� d)�. The effective dispersion for
it according to (6a) in the case of strong linear coupling
between wave packets (having signiécantly different group

velocities) is anomalous in a broad range of values O. The
anomality of the effective dispersion is possible even in the
case, when both parameters (d1 and d2), characterising the
group-velocity dispersion of each of the interacting wave
packets, are positive quantities. In this case, d � D ÿ 2p(1ÿ
Z)=L, where D � b1 ÿ b2 ÿ (o1 ÿ o2)v

ÿ1 and Z � uph=v. If
the pulse copropagates with the refractive-index wave, then
uph > 0 and Z > 0, while if the pulse propagates in the
direction opposite to the refractive-index wave, uph < 0 and
Z < 0. It is obvious that the phase detuning d takes different
values at the forward and backward pulse propagations
which results in the appearance of nonreciprocal effects, i.e.
the dependence of the pulse dynamics on the direction of the
pulse propagation.

Note that the realisation of the degenerate case is of
special interest. It follows from relation (6a) that the
situation, at which Df < 0, can be realised due to interaction
of pulses with substantially different group velocities for
almost any values of the material dispersion df of each wave
packet, i.e. in any frequency range. Thus, in the presence of
a strong intermode interaction and the appropariate ét of
the parameters, the regime of nonlinear compression for one
of the partial pulses can be realised almost at any
frequencies. In this case, the effective dispersion of partial
pulses can achieve � 10ÿ23 s2 mÿ1 (for v � 1011 m sÿ1),
which is more than two orders of magnitude larger than
the usual values of the material dispersion for optical ébres.

Figures 2 and 3 present the dependences of the effective
dispersion of the partial pulse Df and the inverse length of
its self-phase modulation Lÿ1f � Gs1W1=t0 on the parameter
Z � uph=v for a ébre with different L. These dependences are
plotted for D � 10 mÿ1, v � 1011 m sÿ1 and different inter-
mode coupling coefécients s. The group-velocity dispersion
of interacting wave packets d1 � 2d2 are selected normal and
equal to 10ÿ26 s2 mÿ1, the nonlinear mode parameters are
equal to gs1 � 0:9 Wÿ1 mÿ1, gs2 � 1:1 Wÿ1 mÿ1, gc1 �
1:8 Wÿ1 mÿ1, gc2 � 2:2 Wÿ1 mÿ1, and the parameters of
radiation being coupled are equal to A 2

10 � 100 W,
A20 � cA10. Of interest are large effective anomalous
dispersions of the partial pulse (10ÿ23 s2 mÿ1 and above),
which appear due to strong intermode coupling upon
excitation of a travelling refractive-index wave in the
ébre as well as the appearance of strong nonreciprocity.
In the case under study, the nonreciprocity is manifested

t0=tmin

0 20 40 60 80 s
�
m ÿ1

60

90

30

3

2

1

Figure 1. Dependences of the degree of the pulse compression t0=tmin on
the intermode coupling coefécient s for the input pulse power P0 � 10
( 1 ), 50 ( 2 ) and 100 W ( 3 ).
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both in the behaviour of the dependences Df (Z) and Lÿ1f (Z)
for a copropagating and counterpropagating pulse and
refractive-index wave (the presence of extrema of the
mentioned functions for the `forward' pulse and a mono-
tonic decrease for the `backward' pulse) and in the values of
these parameters, which for counterpropagating pulses can
differ by several orders of magnitude.

4. Pulse dynamics in the non-degeneracy case

If the problem under study is not reduced to degenerate
cases, its exact analytic solution is impossible. In this case,
we will use the variational method to énd the approximate
solution, which was proposed in paper [16] and successfully
used to solve a wide range of problems in nonlinear optics
[17 ë 20]. Without going into detail of the used variational
method, note that in the non-degenerate case, the self-phase
modulation (caused by cubic nonlinearity) can lead to the
pulse compression if the system of inequalities

GeffDeff < 0; W0 >Ws �
jDeffj
Gefft0

(14)

is fulélled, where Ws is the energy of production of a
coupled soliton-like wave packet and the corresponding
effective dispersions and nonlinearity of the entire wave
packet have the form

Deff �
W1D1 �W2D2

W1 �W2

� d1 � d2
2

�
�
s 2

q 2v 2
� d�d1 ÿ d2�

4

�
dÿ 2sc

q 2 � �d=2ÿ sc�2 ;
(15)

Geff �
Gs1W

2
1 � Gs2W

2
2 � �Gc1 � Gc2�W1W2

�W1 �W2�2

� Gs1m
4
1 � Gs2m

4
2 � �Gc1 � Gc2��m1m2�2

4�2ÿ m1m2�2
;

where m1 � 1ÿ K; m2 � 1� K; K � �dÿ 2sc�=(2q). Under
phase matching conditions (when the proposed variational
model works best) expressions for the effective group-
velocity dispersions and nonlinearity take the form:

Deff �
d1 � d2

2
ÿ 2c

1� c 2

1

sv 2
;

(16)

Geff �
gs1 � gs2 � gc1 � gc2

2
� gs1 � gs2 ÿ gc1 ÿ gc2

4

�
1ÿ c 2

1� c 2

�2
:

In this case, if inequality (13) is valid for a pulse of a secant-
hyperbolic shape, the minimum duration of a soliton-like
pulse is achieved at the compression length

zc � t0

�
t0

jDeffjGeff�W1 �W2�
�1=2

; (17)

and the expression for it has the form

tmin � t0

� jDeffj
Geff�W1 �W2�t0

�1=2
: (18)
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Figure 2. Effective dispersion Df of a partial pulse in the degeneracy case
at s � 5 ( 1 ), 10 ( 2 ) and 50 mÿ1 ( 3 ), L � 0:1 (a) and 1 m (b). Solid
curves (left axes) correspond to the codirectional propagation of a pulse
and refractive-index wave and dashed curves (right axes) ë to their
counterpropagation.
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Figure 3. Effective nonlinearity of a partial pulse in the case of dege-
neracy at s � 5 ( 1 ), 10 ( 2 ) and 50 mÿ1 ( 3 ), L � 1 (a) and 0.1 m (b).
Solid curves (left axes) correspond to the codirectional propagation of a
pulse and refractive-index wave and dashed curves (right axes) ë to their
counterpropagation.
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Thus, the dynamics of a single two-wave packet is fully
described by the effective nonlinear and dispersion param-
eters Geff and Deff. It follows from the obtained relations
that realisation of a soliton-like wave packet is possible
even under conditions d1 > 0 and d2 > 0. Therefore, for the
coupled wave packet under study, the regime of self-
compression or soliton-like propagation can be realised for
visible and even UV range.

Note that in the case under study the condition for the
efécient intermode phase matching, i.e. the condition, for
which the single wave packet is not decomposed into
separate autonomous partial pulses, can be written in the
form

d � b1 ÿ b2 ÿ
o1 ÿ o2

v
ÿ 2p

L
� u1 ÿ u2

2u1u2

2puph
L
� 0: (19)

It follows from (19) that in the case u1 � u2, i.e. when the
equality qb1=qojo�o1

� qb2=qojo�o2
is fulélled, the wave-

packet dynamics is independent of the modulation fre-
quency O of the waveguide medium. In this case, it is
possible to realise effective coupling between copropagating
waves having substantially different carrier frequencies. The
effective coupling between these waves can take place in a
ébre without the refractive-index modulation (2p=L � 0
and O � 0), if

b1 ÿ b2 ÿ
o1 ÿ o2

2

u1 ÿ u2
u1u2

� 0: (20)

This condition can be fulélled if there exist zones with the
anomalous group-velocity dispersion in the spectral region
located between the carrier frequencies of interacting wave
packets (o1 < o < o2). Therefore, the coupled states of
soliton-like wave packets can exist in the spectral regions
corresponding to both the anomalous and normal group-
velocity dispersion of the ébre under study.

5. Conclusions

Our analysis has shown that the dynamics of a two-wave
packet in the medium with a cubic nonlinearity and a
travelling refractive-index wave repeats the behaviour of a
pulse in a single-mode nonlinear ébre with the effective
dispersion and cubic nonlinearity. In this case, this medium
has a signiécant nonreciprocity in effective nonlinear and,
especially, dispersion parameters, which disappears in the
case of a stationary refractive-index grating (i.e. O = 0 and,
as a result, at uph � 0). It is shown, in particular, that the
conditions for radiation coupling signiécantly affect the
corresponding effective parameters and strongly depend on
the phase matching detuning, which, in turn, depends of the
frequency of radiation being coupled and the parameters of
the refractive-index wave (érst of all, its phase velocity). We
have established the possibility of obtaining large effective
dispersions propagating in a refractive-index ébre. All this
makes the use of such systems promising for fabricating all-
optical logical elements, compact control systems of laser
radiation, compressors and etc.

We give particular attention to the possibility of fab-
ricating elements based on these structures to compensate
for dispersion in ébreoptic communication lines. Today, for
these purposes Bragg ébres with a stationary modulation of
the refractive index [13] are used, but in this case obtaining

giant values of the group velocity dispersion is almost
always associated with an undesirable distortion of the
pulse shape due to partial reêection from an inhomogeneous
structure of the Bragg ébre. In this connection, of interest is
the use of Bragg gratings with a nonstationary change in the
refractive index as resonator elements of laser systems,
which we will consider in our next paper.
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