
Abstract. Stability conditions for a ring resonator with an
even number of mirrors and a nonplanar axial contour are
studied analytically. New explicit expressions are derived to
describe the transverse éeld distribution of the Gaussian mode
with general astigmatism produced in this resonator. Field
characteristics for a resonator with the speciéed parameters
are calculated.

Keywords: ring resonator, nonplanar contour, Gaussian beam with
general astigmatism.

1. Ring resonators with a nonplanar axial contour (see, for
example, [1 ë 11]) providing spatial rotation of the image
around its optical axis, produce the fundamental mode in
the form of a Gaussian beam with general-type astigma-
tism. In this case, the expression for the function, which
describes (in the scalar interpretation without allowance for
polarisation) the transverse éeld distribution of the
fundamental mode at some resonator cross section in the
zero approximation with respect to wave number k, has the
form

u�r� � c exp

�
i
kr tHr

2

�
,

where

r � x
y

� �
; r t � � x y �;

H � 1=qx 1=qxy

1=qxy 1=qy

 !
is the square matrix; c is the constant depending on the
longitudinal coordinate z. The matrix H is symmetric and

has a positive deénite imaginary part for a beam
concentrated in the vicinity of the resonator axis. If the
beam is axially symmetric, the matrix H is proportional to a
unit matrix (qx � qy � q, 1=qxy � 0). Otherwise, the beam is
said to have astigmatism. Astigmatism is called simple if in
some coordinate system, the matrix H has a diagonal shape:
in this case, the eigenvectors of matrices ReH and ImH
have the same direction, i.e. the major axes of the phase and
intensity ellipses coincide and can be chosen as the
coordinate axes. It is important that when such a beam
propagates along the optical axis, the matrix H remains
diagonal for all values of the longitudinal coordinate z. In
the case of general astigmatism, the major axes of the
intensity and phase ellipses are directed at some angle to
each other, and ReH and ImH cannot simultaneously have
a diagonal form no matter what coordinate axes are chosen.
Besides, these axes have different directions for different
values of z (see, for example, [10 ë 13]), which gave a reason
to call such a beam rotating. If o1;2 are the semi-major and
semi-minor axes of the intensity ellipse at the boundary of
which the éeld amplitude [7] or beam energy density that is
proportional to the square of the amplitude [10], decreases
by e times compared to its value at the axis, then the
eigenvalues of the matrix ImH are 2=(ko 2

1;2) or 1=(ko 2
1;2),

respectively. We will use the érst deénition. The eigenvalues
of ReH are the major curvatures of the beam wavefront
and equal to Rÿ11;2 , where R1;2 are the major radii of
curvature taking a sign `plus' for a diverging beam or a sign
`minus' for a converging beam; if the wavefront is
hyperbolic, these quantities have different signs.

The square matrix H complies with the equation

HBH�HA � DH� C, (1)

where A, B, C, D are real (for a passive lossless resonator)
2� 2 matrices, which make a 4� 4 ray matrix T for the
resonator round-trip (monodromy matrix [3]):

T � A B
C D

� �
.

Equation (1) follows from the relationship [9]

Hout � �C�DHin��A� BHin�ÿ1, (2)

which describes the transformation of a Gaussian beam
when it travels across a system characterised by the matrix
T, and from the condition for the beam recovery after the
resonator round trip: Hout � Hin � H. The matrix T is
symplectic [3, 9], which implies fuléllment of the condition
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Tÿ1 � D t ÿB t

ÿC t At

� �
.

A resonator is stable with respect to the érst approx-
imation if all the eigenvalues of the matrix T are equal to
unity in modulus and do not have adjoined vectors [1]. In
this case, equation (1) enjoys a symmetric solution with a
positive imaginary part. Usually, this solution is constructed
with the help of components of the monodromy matrix
eigenvectors (the method is based on the research by Babich
[14] dealing with the eigenfunctions of a Lapalcian con-
centrated in the vicinity of a closed geodesic; see also book
[3], Chapter 8). Within this concept, the asymptotic of the
problem on a multiple-mirror resonator for rather general
conditions (an inhomogeneous medium, an arbitrary form
of mirrors) was obtained by Popov [1] (a systematic
description of the results is given in book [3], Chapter 9,
the vector generalisation with respect to polarisation was
made by Pankratova [4, 5], resonators with selective ele-
ments, absorption and ampliécation are considered in our
papers [15, 16]). It is this approach that was later used in
paper [9] for studying a four-mirror resonator with one
nonplanar (spherical) mirror in the case of a homogeneous
medium.

Note that Bykov et al. [10] offer another approach to
solve this problem. It involves the analysis of the evolution
of a Gaussian beam with general astigmatism (the method is
based on Arnaud and Kogelnik's work [12]; an alternative
approach was developed by Belousova [13]). Unfortunately,
the authors of [10] proceeded from an erroneous (as we will
see below) assumption about the matrix ReH in the beam
cross section on a spherical mirror (or rather this assump-
tion is true only for resonators with an odd number of
mirrors [17]).

Finally, matrix equation (1) (or a resulting system of
algebraic equations in elements of the matrix H ) can be
solved numerically with a solution axis being chosen later
that ensures the concentration of the éeld in the vicinity of
the optical.

For the case of a resonator with an even number of
mirrors one of which is nonplanar (e.g. spherical), we
propose an alternative solution which describes the éeld
analytically, with the aid of explicit expressions. We think
that such a description allows us to understand most fully
the dependence of the light éeld characteristics on the
resonator parameters. In this case, it is unnecessary to
énd the eigenvectors of the matrix T.

2. Consider a multiple-mirror ring resonator with an
even number of mirrors providing a spatial rotation of the
image through the angle f, which, following the notation of
[10], we will call the Berry angle, though this angle, as
applied to the problem under study, was used long before
the publication of well-known paper [18], in particular, in
paper [2] (in this connection it is also sensible to mention
such researchers as Ignatovsky, Rytov, Vladimirsky [19]).
Let L denote the length of the axial contour. The resonator
contains a focusing element, which can be, for example, a
lens or one of the mirrors (spherical or elliptical); the other
mirrors are considered êat. Propagation along the contour is
described by the matrix

TL � E LE
O E

� �
,

where O and E are the zero and unit 2� 2 matrices, and the
rotation through the angle f is described by the matrix

Tf �
Uf O

O Uf

� �
,

where

Uf � cosf ÿ sinf
sinf cosf

� �
is the matrix of the rotation operator by the angle �f (the
same matrix describes the transformation of coordinates
when the coordinate axes are turned by the angle ÿf).
Matrices TL and Tf commute with each other. With a
properly chosen coordinate system, the matrix responsible
for reêection from a êat mirror is a unit matrix; upon each
reêection the orientation of the coordinate system changes
and so does the direction of the angle readout (clockwise or
counterclockwise). In this paper, we conéne our consid-
eration to the case of an even number of mirrors which
means that after the resonator round trip the orientation of
the coordinate system coincides with the original one.

Passing through the focusing element (quadratic phase
corrector [10]) is described by the matrix

TC � E O
ÿC E

� �
,

where C is a symmetric 2� 2 matrix which is considered,
without loss of generality, as a diagonal matrix: C �
diag �cx, cy�, otherwise it can be reduced to a diagonal
shape by turning the coordinate axes. For a focusing lens
cx;y � 1=fx;y, where fx;y are the focal lengths, fx � fy � f for
an astigmatism-free lens. For an elliptical mirror one axis of
which lies in the plane of incidence (xz plane) and the other
is perpendicular to it (directed along the y axis), cx �
2(Rx cos a

0)ÿ1, cy � 2Rÿ1y cos a 0, where a 0 � a=2 is the
angle of incidence; a is the angle between the incident
and reêected axial rays; Rx;y are the radii of curvature.
Rx � Ry � R for a spherical mirror; a special attention will
be paid to this case (in particular, to the resonator
considered in paper [9]). We should point out now that
the comparison of our results with those given in [9]
revealed both agreements and disagreements.

Monodromy matrices Tÿ and T� in the beam cross
sections located immediately in front of and behind the
mirror (lens) are calculated by the expressions

Tÿ � TfTLTC �
Uf�Eÿ LC� LUf

ÿUfC Uf

� �
,

T� � TCTfTL �
Uf LUf

ÿCUf �Eÿ LC�Uf

� �
.

The characteristic equations for the eigenvalues of such
matrices l are reduced to the form

v 2 ÿ �2g cosf�v� ÿg 2 ÿ d 2 ÿ sin 2 f
� � 0, (3)

where n � (l� lÿ1)=2; g � 1ÿ (cx � cy)L=4 ; d � (cyÿ
cx)L=4 characterise astigmatism. The matrix C expressed
via g and d has the form C � 2Lÿ1 diag �1ÿ gÿ d, 1ÿ
g� d�.

The sufécient conditions for matrices T� to be stable
[values of l lie at the boundary of a unit circle and are
different, values of v lie within the range (ÿ1, 1) and are also
different] have the form [19]
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jdj < jjgj ÿ j cosfjj; d 2 > �g 2 ÿ 1� sin 2 f; jgj < j cosfjÿ1. (4)

We can obtain the necessary conditions (jlj � 1) by
replacing in (4) the strict inequalities with nonstrict ones.
It is interesting to note that a nonplanar resonator may be
stable even when the mirror has a cylindrical or hyperbolic
form (one of the eigenvalues of the matrix C is not positive,
i.e. g� jdj5 1).

The area (4) in Fig. 1 is given in coordinates g, d for
different f. When f � np (n is an integer), this area is a
square jgj � jdj < 1 , or 0 < cx;yL < 4. When 0 < j cosfj
< 1, the stability region splits into three subzones: the
square jgj � jdj< j cosfj [or 2(1ÿ j cosfj)< cx;yL < 2�
(1�j cosfj)] and two égures bounded by straight lines
jgj ÿ jdj � j cosfj and hyperbolic segments g 2 ÿ (d= sinf)2

� 1 which are tangent to the straights at their end points
with coordinates g � � j cosfjÿ1, d � � sin2 fj cosfjÿ1.
When f � p=2� np, the central square disappears, and
the subzones between the straights and hyperbolic segments
become unbounded: straights g � � d become asymptotes of
hyperbola g 2 ÿ d 2 � 1 rather than its tangent.

The instances of multiples of l, when inequalities in (4)
turn into equalities, require a separate consideration because
of the possible appearance of adjoined vectors. The analysis
shows that of all the boundary points only those belonging
to curves g � � cosf, d � 0 connecting the subzones of (4)
ensure the fuléllment of the stability condition. Thus, with
these points taken into account, the set of parameters
providing the resonator stability proves bound.

Figure 2 shows the region in the gd plane which
combines stability regions for all possible values of f. In
the interval g 2 �ÿ1=2; 1=2� the boundaries of the region
meets the equation d � � (1ÿ jgj) and coincide with the
boundary of the central square at f � 0. Then, the upper
and lower boundaries have the form d � � jgj as in the case
with f � p=2. Finally, if jgj5 1, the region is bound by
curves d � � (g2 ÿ 1)=jgj which hold the end points of the
hyperbolic segments (Fig. 1) ë points g � � j cosfjÿ1, d �
� sin2 fj cosfjÿ1 for all possible f.

Let us state the stability conditions for different subsets
of the region (Fig. 2) with respect to j cosfj. The sufécient
condition of stability for the points belonging to the square
jgj � jdj < 1 is the inequality j cosfj > jgj � jdj. For the
points located between the bisectrixes of the coordinate
angles and the wings of the hyperbola g 2 ÿ d 2 � 1 and
satisfying the inequalities jdj < jgj < (1� d 2 )1=2, the sufé-
cient condition for the stability is the inequality j cosfj <
jgj ÿ jdj. For the points belonging only to one of the sets,
these conditions are necessary as well. As to the common
part of these sets consisting of two squares and meeting
inequalities jdj < jgj < 1ÿ jdj, satisfaction of any of these

inequalities is the sufécient and necessary condition of
stability. As to the segment jgj < 1, d � 0, by virtue of
the above remark about the boundary points, the stability
takes place at any f, including those at j cosfj � jgj.
Finally, for the region lying between the hyperbolas and
meeting the inequalities (g2 ÿ 1)=jgj < jdj4 (g 2 ÿ 1)1=2, the
stability condition is �d 2=�g 2 ÿ 1)ÿ 1�1=2 < j cosfj < jgjÿ
jdj. Note that the condition j cosfj < jgjÿ1 does not need
testing because in this region jgj ÿ jdj < jgjÿ1 (in fact this
condition enters the equation of the boundary jdj �
(g2 ÿ 1)=jgj).

In the space of three variables (f, g, d) region (4) is
symmetric with respect to the planes f � np=2, g � 0, d � 0,
with respect to the points �np=2, 0, 0) and periodic in f with
a period p. The general shape of region (4) for f 2
(ÿ p=2; p=2) is given in Fig. 3 (the trails going to inénity
are cut off). Figure 1 shows cross sections of this égure at
different f, and Fig. 2 gives its projection on the gd plane.

Note that all this is true if the number of mirrors is even.
When a resonator has an odd number of mirrors, another,
quite different from (4), system of inequalities follows from
the stability conditions and the geometry of the stability
region in this case bears no resemblance to that shown in
Figs 1 ë 3.

3. The stability conditions for the case when the focusing
element is a spherical mirror are given in paper [8] in an
implicit form, namely, as a condition for coefécients of a
quadratic equation, that is similar to (3), for which the roots
lie within a particular interval. We assume that it will be
useful to write explicit expressions. (Such expresion are
obtained in [6] only for f � np=2, and the expressions given
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Figure 1. Stability regions in the gd plane for different f.
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Figure 2. Combined stability region in the gd plane. For certain values of
f the points of this region correspond to a stable resonator. Thin lines
denote the boundaries of stability regions for different f spaced by 58.
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in [5] are untrue because of an erroneous position of one of
the cosines in the reêection matrix of the spherical mirror.)
For the case under study g �1ÿ ( cos a 0� cosÿ1 a 0��
L=(2R), d � (cos a 0 ÿ cosÿ1 a 0)L=(2R). It follows from these
equalities that the sector g < 1, gÿ 1 < d < 0 in the gd plane

corresponds to this particular case; for any other points
entering the stability region one has to use elliptic, cylin-
drical or hyperbolic mirrors (or lenses).

The hyperbolic segments d � ÿ�(1ÿ g)2 ÿ (L=R)2�1=2 are
the curves that host points of equal R for all possible angles
of incidence, and rays d � (gÿ 1)sin 2 a 0=(1� cos 2 a 0) (for
g < 1) are the lines that host points of different R for a éxed
angle of incidence. These rays intersect the right subzone of
the stability region for any a and f; the resultant segment
corresponds to L=R < (1ÿ j cosfj) cos a 0. If sin 2 a 0(1�
cos 2 a 0)ÿ1 < j cosfj, the ray intersects the central zone at

�1ÿ j cosfj�= cos a 0 < L=R < �1� j cosfj� cos a 0.

Finally, if sin 2 a 0=(1� cos 2 a 0) < 1ÿ j cosfj, the ray inter-
sect the left subzone at

�1� j cosfj�= cos a 0 < L=R < 4 cos a 0�1� cos 2 a 0� sin 2 f

� �4 cos 2 a 0 ÿ cos 2 f�1� cos 2 a 0�2�ÿ1.
Thus, depending on values a and f, one to three

intervals of R exist in which the resonator is stable. The
inclined ray in Fig. 4 corresponds to the last case; in Fig. 5
the values a and f for which the vertical lines intersect the
three subzones of the stability region at once correspond to
it.

4. Consider in detail a four-mirror resonator described in
paper [9]. Figure 6 shows the scheme of its ray path that
follows the edges of the ABCD tetrahedron. The path lies in
the planes ABD and BCD, the angle between them is b.
DAB and BCD are isosceles triangles, a is the angle between
AB and AD, a 0 � a=2 is the angle between AB and altitude
AE. A spherical mirror of radius R is positioned at point A,
êat mirrors ë at points B, C, D.

The length of the path is L � 2(L1 � L2), where L1 �
jABj � jADj, L2 � jBCj � jCDj. Let h1 � jAEj and h2 �
jCEj be the altitudes of ABD and BCD triangles, then
L1 � h1= cos a

0, jBEj � h1 tan a
0, and L2 � (h 2

1 tan
2 a 0�

h 2
2 )

1=2. In particular, the resonator from [9] has h1 �
3 mm, h2 � 2 mm, a � p=3, R � 50 mm (Nd :YAG mono-
lithic nonplanar ring resonator), L � 2(2

���
3
p � ���

7
p

) mm �
� 12:22 mm, and L=R � 0:2444 (in this case, g � 0:7531,
d � ÿ0:0353). One can see from Fig. 5 that for this value of
the ordinate the stability region encompasses all values of
j cosfj except for a small region between lines I and II.
Then, the stability condition takes the form

d
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ÿ0:5
0
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1.5

g
1

0

ÿ1 0

1

ÿ1ÿ2
f

Figure 3. Stability region in the f, g, d space for f 2 �ÿp=2; p=2�. The
égure repeats itself along the f axis.
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Figure 4. Stability region in the gd plane for a resonator with a spherical
mirror. The straight a � const (thin solid line) intersects all three
subzones, hyperbolas R � const (dashed curves) go through the inter-
sections of this straight with the boundaries of the stability region
L=R � �1ÿ j cosfj� cos a 0 (I), �1ÿ j cosfj��cos a 0�ÿ1 (II), �1�j cosfj��
cos a 0 (III), �1� j cosfj�= cos a 0 (IV) and 4 cos a 0�1� cos2 a 0� sin 2 f�
�4 cos2 a 0 ÿ cos 2 f�1� cos 2a 0�2�ÿ1 (V).
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Figure 5. Regions of stability (white) and instability (black) for different angles a. The equations for the boundaries Iÿ V are the same as in Fig. 4.
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j cosfj =2 (1ÿ L=(R cos a 0), 1ÿ (L cos a 0)=R), which gives
j cosfj =2 (0:7178, 0.7883 (the boundary of the instability
region coincides with g� d, gÿ d) for the given parameters.

Let us tie the Berry angle to the geometric characteristics
of the resonator. Let H� be the matrix corresponding to a
cross section at point A immediately behind the mirror. The
z axis is directed along the edge AB, the x axis lies in the
ABD plane and is directed outwards, the y axis is
perpendicular to this plane; the directional vectors form
the right-hand triple. The matrix H(z) describing the éeld
distribution in the cross section at a distance z away from
point A is connected to the matrix H� by relation (2) in
which A � D � E, B � zE, C � O:

H�z� � H��E� zH��ÿ1. (5)

(Note that the longitudinal-coordinate dependence of the
éeld is determined also by the multiplier c, the expression
for which in the jth arm of the resonator has, in the zero
approximation, the form c(z) � cj�detH(z)�1=2 exp (ikz), and
the relation between cj is determined by the boundary
conditions on the mirrors.)

Passing to the coordinate system related to the ABC
plane necessitates its clockwise rotation around the z axis
through an angle equal to f(jABj� ë the angle between the
ABD and ABC planes. In the new coordinate system, the
square matrix takes the form Uf�jABj�H(z)Uÿf�jABj�. Reêec-
tion from a êat mirror at point B does not affect the form of
the matrix H, but changes the orientation of the coordinate
axes: the x axis becomes directed inwards the ABC triangle.
Another transformation involves passing to the coordinate
system related to the plane BCD. To this effect it is
necessary to make a rotation around a new z axis, which
is directed along the BC edge, through an angle equal to
f(jBCj) ë the angle between the ABC and BCD planes.
Although it is a counterclockwise rotation, the directional
vectors form a left-hand triple after reêection in this event
and the sign of the rotation angle remains the same as in the
érst rotation. As a result, the square matrix takes the form
Uf�jABj��f�jBCj�H(z�Uÿf�jABj�ÿf�jBCj� and remains the same
after reêection from a êat mirror at point C (the orientation
of the coordinate axes changes again in this case). Following
the line of reasoning, we come to a conclusion that in the
coordinate systems related to the ACD plane (CD and DA
edges) the matrix has the form

Uf�jABj��f�jBCj��f�jCDj�H�z�Uÿf�jABj�ÿf�jBCj�ÿf�jCDj�,

and in the coordinate system related to the ABD plane (the
DA edge) it takes the form

Uf�jABj��f�jBCj��f�jCDj��f�jDAj�H�z�

�Uÿf�jABj�ÿf�jBCj�ÿf�jCDj�ÿf�jDAj�,

where f(jCDj) is the angle between BCD and ACD planes,
and f(jDAj) is the angle between ACD and ABD planes.
Supposing that z � L, we obtain

Hÿ � UfH�L�Uÿf, (6)

where Hÿ is the square matrix in the beam cross section
located at point A immediately in front of the mirror, and

f � f�jABj� � f�jBCj� � f�jCDj� � f�jDAj� (7)

is the angle through which the image rotates after the
resonator round trip. Matrices H� are related as
H� � Hÿ ÿC.

To avoid misunderstanding we should point out that all
the angles in the right side of (7) are positive (a similar
expression has the same form in [10], for example). This
expression takes such a simple form because the coordinate
axes and the direction of rotation change at the same time.
Another method of description (and a single possible one
for more complicated designs) involves an alternating
algebraic sum of the angles between the planes of incidence
on successively placed mirrors, where the sign of the terms
should correspond to the direction of rotation (see, for
example, [2, 5, 6]).

Now we write expressions relating angles f(jABj) �
f(jDAj) � f1 and f(jBCj) � f(jCDj) � f2 with the geo-
metrical characteristics of the contour. Let us drop a
perpendicular CF from point C onto the plane ABD,
provided jCFj � h2 sin b, jAFj � h1 � h2 cos b. Let us then
drop a perpendicular FG from point F onto the segment AB
or its extension, provided jFGj � jAFj sin a 0. The FGC
plane is perpendicular to AB because AB is orthogonal
to CF and FG and, therefore, the angle FGC coincides with
the angle

f1 � arctan
h2 sin b

�h1 � h2 cos b� sin a 0
.

A similar procedure is needed to derive the expression for
f2 ë it is only necessary to interchange h1 and h2 and
replace a 0 by the angle BCE equal to arctan�(h1=h2) tan a 0 �.
As a result, we obtain

f2 � arctan

ÿ
h 2
1 � h 2

2 cot
2 a 0
�1=2

sin b
h1 cos b� h2

,

and

f � 2�f1 � f2�.

When b decreases, angles f1;2 also decrease and vanish
simultaneously with b. If it is a that decreases, angles f1;2

increase and tend to p=2 as a approaches zero. When angles
a and b approach zero simultaneously, angles f1;2 are the

E

C

D
b

a

f1

B
G

A

F

Figure 6. Scheme of the ray path in the resonator. The arrows show the
propagation direction.
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same in the zero approximation and equal to
arctan�2h2b=(h1 � h2)a�. The calculation results for a
resonator with the chosen parameters are shown in Fig. 7.

By using the expressions from this and previous sections,
it is possible to énd the stability and instability regions for
this resonator in coordinates b, f � R=2. Comparing Fig. 8,
which shows the results of our calculations, and similar
Fig. 2 from paper [9], one can make sure that although the
general shapes of the regions look the same, in our case
these regions are more extended along the b axis and,
therefore, the position of instability segments differs from
that in [9]. We can assume that the dependence f(b) used in
calculations in [9] differed from that given in Fig. 7.

5. Let us return to the general case and write the
expressions for matrices H� corresponding to the cross
sections situated immediately in front of and behind the
focusing element:

H� � H0 �
C
2
, (8)

where H0 is the complex symmetric matrix corresponding to

an equivalent resonator [7] whose nonplanar mirror is
replaced by a êat mirror with an adjacent astigmatic lens.
The imaginary part of the matrix has the diagonal form

ImH0 �
t

4Lgdj cosfj

� diag
��g� d�2 ÿ cos 2 f� d;ÿ�gÿ d�2 � cos 2 fÿ d

�
, (9)

and the real part is

ReH0 �
ÿ
g 2 ÿ d 2 ÿ cos 2 f� d

�
tanf

2Ld
s � Ks. (10)

Here,

s � 0 1
1 0

� �
;

quantities d and t are determined by equalities

d � ���g� d�2 ÿ cos 2 f
���gÿ d�2 ÿ cos 2 f

�	1=2
� sign�j cosfj ÿ jgj�, (11)

t � �2ÿg 2 ÿ 2g 2 cos 2 f� cos 2 fÿ d 2 � d
��1=2

. (12)

The quantity d vanishes on the surface jdj � jjgj ÿ j cosfjj,
and t vanishes on the surface d 2 � (g 2 ÿ 1) sin 2 f, lines
g � 0, jdj � j cosfj and also when cosf � 0.

The directions of the eigenvectors of the ImH0 matrix
coincide with the coordinate axes, and its eigenvalues
(diagonal elements) are equal to 2=(ko 2

x;y), where ox;y are
the semi-axes of the intensity ellipse; when the eigenvalue
tends to zero, the transverse beam size along the appropriate
axis grows inénitely. The eigenvectors of the ReH0 matrix
coincide with the bisectors of the coordinate angles, the
eigenvalues have different signs and coincide in modulus
with the coefécient K at s in (10).

Matrices H� and Hÿ meet equation (1), where A, B, C,
D are blocks of matrices T� and Tÿ, respectively, and their
imaginary part, which coincides with ImH0, is positive. The
eigenvalues of ImH0 (the diagonal elements of the matrix)
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Figure 7. Dependences of the image rotation angle f (a) and j cosfj (b) on the angle between b planes for a � p=3, h1 � 3 mm, h2 � 2 mm
(parameters are borrowed from [9]). The horizontal dashed lines in Fig. 7b are the boundaries of the instability intervals for j cosfj
[j cosfj 2 �0:718; 0:788�], the vertical dashed lines are the boundaries of the instability intervals for b (b � 1188 0 ÿ 12858 0, 42851 0ÿ 4589 0 and
78828 0 ÿ 81842 0) for R � 50 mm.
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Figure 8. Regions of stability (white) and instability (black) in coor-
dinates b, f for a resonator with a � p=3, h1 � 3 mm, h2 � 2 mm. The
dashed lines are the boundaries of the instability intervals for f � 25 mm,
curves Iÿ V are the boundary curves corresponding to the curves
presented in Figs 4 and 5.
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are positive in region (4). One of them vanishes on the
boundary surface jg� dj � j cosfj, the other ë on the
surface jgÿ dj � j cosfj; when d 2 � (g 2 ÿ 1) sin 2 f, the
matrix ImH0 turns into a zero matrix (the case of
gd cosf � 0 requires special consideration). The analysis
shows that all the elements of matrices ReH0 and ImH0

change dramatically near the boundary of (4).
Here we do not give derivation of expressions (9) ë (12).

A method permitting explicit solutions of equations of type
(1) (the simplest way is to consider the equation with respect
to H0) is described in detail in [20] (see also [21]), where the
expression for the matrix H in the beam cross section
situated at distance L=2 away from the mirror has been
obtained.

Consider brieêy the concept of `equivalent' linear
resonator. According to this concept, the éeld distribution
in the fundamental mode of a ring resonator is the same as
that of a linear resonator consisting of two identical
elliptical mirrors spaced by distance L apart. The major
radii of the mirrors are equal to the effective radii of a
spherical mirror, and the major axes of curvature of one of
the mirrors make the Berry angle with the axes of curvature
of the other. It is this concept (not formulated explicitly, but
accepted as an obvious fact) that underlies an algorithm
offered in [10] to solve this problem. It is asserted that in
propagation along the resonator axis the major axes of
curvature of the wavefront rotate by the Berry angle (and
should evidently coincide with one another and the coor-
dinate axes on the spherical mirror) and that in the beam
cross section corresponding to the spherical mirror the
major radii of curvature of the beam are equal to half
the effective radii of curvature of this mirror. However, it
turns out that in a ring resonator the major axes of the
intensity ellipse rather than the phase ellipse (which is the
case with a linear resonator) coincide with the coordinate
axes: the matrix ImH� � ImH0 is diagonal unlike the
matrix ReH�. The exception is the simplest case of f �
np=2 considered in [6] when, according to (10) and (14) (see
below), ReH0 � O and ReH� � �C=2. Then matrices H�
are diagonal matrices, and a beam with simple astigmatism
(without rotation of the axes of the amplitude and phase
distributions) develops in the resonator.

Note that what has been said applies only to resonators
with an even number of mirrors. It can be shown that in the
case of an odd number of mirrors the equivalence of a linear
and ring resonator really takes place. In the `equivalent'
linear resonator the axes of the intensity ellipse on the
elliptical mirrors make angles with the major axes of
curvature that are equal in modulus but opposite in sign,
which leads, in fact, to violation of the equivalence, unless
these angles are multiple of the right angle: in this resonator
matrices ImH� of the beam will not be identical. If the
number of mirrors is odd, the above-mentioned difference in
sign will be compensated for due to the reorientation of the
coordinate axes after a round trip in the resonator under
study. These considerations are also conérmed by explicit
expressions similar to (9) ë (12) according to which with an
even number of mirrors, ReH0 � O and the matrix ImH0 is
not diagonal, which will be studied elsewhere.

6. Expressions (9), (10) are not applicable if the
parameters take values that turn the denominator into
zero. To describe the behaviour of the matrices when g
and d approach zero, we will transform the matrix elements
by additionally multiplying the numerators and denomi-

nators by conjugate expressions. Then, we come to the
expressions

ImH0 �
t

Lj cosfj

� diag

� �g� d�2 ÿ cos 2 f
�g� d�2 ÿ cos 2 fÿ d

;
ÿ�gÿ d�2 � cos 2 f
ÿ�gÿ d�2 � cos 2 f� d

�
, (13)

ReH0 �
2d sinf cosf

L
ÿ
g 2ÿ d 2 ÿ cos 2 fÿ d

� s. (14)

At g � 0 we obtain

H0�g � 0� � 1

L

�
i

ÿ
cos 2 fÿ d 2

�1=2
j cosfj Eÿ ds tanf

�
,

(15)

d�g � 0) � cos 2 fÿ d 2; t�g � 0� � 2
ÿ
cos 2 fÿ d 2

�1=2
at d � 0 we obtain

H0�d � 0� � i

ÿ
1ÿ g 2

�1=2
L

E,
(16)

d�d � 0) � cos 2 fÿ g 2; t�d � 0� � 2j cosfjÿ1ÿ g 2
�1=2

and at g � 0, d � 0 we obtain

H0�g � d � 0� � iLÿ1E,
(17)

d�g � d � 0� � cos 2 f, t�g � d � 0� � 2j cosfj.
One can see from (15), (16) that at points g � 0,
jdj � j cosfj and d � 0, jgj � 1 lying on the stability region
boundary, ImH0 becomes a zero matrix.

7. When d � 0, the solution is axially symmetric and
independent of f; there is no astigmatism. However, there is
a special case of jgj � j cosfj (points on the subzone
interfaces) when this solution is not the only one. It is
caused by the fact that matrices T� have multiple eigen-
values (�1 at g � cosf and ÿ1 at g � ÿ cosf) at these
points, the corresponding eigenspaces having no éxed sign
[22]. The sought-for sets of solutions have the form

H0�d � 0; g � � cosf�

� Lÿ1fij sinfjdiag�1� z; 1ÿ z � � zs sinfg, (18)

where z is the complex parameter (jzj < 1). Then,

ImH0�d � 0; g � � cosf�

� Lÿ1fj sinfjdiag �1�Re z; 1ÿRe z � � s sinf Im zg,

ReH0�d � 0; g � � cosf�

� Lÿ1fj sinfjdiag �ÿIm z; Im z � � s sinfRe zg.
Note the relation of sets (18) with the behaviour of

matrix (9), (10) in the vicinity of the points under study. Let
g � � cosf� eg 0, d � ed 0 with jd 0j < jg 0j. If we let e
approach zero, we obtain in the limit a matrix similar to
(18) with z � d 0=�g 0 � (g 0 2 ÿ d 0 2)1=2sign g 0�. However, this
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does not allow us to determine all set (18), but only its
subset with real z.

8. Consider now the behaviour of the matrix H0 when
cosf is close to zero. To be exact, the behaviour of only
ImH0 requires a special study because the matrix ReH0, as
seen from (14), can be reduced to the necessary form by
additionally multiplying it by a conjugate expression; when
cosf � 0, ReH0 becomes a zero matrix. As for ImH0, the
same method can be used to transform expression (12):

t � 2
���
2
p jgjj cosfj

� ÿ
1ÿ g 2

�
sin 2 f� d 2

g 2 ÿ 2g 2 cos 2 f� cos 2 fÿ d 2 ÿ d

�1=2
,

which results in the reduction of j cosfj in the numerator
and denominator of expressions (9) and (13). Because

d�cosf � 0� � ÿg 2 � d 2; tj cosfjÿ1�cosf � 0�

� 2jgj
�
1ÿ g 2 � d 2

g 2 ÿ d 2

�1=2
,

we énd that when cosf � 0, H0 is a purely imaginary
matrix:

H0�cosf � 0� � iLÿ1
ÿ
1ÿ g 2 � d 2

�1=2
� diag

��
g� d
gÿ d

�1=2
;

�
gÿ d
g� d

�1=2 �
, (19)

and H� � H0 �C=2 are diagonal matrices.
It follows from (19) that on boundary straights d � � g

one of the eigenvalues of the matrix H0 vanishes, the other
turns into imaginary inénity, while H0 becomes a zero
matrix on the hyperbola g 2 ÿ d 2 � 1. This means that at
large jgj the matrix H0 changes very quickly in the intervals
between the hyperbola and its asymptotes.

9. The case when d � g � cosf � 0 requires a special
consideration. In this case, matrix elements in (9), (10) are
undeéned and the solution H0 � iLÿ1E obtained from (17)
is not the only one. At this point matrices T� have two
eigenvalues (�1 and ÿ1) with corresponding intrinsic
subspaces having no éxed sign [22]. For this reason the
sought-for set of solutions is deéned by two complex
parameters z1;2 rather than one and can be written, for
example, in the form

H0�d � g � cosf � 0� � 2i diag�z1; z2� � �1ÿ z1z2�s
�1� z1z2�L

, (20)

where Re z1;2 > 0. As a matter of fact, this set includes all
symmetric matrices with a positive deénite imaginary part
and a determinant equal to ÿLÿ2. We do not present the
expressions for ReH0 and ImH0 because they are too
cumbersome when complex parameters z1;2 have a non-zero
imaginary part.

It is interesting to analyse the changes in the behaviour
of the matrix H0 in the vicinity of the point under study. Let
g � eg 0, d � ed 0, cosf � ec, where jd 0j < jjg 0j ÿ jcjj. If we let
e approach zero, we obtain in the limit the matrix

H0�e! 0� �

� it 0 diag��g 0 � d 0�2 ÿ c 2 � d 0;ÿ�g 0 ÿ d 0�2 � c 2 ÿ d 0 �
4Lg 0d 0jcj �

� g 0 2 ÿ d 0 2 ÿ c 2 � d 0

2Lcd 0
s, (21)

where the sign of ReH0 coincides with that of sinf;

d 0 � ��ÿg 0 � d 0
�2 ÿ c 2

��ÿ
g 0 ÿ d 0

�2 ÿ c 2
�	1=2

sign
ÿjcj ÿ jg 0j�;

t 0 � �2ÿg 0 2 � c 2 ÿ d 0 2 � d 0
��1=2

.

When g 0, d 0 or c vanish, it is necessary to additionally
multiply the numerators and denominators in (21) by
conjugate expressions or transform somehow the expression
for t 0 by deriving factor c from it. In this case, if d 0 � 0,
jg 0j � jcj, the matrix H0 is not uniquely deéned again. All
these transformations are similar to those we described
above for the general case and repeating them here does not
make point.

Matrices belonging to set (21) can be written in the form
(20), where

z1 �
t 0
�
d 0 2 ÿ �g 0 � c�2 � d 0

�
4g 0jcj�d 0 ÿ g 0 � c� ,

z2 �
t 0
�
d 0 2 ÿ �g 0 � c�2 � d 0

�
4g 0jcj�d 0 � g 0 � c� .

It is obvious that set (20) is knowingly wider than this set in
which z1;2 can be only real.

10. Consider another special case when f � np,
sinf � 0, cosf � �1. In this case, d � h1h2, t � h1 � h2,
H0 � iLÿ1 diag�h1, h2�, where h1;2 � �1ÿ (g� d)2�1=2� �1ÿ
(Lc1;2=2)

2�1=2; as with cosf � 0, matrices H� � H0�
C=2 are diagonal ones. It is the case of simple astigmatism
(if d 6� 0), which means that the blocks of the monodromy
matrix are diagonal matrices and the beam can be described
by two independent 2� 2 ABCD matrices. When d � 0, the
beam is axially symmetric and, despite of multiple eigne-
values, the solution remains the only one (unlike the case
with an odd number of mirrors [22]).

0 0.5 1.0 1.5 L=R

2L=�ko 2
x;y�

0.2

0.4

0.6

0.8

1.0

1.2

1.4

1.6

1.8

I II
III IV V

Figure 9. Dependences of eigenvalues of the matrix LImH0 on L=R (a �
p=3, f � p=3). The solid curves are the computation along the x axis, the
dashed lines ë along the y axis. Numbers Iÿ V point to the values of L=R
corresponding to the expressions given in the caption of Fig. 4.
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11. Let us return to the case when the mirror is spherical.
Figure 9 presents the diagonal elements of the dimensionless
matrix L ImH0 as a function of L=R for constant f and a. It
corresponds to the above-considered case when straight
a � const (in Fig. 4) intersects all three subzones of the
stability region. Figure 10 presents the dependence of KL on
L=R for the same conditions, where K is the proportionality
coefécient at the matrix s in expression (10). Figure 11
shows the dependence of the same characteristics of the
matrix H0 (dimensional) on j cosfj for a resonator consid-
ered in [9]. According to our calculations, when we
approach the upper and lower bounds of the instability
region, different eigenvalues of the matrix ImH0 vanish,
which results in the beam size growing inénitely along the x
axis in one case and along the y axis in the other, the size in
the direction of the other axis decreasing drastically in this
case. (Note that at this point our results contradict the
dependences presented in Fig. 3 [9] according to which the

beam size along the x axis grows in both cases.) When the
parameters gd approach the instability region boundaries,
the modulus of the coefécient K grows quickly, remaining
énite.

The eigenvectors of matrices ReH� (8), which deéne the
wavefront shapes of the incident and reêected beams, make
the angles

y� � �
1

2
arctan

ÿ
cos 2 fÿ g 2 ÿ d� d 2

�
tanf

2d 2
(22)

with the coordinate axes or the angles differing from the
above ones by an integer which is multiple of p=2 [the
expresions correspond to the case when gd cosf 6� 0 and
expressions (9), (10) hold true for H0]. The dependence of
y� on f for a resonator whose parameters are borrowed
from [9] (g � 0:7531, d � ÿ0:0353 and diagonal elements of
the matrix ReH� independent of j cosfj are roughly equal
to ÿ0:0231 and ÿ0:0173 mmÿ1) is given in Fig. 12a.
Figure 12b shows the eigenvalues of the matrix ReH�
(curvatures of the wavefront in the direction of the
eigenvectors) as a function of j cosfj (here we do not
give the expressions for computing them because they are
too cumbersome). In order to obtain similar dependences
for the matrix ReHÿ, all curves in Fig. 12 should be
mirrored with respect to the x axis.

12. Let us return to the evolution of the matrix H when
the beam propagates along the resonator contour, which we
brieêy discussed earlier while considering a four-mirror
resonator. Let us transform expression (5) for H(z) taking
into account the fact that any matrix satisées its character-
istic equation:

H�z� � H� � �z detH��E
1� ztrH� � z 2detH�

, (23)

where

trH� � Lÿ1�itj cosfjÿ1 � 2�gÿ 1��;
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Figure 10. Dependence of KL on L=R for a � p=3, f � p=3. Numbers
Iÿ V point to the values of L=R corresponding to the expressions given
in the caption of Fig. 4.
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detH� � Lÿ2
ÿ
g 2 ÿ 2g� cos 2 fÿ d 2 ÿ d

�
��1� it�2gj cosfj�ÿ1�.

The fuléllment of similarity relations (6) between H(L) and
Hÿ is checked immediately.

By multiplying denominator (23) by a complex con-
jugate expression, we can derive the real and imaginary
parts of the matrix H(z). We do not present these
expressions because they are too cumbersome. We present
here only the expressions for the angles of inclination of the
semi-axes of the ellipses of intensity and phase y Im and yRe

[i.e. eigenvectors of matrices ImH(z) and ReH(z)]:

y Im�k� �
1

2

�
ÿ f

(24)

ÿ arctan
�2kÿ 1� sinf cosfwÿ

�1ÿ 2k�1ÿ k�� cos 2 fwÿ � 2k�1ÿ k�gw�
� np

�
,

yRe�k� �
1

2

�
ÿ f

(25)

ÿ arccot
�2kÿ 1� cotf�cos 2 fwÿ ÿ w��

�1ÿ 2k�1ÿ k�� cos 2 fwÿ � 2k�1ÿ k�gw�
� np

�
,

where

k � z=L; w� � cos 2 fÿ g 2 ÿ d� d 2

(the expressions correspond to the case when gd cosf 6� 0).
Angles (24), (25) are deéned up to term np=2 (the semi-

axes of the ellipses are perpendicular) and counted off from
the initial direction of the x axis or from the direction that it
assumes after one or several reêections from êat mirrors; the
direction of counting is deéned by the orientation of the
coordinate axes, i.e. by the number of reêections. Passing to
another coordinate system involves adding a constant and
(when the orientation changes) changing the sign in (24),
(25). Note that when deriving expressions (24), (25) we
passed to another coordinate system by rotating it by the
angle f=2 with respect to the original one (for the four-
mirror resonator presented in Fig. 6, this is a coordinate
system linked to the BCD plane). Incidentally, in this system
the square matrix calculated at z � L=2, k � 1=2 (point C in
Fig. 6) looks fairly simple:

Uf=2H�L=2�Uÿf=2
(26)

� it�2gj cosfj�ÿ1diag �u� v cosf; uÿ v cosf� � �v sinf�s
Ld
��g� 1��g� cos 2 f� ÿ d 2� ,

where

u � d�wÿ � 2g(g� cos 2 f)�; v � ÿgw� ÿ wÿ ,

which agrees with the results of paper [20] given different
notation.

It is easy to make sure that at some n, the angle
y Im(0) � 0 (in particular, n � 0 when jfj < p=2): the
semi-axes of the intensity ellipse are located at the coor-
dinate axes. For this particular n, the angle y Im(1) �
ÿf� np (it is measured in the coordinate system rotated
by the angle �f as a result of the resonator round trip). It is
more difécult to verify that the equality yRe(0) � y� holds
true for some n; in this case it is enough, in particular, to
make sure that tan�2yRe(0)� � tan (2y�). The equality
yRe(1) � ÿf� (nÿ 1=2)p� yÿ is also true for such n. In
the middle point of the resonator axial contour y Im(1=2) �
(ÿf� np)=2, yRe�1=2� � �ÿf� (nÿ 1=2)p�=2 (for arbitrary
n), the semi-axes of the phase ellipse are located along the
bisectors between the semi-axes of the intensity ellipse. The
latter fact is consistent with the form of matrix (26) whose
imaginary part is diagonal and real part is antidiagonal. The
dependences of y Im and yRe on k for a resonator with the
selected parameters are presented in Fig. 13.

13. Consider now the behaviour of the eigenvalues of the
matrix ImH(z) equal to 2=(ko 2

1;2), where o1;2 are the semi-
axes of the intensity ellipse, and the eigenvalues of the
matrix ReH(z) equal to Rÿ11;2 , where R1;2 are the major radii
of curvature of the wavefront. The analytic expressions for
these eigenvalues are too cumbersome to write them
directly. However, it did not prevent us from performing
numerical calculations whose results for a resonator with the
selected parameters are presented in Fig. 14. One can see
that in the middle of the beam path the eigenvalues of the
matrix ImH(z) achieve the greatest values; hence, o1;2 prove
to be smallest. The eigenvalues of the matrix Re H(z) have
equal moduli and opposite signs at this point, and the
wavefront resembles a saddle. At the points located sym-
metrically with respect to the middle of the path where one
of the eigenvalues vanishes, the wavefront has a cylindrical
shape.

14. It makes sense to compare our results with the
alternative representation for a symmetric beam [10]. With
the accuracy to notations, we have

ÿ100

y Im,

yRe

�
deg

ÿ80
ÿ60
ÿ40
ÿ20

0

20

40

60

n � 1

n � 0

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 k

Figure 13. Dependence of the inclination angles of the semi-axes of the
intensity ellipse yIm (solid lines) and phase ellipse yRe (dashed lines) on
k � z=L for g � 0:7531, d � ÿ0:0353, f � p=3.

Uf=2H�z�Uÿf=2 �
�zÿ L=2�E� i diag

�
b1 sinh

2 Fÿ b2 cosh
2 F;ÿb1 cosh2 F� b2 sinh

2 F
�ÿ��b1 ÿ b2� sinhF coshF�s

�zÿ L=2ÿ ib1��zÿ L=2ÿ ib2�
. (27)
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Comparing this expression with (26), we énd that
tanh (2F) � 2g sinfj cosfj=t, the eigenvalues of the matrix
Uf=2H(L=2)Uÿf=2

i

b1;2
�

i
h
tu� cosf

�������������������������������
t 2 ÿ �2g sinf�2

q i
2gj cosfjLd��g� 1�ÿg� cos 2 f

�ÿ d 2
� ,

where the signs in front of the radical are determined, for
example, from the condition that the signs of the
coefécients for s in (26) and (27) coincide. The use of
the notation of expression (27) allows a fairly compact form
of analytical expressions for R1;2 and o1;2, as well as
expressions for the rotation angles of the axes of the ellipses
similar to (24), (25) (see, for example, [10]).

15. Let us say a few words about possible generalisations
of our results. So far we have talked about a perfect lossless
resonator which has a real monodromy matrix. However,
the expressions describing the transverse éeld distribution
can be easily transformed for the case when g and d have a
nonzero imaginary part, i.e. the matrix TC already describes
an amplitude-phase quadratic corrector rather than a phase
corrector; in other words, for a focusing element the
dependence of the coefécient of reêection (transmission)
on transverse coordinates obeys the Gaussian law. Of
course, expressions (9), (10) (or rather, their analogues)
will no longer have the meaning of the real and imaginary
parts of the matrix H0: only the expression for the matrix
itself as a linear combination of matrices (9) and (10) with
coefécients 1 and i remains valid. The same remark is valid
for other similar expressions.

The use of this approach may bring about problems
related to the choice of the branch of the root in expressions
similar to (11), (12) and to the transformation of expressions
containing moduli of some quantities: complex expressions
will hold these quantities with signs `�' or `ÿ' instead. The
right choice should provide concentration of the solution in
the vicinity of the optical axis, i.e. positive deéniteness of the
imaginary part of the matrix responsible for the transverse
éeld distribution.

It is clear that if the imaginary parts of g and d are small
and the real parts lie deep inside region (4), there should not
be particular diféculties; however, a special analysis can be
required in the vicinity of boundary (4). Note that in the
case of a complex monodromy matrix the conditions

ensuring the existence of solutions of equation (1) with a
positive deénite imaginary part (i.e. stability conditions)
differ signiécantly from those which we got used to in the
real-value case [15, 16].

Another generalisation involves the above-mentioned
problem of a resonator with an odd number of mirrors.
In this case, the block B of the monodromy matrix proves to
be symmetric, which facilitates solution of equation (1)
allowing the use of the simpliéed method [23]. In all other
respects this problem is almost as difécult as that under
study.

A more complicated problem is considered in [11]. It
concerns a nonplanar ring resonator with a symmetrically
positioned nonplanar mirror and Gaussian aperture (or two
nonplanar mirrors). At the same time, a particular case of
f � p=2 investigated in this paper permits a fairly simple
analytic solution.

In our paper we have studied only the forms of the
transverse distribution of the fundamental mode using a
scalar approach and ignoring such important issues as
polarisation effects resulted from the rotation of the
coordinate system, consideration of higher modes, the
spectrum of characteristic frequencies, evaluation of zero-
approximation errors, construction of complete asymptotic
expansion, etc. All these problems deserve a special study.

16. Let us state the main results of the research. For a
ring resonator with a nonplanar axial contour performing
image rotation and incorporating an even number of
mirrors (including one nonplanar mirror), we have studied
in detail the geometry of the stability region in the space of
dimensionless parameters inherent in this resonator. We
have presented the explicit expressions for the square
matrices describing the transverse éeld distribution of the
fundamental mode for all admissible values of these
parameters. We have investigated singular points and
critical surfaces of the stability region for which the square
matrix is not uniquely deéned, as well as the behaviour of
the matrix in the vicinity of these singular points and critical
surfaces. We have studied the dependence of the transverse
éeld distribution on the longitudinal coordinate and pre-
sented, in particular, explicit expressions for the angles of
inclination of the semi-axes of the intensity and phase
ellipses as functions of this coordinate.

The results are detailed for the case when the nonplanar
mirror has a spherical shape. The beam parameters as
functions of the radius of curvature and rotation angle
of the image have been investigated for this resonator. In the
particular case of a four-mirror resonator, the relation
between the image rotation angle and the ring path
geometry is characterised.

In our calculations we have used a resonator whose
parameters are borrowed from paper [9]. Comparison of the
results of calculations and the dependences based on them
with the results presented in this paper and obtained by
using conventional methods has revealed both similarities
and differences in the qualitative and quantitative results.
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