
Abstract. Modulation interference microscopy and measure-
ments of the elements of the light scattering matrix showed
that doubly distilled water puriéed from solid impurities
contains macroscopic scatterers in the form of micron clusters
formed by polydisperse air bubbles with the effective radius
70 ë 90 nm. The fractal dimension of clusters lies within 2.4 ë
2.8 and their concentration is � 106 cmÿ3.
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1. Introduction: Formulation of the problem

The measurement of the indicatrix of scattered laser
radiation in a goniometric scheme is known to be the
most efécient method for studying the structure, size and
distribution of scattering objects [1 ë 7]. In the last 10 ë 15
years, methods based on the measurement of polarisation
parameters of radiation, namely, the angular dependences
of the scattering matrix elements are gaining in importance.
In this case, we are dealing with the Mueller matrix (see
[1 ë 3, 8] and references therein). These methods are widely
used in the studies of the composition of cosmic dust [4]
and volcanic ash [5], the structure of aerosols formed by ice
microcrystals and water drops [6, 7], etc. These papers show
that the measurement of the angular dependences of the
Mueller matrix coefécients give suféciently accurate infor-
mation on the size distribution of scattering particles. If the
size of these particles exceeds the laser radiation wavelength
(Mie particles), by measuring different elements of the
Mueller matrix, it is possible to énd whether these particles
are `monolithic' or they consist of individual monomers of
size smaller than the radiation wavelength (i.e. Rayleigh
particles) [9 ë 11]. Moreover, these methods allow the
determination of the type of monomer aggregation resulting
in the formation of Mie particles [10].

The latter circumstance is very important in the context
of the problem formulated below. As shown in a number of

papers, any liquid, saturated with dissolved gas (for exam-
ple, atmospheric air) and containing an ionic component, is
unstable with respect to the spontaneous formation of
spherical nanometre cavities ë bubstons (bubbles stabilised
by ions) [12, 13]. Bubstons are stable gas nanobubbles,
whose stability is caused by adsorption of ions of the
same sign on their surface. Coulomb repulsion forces
produced in this case and acting along the bubston surface
compensate for surface tension forces, providing thereby the
mechanical equilibrium of the bubston. The radii of
bubstons in aqueous solutions of an electrolyte with the
ion concentration of 1015 ÿ 1016 cmÿ3 (i.e. in diluted sol-
utions) are 10 ë 100 nm. It was shown in [12, 13] that, when
the mechanical equilibrium is achieved, the gas pressure
inside an individual bubston is equal to that over the liquid
surface. This provides the diffusion stability of the bubston
with respect the gas dissolved in liquid. Finally, the problem
of the Coulomb screening of a charge bubston in the
aqueous electrolyte solution was solved in [13], where the
action of viscous friction forces on the charge bubston
surrounded by a cloud of counter-ions was also considered.
The viscous friction eféciently `washes away' peripheral
layers in the counter-ion cloud, and two types of composite
particles appear in the equilibrium state. They represent
charged gas nuclei surrounded by a cloud of counter-ions of
different (but éxed) thickness. It is shown that these
composite particles are not electrically neutral but have
opposite electric charges. Because of this, they coagulated
with each other in the attracting Coulomb éeld to form
bubston clusters. According to the model developed in [13],
a bubston cluster has the characteristic radius � 0:5 mm and
contains � 102 ÿ 103 individual bubstons. Note that the
stabilisation of the bubble due to the charging of its surface
is an alternative to the mechanism of mechanical and
diffusion stabilisation based on the embedding gas mole-
cules into pores and cracks in solid particles [14, 15].

In this paper, we conérm experimentally the existence of
bubston clusters in water puriéed from external solid
impurities. Experiments were performed in two stages. At
the érst stage, water samples containing an ionic component
(the speciéc resistance was 2 MO cm, which were highly
puriéed from solid microscopic impurities, were studied by
using a modulation interference microscope. The known
suspensions of colloidal silica and polystyrene latex dis-
solved in the same water were also studied. Note that the
microscope that we used gives not only the size of particles
dissolved in water but also their optical quality. We found in
experiments that water puriéed from external impurities
does contain micron particles, the optical density related to
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them being lower than the optical density of water. At the
second stage, we investigated the angular dependences of the
elements of the Mueller matrix for the same water samples
and suspensions of colloidal silica and latex. In addition, we
proved that micron particles, contained in water puriéed
from external impurities, consist in turn of monomers of
nanometre size.

Note that our study develops earlier works [16 ë 18] in
this éeld at a qualitatively new level. In this paper, we do not
consider any theoretical models describing the nucleation of
bubstons, their stabilisation due to speciéc adsorption of
ions on their surface, and their diffusion-controlled coag-
ulation accompanied by the formation of bubston clusters.
In our opinion, the corresponding theory should be pub-
lished elsewhere.

2. Modulation interference laser microscopy
experiment

A MIM-3 microscope (Amphora Laboratories Limited
Liability Company) is described in detail in [18, 19]. This is
a two-channel microscope, in which one measurement
channel is a classical white light microscope, while the
second channel is a high-resolution laser interferometer
operating at a wavelength of 532 nm. The laser radiation
intensity focused on a sample by a microobjective with a set
of apertures (see below) is � 1 W cmÿ2, which, taking into
account low absorption (the absorption coefécient of
distilled water at this wavelength is � 10ÿ4 cmÿ1), allows
us to neglect the heating of samples. By using the image of
a sample in white light (the éeld of view in this channel is
100 times larger than that in the interference channel), we
can select a fragment of a sample of interest to study it by
the method of coherent phase microscopy.

The interference channel of the microscope is shown
schematically in Fig. 1. The scheme of this channel coin-
cides, accurate to the use of microobjectives, with that of a
Mach ëZehnder interferometer. A distinct feature of our
microscope is the use of a phase modulator in the reference
arm. A cell with liquid is mounted on a movable stage under
microobjective O1. A collimated laser beam passes through
a l=2 plate and is split in beamsplitter PBS with a polar-
isation coating. Elements C1 and C2, which consist of
quarter- and half-wave phase plates, are used to correct
radiation polarisation in both channels. By changing the tilt

of the l=2 plate, we can vary the energy distribution between
two beams behind the beamsplitter to provide the optimal
contrast of an interferogram irrespective of a jump in the
optical density of the object with respect to the optical
density of the environment.

One of the two beams behind the beamsplitter (object
beam) is reêected from mirror M1 and is split again in
beamsplitter BS1. The reêected part of the beam is incident
on microobjective O1 and illuminates a cell with liquid. This
allows us to investigate the distribution of the phase
difference of the object and reference beams along a selected
plane in the liquid volume. The position of this plane along
the liquid layer height is controlled by adjusting micro-
objective O1. The light propagated through an object in the
liquid and reêected by a mirror substrate of the cell (the cell
design is described below) is collected by the same objective
O1; then, the light propagates through beamsplitter BS1 and
telescopic system TS and is incident on a CMOS array D.
Note that the use of microobjective O1 imposes certain
restrictions of the liquid layer thickness because this micro-
objective tightly focuses beams illuminating the object under
study. These beams diverge behind the focal plane, reêect
from the mirror substrate and fall again on the same
microobjective O1. As will be shown below, an interfero-
gram is obtained by using paraxial beams with a small angle
of deviation from the optical axis upon focusing and
subsequent reêection. These beams fall into microobjective
O1 after reêection. It is clear, however, that, when the
aperture of microobjective is éxed, the number of such
beams increases with decreasing distance between the focus
of microobjective O1 and the mirror substrate.

The reference beam passes through beamsplitter PBS
and is incident on beamsplitter BS2. A part of the beam
passes through microobjective O2, which is similar to
microobjective O1. Near the focal plane of microobjective
O2 a piezoelectric modulator PM is located, which consists
of a plane mirror mounted on a piezoelectric element
connected to a sinusoidal oscillation generator. The refer-
ence beam reêected from the piezoelectric modulator mirror
passes again through microobjective O2 and falls on
beamsplitter BS2, reêects from mirror M2 and falls on
beamsplitter BS1, where it is mixed with the object beam,
passes through telescopic system TS and falls on array D. A
dynamic interference pattern produced on the array is
processed with a personal computer.

The radiation intensity measured with array D in each
pixel is described by the expression I � I1 � I2 � 2(I1I2)

1=2�
cos d� In, where I1 and I2 are the object and reference wave
intensities, respectively; In is the background (incoherent)
radiation intensity; and d is the phase sift between the
reference and object waves. It is this latter parameter that is
of interest to us. The value of d was determined by
measuring the radiation intensity successively for each of
the pixels of array D for four éxed phase shifts Di (i � 1, 2,
3, 4) caused by the change in the arm length in the reference
channel produced with the help of a phase modulator. For
each of the pixels, the system of four equations

I�1� � I1 � I2 � 2�I1I2�1=2 cos�d� D1� � In,

I�2� � I1 � I2 � 2�I1I2�1=2 cos�d� D2� � In,

I�3� � I1 � I2 � 2�I1I2�1=2 cos�d� D3� � In,
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Figure 1. Scheme of the interference channel of a MIM-3 microscope.
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I�4� � I1 � I2 � 2�I1I2�1=2 cos�d� D4� � In

was solved. By measuring the value of d for each pixel of
the array, we obtain in fact the optical density distribution
in the array plane. Note that the interference of the
reference and object waves is best realised for paraxial
beams (in this case, the contribution In of the incoherent
background will be suppressed). For this reason, a region of
array D is selected (the area of this region is considerably
smaller than the array area) on which paraxial beams are
incident, and the interference pattern is recorded for this
region. The part of the object, which can be processed in
such a way, is determined by the magniécation of micro-
objective O1, being nevertheless only a small part of the
object under study. By moving the stage in a plane
perpendicular to the optical axis with a step determined
by the area of the selected region and recording interfero-
grams at each step, we can obtain the optical density
distribution along the object with the speciéed accuracy.

The cell with liquid is schematically shown in Fig. 2. A
liquid drop was placed on the surface of a polished plane
aluminium mirror on which a transparent Al2O3 layer was
deposited. On the surface of this layer gold electrodes were
deposited to which a dc voltage up to 500 V was applied for
determining the sign of the electric charge of particles in
liquid. The liquid layer thickness was éxed by means of
10-mm-thick semicircular C-shaped Teêon spacers. A 0.17-
mm-thick cover glass was pressed from above to these
spacers by means of a circular C-clamp. All the cover
glasses were used only one time. The surfaces of the mirror
and cover glass were degreased before each measurement,
érst with ethylene and then with toluene. Note that neither
hydrophobic nor hydrophilic properties were imparted
initially to surfaces contacting with water. Note also
that, when the liquid was poured into the cell, special
attention was paid to provide the absence of air `islands' in
the élled cell: the entire cell volume limited by the Teêon
spacer should be uniformly élled; at the same time, liquid

was in contact with the atmospheric air at the gap of the
Teêon spacer. The area of the liquid layer in the cell was
� 1 cm2, while the depth of focus of microobjective O1 was
� 2 mm, i.e. it was considerably smaller than the liquid élm
thickness. This provided the high-contrast white-light
images of particles inside the liquid layer directly adjacent
to the cover glass and also allowed the image scan over the
liquid depth.

The setup was calibrated by using reêection Michelson
etalons with steps of different heights (the minimal step
height was 5 nm) and also monodisperse spherical colloidal
silica particles with radii 0.43, 0.8, and 2.6 mm. We studied
samples of twice distilled water puriéed from solid micro-
impurities with the help of a porous membrane FiTremM 1
élter with an average pore radius of 100 nm and suspensions
of colloidal silica particles of radius 0.8 mm and polystyrene
latex particles of radius 200 nm in the same water. As
mentioned above, the speciéc resistance of the water
samples was 2 MO cm, i.e. these samples were not deion-
ised.

A white-light microscopic photograph (Fig. 3a) shows
colloidal silica particles of radius 0.8 mm in pure water after
their sedimentation on a cell bottom. The mutual arrange-
ment of this particles is random rather than ordered, and
particles themselves tend to coagulate. Figure 3b presents
the optical density distribution measured in the vicinity of a
silica particle. On the vertical axis the optical path difference
(path shift) is plotted in the units of ld, where l is the
wavelength. Thus, the phase shift is measured convention-
ally in nanometres (taking into account the instrumental
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Figure 2. Scheme of a cell with liquid: the front (a) and top (b) views: ( 1 )
liquid layer; ( 2 ) Teêon spacer; ( 3 ) aluminum substrate; ( 4 ) electrodes.
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Figure 3. Photograph of colloidal silica particles in the white light of a
microscope (a) and the phase shift distribution on a colloidal silica
particle (b).
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function of the setup measured for spherical particles), while
horizontal axes xy specify a plane in which a particle is
located. In fact, we can determine from them the size of
particles under study. One can see that the positive phase
shift corresponds to particles with a higher optical density
(the refractive indices n of fused silica and water at a
wavelength of 532 nm are 1.46 and 1.33, respectively).

Figure 4 presents the optical density distribution (phase
shift) in the vicinity of a latex particle of radius 0.2 mm; note
that we failed to obtain high-qiality photographs for latex
particles in white light. As it should be, the optical density of

this particle (polystyrene, n � 1:59) is higher than that of
water.

Figure 5a presents a white-light photograph of the liquid
layer-atmosphere interface for pure water at the gap of the
C-spacer. A region of the water ë air interface (broad black
band) in this égure separates air at the bottom from water at
the top. The phase shift distribution across the interface is
presented in Fig. 5b. One can see that the jump of the
optical density occurs at the interface, and the phase shift
decreases in the gas phase. The thickness of the boundary
layer of the liquid inside which its optical density drastically
decreases is determined from coordinates in the xy plane in
the égure.

Figure 6a shows a pure water layer far from the inter-
face. A macroscopic particle of size � 1 mm located near the
cover glass surface is clearly seen. Figure 6b presents the
optical density distribution for this particle. One can see that
this particle has a lower optical density than that of the
surrounding water (as in the case of the water ë air interface,
the phase incursion in this particle is negative). This particle
can be only a gas bubble (or a bubston cluster) because a
random penetration of environmental particles with a lower
optical density into the cell was excluded by special dust
removal of the laboratory setup. Because the liquid under
study was not preliminarily degassed, gas bubbles contained
dissolved air.

We constructed histograms over r for colloidal silica and
latex particles and particles with a low optical density found
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Figure 4. Phase shift distribution on a polystyrene latex particle.
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Figure 5. Photography of the liquid ë air interface in the gap of a Teêon spacer (a) and the phase shift distribution across this boundary (b).
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in water, which then were approximated by the logarithmi-
cally normal distribution. The corresponding distributions
with calculated parameters are

reff �
� 1
0 r�r�r 3dr� 1
0 r�r�r 2dr ,

veff �
� 1
0 r�r��rÿ reff�2r 2dr
r 2eff
� 1
0 r�r�r 2dr ,

where r(r) is the probability density distribution (in our
case, the logarithmically normal distribution), are presented
in Fig. 7.

Particles with a low optical density retain their shape
during the entire experiment (tens of minutes), i.e. they are
in fact quasi-stable. If these particles are indeed micron air
bubbles, at least two mechanisms of their quasi-stability can
be proposed. The érst mechanism is related to the gen-
eration of such bubbles on stable hydrophobic defects in the
cover glass. The second mechanism assumes the simulta-

neous mechanical and diffusion equilibrium of the bubbles
not only near the solid surface but also in the liquid volume.
In this case, the gas pressure inside a bubble should be equal
to that over the liquid surface, while surface tension forces
should be compensated by some way. Such conditions are
realised for bubstons and bubston clusters, the surface
tension force being compensated due to the charging of
a bubble surface by ions of the same sign. The latter is
conérmed by many experiments in which an electrostatic
éeld was applied to micron particles with the low optical
density. It was found that these particles move towards a
positive electrode, i.e. they were negatively charged. We did
not attempt in these experiments to measure accurately the
charge of particles (we are performing detailed measure-
ments of the negative charge of particles at present). It was
the presence of such a charge itself that was important for
us. Note also the negative charge of particles is indirectly
conérmed by their ability to move under the action of an
electrostatic éeld. It is known (see, for example [20 ë 23] that
at the water ë glass interface the dissociation of end groups
occurs:

SiOH! SiOÿ �H�.

In this case, a positive H� ion in neutral water and alkali
aqueous solution can pass to liquid, and the water ë glass
interface proves to be negatively charged. Thus, a
negatively charged particle near the charged interface is
subjected to the action of the Coulomb repulsion force
directed downward, which is balanced by the Archimedean
force directed upward, i.e. negatively charges particles near
such an interface have neutral êoatability and can move in
the external Coulomb éeld. Note that the shape of these
particles is not distorted near the boundary, which is
important for the interpretation of results presented below.

Below, we describe experimental measurements of the
angular dependences of the Mueller matrix. The results of
these measurements in conjunction with the results pre-
sented above allow us to interpret unambiguously micron
particles produced spontaneously in puriéed water as
bubston clusters.

3. Measurement of the angular dependences
of the Mueller matrix elements

3.1 Theoretical part

Consider a volume element of a scattering medium
illuminated by a plane monochromatic wave with the
wave vector kinc directed along the z axis (Fig. 8). The
direction of observation of a scattered wave is speciéed by
the wave vector ksca(j, y). Because all the parameters of
scatterers are distributed spatially uniformly, we will select
as the scattering (observation) plane the xz plane corre-
sponding to the azimuthal scattering angle j � 0. In this
case, the propagation direction of scattered radiation is
unambiguously determined by the polar scattering angle y.
The amplitudes of incident and scattered waves are related
by the expression [2]

E
�sca�
k

E
�sca�
?

 !
� exp�ik�Rÿ z��

ÿikR
A1 A2

A3 A4

� �
E
�inc�
k

E
�inc�
?

 !
, (1)

where A1, A2, A3, and A4 are elements forming the
amplitude scattering matrix and depending on the scatter-
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Figure 7. Logarithmically normal size distributions of macroscopic
particles of a low optical density (reff � 0:5 mm, veff � 0:1) (a), polysty-
rene latex (reff � 195 nm, veff � 0:015) (b), and colloidal silica particles
(reff � 0:625 mm, veff � 0:004) (c).
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ing angle and orientation of particles with respect to the
electromagnetic éeld strength vector of the incident wave;
k � 2p=l is the wave number; l is the radiation wavelength;
R is the distance between a scatterer and a detector; and the
absorption of radiation is neglected everywhere. The
quantities Ek and E? are the perpendicular and parallel
components of the electric éeld vector with respect to the
observation plane. Because we measured the radiation
intensity (the time-averaged square of the amplitude), it is
necessary to know the relation between the intensities of the
incident and scattered waves. The intensity and polarisation
state of a light beam are completely described by the Stokes
vector [1, 2, 8]:

S �
I
Q
U
V

0BB@
1CCA �

hEkE �k � E?E
�
?i

hEkE �k ÿ E?E
�
?i

hEkE �? � E �kE?i
hi�EkE �? ÿ E �kE?�i

0BBB@
1CCCA, (2)

where I is the total radiation intensity; Q is the difference of
intensities of light waves polarised parallel and perpendic-
ular to the plane of incidence of the wave; U is the
difference of intensities of light waves propagated through
linear polarisers and polarised at angles �458 and ÿ458
with respect to the normal to the plane of incidence of the
wave; V is the difference of intensities of circularly polarised
waves with right- and left-hand polarisations. The inter-
action between the light wave and a scattering object can be
described by the transformation of the Stokes vector Sinc of
the incident wave and the Stokes vector Ssca of te scattered
wave:

Ssca � �F �Sinc, (3)
or

Isca
Qsca

Usca

Vsca

0BB@
1CCA � 1

k 2R 2

F11 F12 F13 F14

F21 F22 F23 F24

F31 F32 F33 F34

F41 F42 F43 F44

0BB@
1CCA

Iinc
Qinc

Uinc

Vinc

0BB@
1CCA, (4)

where [F] is the 4� 4 Mueller matrix, or the scattering
matrix.

The element F11(y) describes the scattering indicatrix of
natural (randomly) polarised light, and the integrated
quantity

Csca �
2p
k 2

� p

0

F11�y� sin ydy (5)

describes the total light scattering cross section. The
Mueller matrix for randomly oriented scatterers with a
symmetry plane has the block-diagonal form

�F�y�� � 1

k 2R 2

F11 F12 0 0
F12 F22 0 0
0 0 F33 F34

0 0 ÿF34 F44

0BB@
1CCA. (6)

For particles small compared to the wavelength (Rayleigh
particles), the Mueller matrix takes the form

�F�y�� � B

k 2R 2

�

1

2
�1� cos 2 y� 1

2
�cos 2ÿ1� 0 0

1

2
�cos2 yÿ 1� 1

2
�1� cos2 y� 0 0

0 0 cos y 0

0 0 0 cos y

0BBBBBBBB@

1CCCCCCCCA
, (7)

where

B � x 6

����m 2 ÿ 1

m 2 � 1

����2. (8)

Here, x � ka � 2pa=l is the so-called size parameter; a is
the radius of a spherical particle; and m is the complex
refractive index of the particle with respect to the refractive
index of the medium. Note that x � 1 for Rayleigh
particles, and we will call particles for which this condition
is not fulélled the Mie scatterers.

More complex systems, such as clusters of spherical
particles randomly distributed in size, orientation and
aggregation type, are characterised by the scattering matrix
having the approximately block-diagonal structure [9] with
`zero' matrix elements that are at least an order of
magnitude smaller than the minimal nonzero matrix ele-
ment. According to the numerical simulation of light
scattering by clusters [9], the type of the dependence
F11(y) is mainly determined by the size of monomers and
their amount in a cluster.

3.2 Experimental part

We measured the elements of the scattering matrix for the
same water samples as in experiments with the modulation
interference microscope. The setup was calibrated by using
suspensions of colloidal silica and polystyrene latex in this
water (the colloidal silica suspension was studied at dif-
ferent silica concentrations). These concentrations were
obtained by the aliquot dissolving of suspensions with the
initial concentration nI, which was determined with the help
of a microscope by directly counting particles in a liquid
layer with the éxed height and area. It was found that
nI � 2:1� 108 cmÿ3 for colloidal silica particles, and the
values of nI measured for different samples are virtually the
same. At the same time, the values of nI for latex exhibited
a large scatter from sample to sample, which is, probably,
related to the general problem of visualisation of latex
particles in water. First, these particles are poorly
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ksca

kinc

x

j

y

Figure 8. Geometry of the scattering experiment.
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discernible in the white light in the microscope (which is
related to their size), i.e. they can be observed only by the
methods of modulation interference microscopy. Second,
the principal difference between colloidal silica and latex
particles is that silica particles precipitate on the bottom of
a cell (Fig. 2), where they remain at rest during the entire
observation time, and therefore they amount can be easily
determined. At the same time, smaller and less dense latex
particles are, probably, distributed over the water layer
height, and therefore to count them, it is necessary to scan
the focus of objective O1 over height, i.e. to measure the
height distribution of the optical density of the latex
suspension. It is also necessary to take into account the
diffusion of particles in liquid. In this case, one image of the
type presented in Figs 3b, 4, 5b and 6b was obtained for a
few seconds (which is related to the speciécity of obtaining
such an image and subsequent computer processing).
During this time, a latex particle escapes from the focal
region of microobjective O1 due to diffusion, i.e. it becomes
in fact unobservable. Thus, only latex particles adhesive
either to the bottom or the cover glass of a cell can be
distinguished. This, probably, explains a large scatter in the
measurement nI for latex. For this reason, the concen-
tration dependence for the latex suspension was not studied
in the experiment on measurements of the scattering matrix
elements.

The scattering matrix elements were measured with a
modulation laser polarimeter, in which the goniometric
scheme for recording scattered radiation was used
(Fig. 9). The experimental setup includes a cw 532-nm laser,
a lithium niobate electrooptical modulator (EOM) with the
major axes oriented at an angle g � �458 to the observation
plane, two quarter-wave plates [l=4(1) and l=4(2)], linear
polariser P1 and linear polariser-analyser P2. An important
element of the setup is a semi-cylindrical Pyrex cell of radius
R � 6 cm, which, after élling with liquid under study, is
transformed to a collecting cylindrical lens amplifying a
weak scattered signal. The focal distance of this lens is
f � Rcn(nÿ 1)ÿ1 � 24 cm, where n � 1:33 is the refractive
index of water. The focal distance of the cell élled with
liquid was determined experimentally, and these measure-
ments were conérmed by the estimate by the expression
presented above. The setup contained iris (A1), circular
(A2), and slit (A3) apertures, a photomultiplier (PMT), and
a low-frequency master oscillator (MO) producing the

control signal at the electrodes of the modulator at the
frequency o=2p � 1:7 kHz. An optical pair (OP) with
chopper (C) was necessary for the synchronous detection
of the scattered radiation intensity. The results of measure-
ments were processed with a PC connected with an analog-
to-digital converter (ADC). Iris aperture A1 was mounted
directly in front of the cell and minimised the contribution
of radiation scattered from optical elements located in front
of the cell to the useful signal. Circular aperture A2 was
mounted directly behind the cell and was used for two
purposes. First, the special design of this aperture minimised
the contribution of parasitic êashes to the useful signal and,
second, the aperture `cut out' at a éxed scattering angle y a
segment of length d= sin y (where d � 8 mm is the aperture
diameter) from an extended source of scattered radiation,
which was the laser beam track in the cell. This reduced
aberrations of the cell lens with liquid under study. Slit
aperture A3 was mounted in the focus of the lens, formed by
the cell with liquid, directly in front of the photomultiplier
cathode. The photomultiplier with aperture A3 and some
polarisation elements (which were varied depending on the
matrix element being measured) were mounted on a
movable rail of the goniometer, which was declined from
the optical axis by the scattering angle y during measure-
ments. The optical axis itself was speciéed by the incident
laser beam. Thus, only the beams that were scattered and
focused by the cell lens at the certain angle y fell on the
photomultiplier cathode.

Note that we took special efforts to minimise scattering
at the input and output windows of the cell by their
polishing, degreasing and removal of dust from them.
The goniometer was calibrated by angles in the following
way. Before measurements, the movable rail of the goni-
ometer was oriented along the laser beam to obtain the
maximum output signal of the photomultiplier. This ori-
entation of the rail corresponded to the reading of the
goniometer scale y � 0, i.e. to the direction along the optical
axis. Scattering angles were measured from this position.

Consider the operation principle of the polarimeter. The
laser radiation passes through polariser P1, which speciées
the initial Stokes vector

S0 � I0� 1 1 0 0 �T,
where I0 is the input laser radiation intensity. The
transformation of the initial Stokes vector S0 by the

Laser

C P1
EOM

l=4(1)

l=4(2)

A1

P2

A3

Cell

OP
MO

ADC

A2
PMT

yo

Figure 9. Scheme of a modulation laser polarimeter.
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total optical system represents the successive multiplication
of this vector by the Mueller matrices of the corresponding
elements of the optical scheme. The Stokes vector of
radiation propagated through the optical system is

S � �P2 �Q3 �F�Q1 �M�S0, (9)

where F is the Mueller matrix of the cell with liquid under
study, which has the general form

F �
F11 F12 F13 F14

F21 F22 F23 F24

F31 F32 F33 F34

F41 F42 F43 F44

0BB@
1CCA.

The matrices of the modulator M(d), polariser P2(a), and
quarter-wave plates Qi � Q(ci) with axes making angles a Ë
ci (i � 1, 2) with the plane of observation are known and
have the form [24]

P2�a� �
1

2

1 cos 2a sin 2a 0
cos 2a cos 2 2a sin 2a cos 2a 0
sin 2a sin 2a cos 2a sin 2 2a 0
0 0 0 0

0BB@
1CCA,

M�d� �
1 0 0 0
0 cos d 0 ÿ sin d
0 0 1 0
0 sin d 0 cos d

0BB@
1CCA,

Q�ci� �
1 0 0 0
0 cos 2 2ci cos 2ci sin 2ci ÿ sin 2ci

0 cos 2ci sin 2ci sin2 2ci cos 2ci

0 sin 2ci ÿ cos 2ci 0

0BB@
1CCA.

Here, d is the phase shift introduced by the modulator. The
intensity I detected with a photodetector corresponds to the
érst component of the vector S. By performing multi-
plication in (9), we obtain

I � 1

2
I0�A0 � As sin d� Ac cos d�. (10)

The coefécients A0, As, and Ac in the conégurations of the
experimental scheme in Fig. 9 required for determining the
Mueller matrix elements are presented in Table 1. These
coefécients corresponds to the sets of éxed azimuthal
positions of the polariser and quarter-wave plates c1, c2, a.

One can see from Table 1 that matrix elements can be
expressed in terms of half-sums and half-differences
A0(c1,c2, a), As(c1,c2, a), and Ac(c1,c2, a).

In the case of the harmonic modulation d � d0 cosot,
the functions cos d and sin d in expression (10) can be
expanded in a Bessel series

cos d � J0�d0� � 2
X1
n�1
�ÿ1�nJ2n�d0� cos�2not� � J0�d0�

ÿ 2J2�d0� cos�2ot� � 2J4�d0� cos�4ot� ÿ . . . , (11)

sin d � 2
X1
n�0
�ÿ1�nJ2n�1�d0� cos��2n� 1�ot�

� 2J1�d0� cos�ot� ÿ 2J3�d0� cos�3ot� � . . . . (12)

If the modulation amplitude is chosen such that
J0(d0) � 0, i.e. d0 � 2:404 rad, the constant component of
the detected signal will be proportional only to the coefé-
cient A0. Thus, the radiation intensity will be described by
the Fourier series in cosines

I�t� � I0

�
a0
2
�
X1
n�1

ano cos�not�
�
. (13)

It follows from (13) that

A0 � a0, As � ao=J1�d0�, Ac � a2o=J2�d0�.
Thus, all the 16 elements of the Mueller matrix can be
readily obtained by measuring coefécients a0, ao, and a2o
of the Fourier series, which are automatically detected for
each of the conégurations of the optical scheme presented
in Table 1 by the method of lock-in detection digitally
realised by a PC equipped with the ADC.

3.3 Discussion of the results

Figure 10 presents the results of measurements of the
Mueller matrix elements

F
�w�
11 �y�, ÿ f

�w�
12 �y� � ÿ

F
�w�
12 �y�

F
�w�
11 �y�

, f
�w�
22 �y� �

F
�w�
22 �y�

F
�w�
11 �y�

,

f �w�33 �y� �
F �w�33 �y�
F �w�11 �y�

, f �w�34 �y� �
F �w�34 �y�
F �w�11 �y�

, f �w�44 �y� �
F �w�44 �y�
F �w�11 �y�

for twice distilled water puriéed from solid impurities (the
superscript `w' refers to a cell with water). The rest of the
matrix elements (normalised) did not exceed 0.05. Thus, we
can assume that the Mueller matrix has the block-diagonal
structure. Figure 10 also presents experimental data for an
empty cell (the corresponding matrix elements are denoted
by the subscript `e') and the results of theoretical
calculations of the Mueller matrix elements normalised to
their values for y � 0 for air spheres distributed by the
logarithmically normal law with parameters reff � 100 nm,
veff � 0:01; reff � 500 nm, veff � 0:01; reff � 1 mm,
veff � 0:15; and reff � 1:5 mm, veff � 0:025. These depend-
ences were obtained by using program codes based of the
T-matrix method [2]. Note that in this case the choice of air
spheres with reff � 0:5 mm and veff � 0:1 is related to the
results obtained with the help of an interference modulation
microscope for water puriéed from impurities (see Fig. 7a).
Figure 10 also presents the angular dependences of the
Rayleigh matrix elements [see expression (7)] describing by
particles of size considerably smaller than the wavelength.
Hereafter, the experimental points were obtained by
averaging over ten measurements. The root-mean-square
deviation of experimental points for normalised matrix
elements did not exceed 5� 10ÿ2; this error is not indicated
in the dependences presented in égures.

Table 1.

c1

�
deg c2

�
deg a

�
deg A0 As Ac

0 0 0 F11 � F21 F13 � F23 F12 � F22

0 0 90 F11 ÿ F21 F13 ÿ F23 F12 ÿ F22

0 0 �45 F11 � F41 F13 � F43 F12 � F42

0 45 �45 F11 � F31 F13 � F33 F12 � F32

45 0 0 F11 � F21 ÿ�F12 � F22� F14 � F24

45 0 90 F11 ÿ F21 ÿ�F12 ÿ F22� F14 ÿ F24

45 0 �45 F11 � F41 ÿ�F12 � F42� F14 � F44

45 45 �45 F11 � F31 ÿ�F12 � F32� F14 � F34
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Figure 10a shows the experimental dependences F �w�11 (y)
and F

�e�
11 (y). It follows from the form of the function F

�e�
11 (y)

that a considerable contribution to the scattering indicatrix
of puriéed water in the angular range 0 < y < 108 is
introduced by the cell *. One can see that for angles
04y4 58, the function F

�e�
11 (y) is greater than F

�w�
11 (y),

which is, probably, explained by extinction in water. In the
angular range 2584y4 508, the element F �e�11 (y) has asymp-
totics close to the Rayleigh one. At the same time, the
element F

�w�
11 (y) cannot be approximated by the scattering

indicatrix for Rayleigh particles in the entire range of
scattering angles. It follows from Fig. 10 that for scattering
angles y > 10, i.e. when the inêuence of the cell can be
neglected, the dependence F

�w�
11 (y) also cannot be approxi-

mated by theoretical dependences for air spheres (Mie

particles) with the éxed parameters of the logarithmically
normal distribution. Obviously, we are dealing here with the
air Mie sphere in a pure form. We will show below that the
dependence F

�w�
11 (y) obtained in our experiments can be

related to the scattering of radiation by an ensemble of
clusters consisting of polydisperse spherical monomers ë gas
nanobubbles.

Figure 10b presents the angular dependences of the
matrix elements ÿf �w�12 (y) and ÿf �e�12 (y). One can see that the
element ÿf �e�12 (y) is zero in the entire angular range studied.
Here, as in Fig. 10a, curve ( 4 ) presents the result of
calculations of scattering by air Mie spheres with the
parameters of the logarithmically normal distribution
reff � 1 mm and veff � 0:1. Obviously, this dependence is
unsuitable for the approximation of the function ÿf �w�12 (y).
At the same time, the dependence ÿf �w�12 (y) can be approxi-
mated by a theoretical curve for Rayleigh air spheres (at
least, in the angular range 0 < y < 408). Thus, it follows
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Figure 10. Light scattering matrix elements for highly puriéed water as functions of the scattering angle y. Experimental data: élled cell (circles); empty
cell (squares). Theoretical dependences for Rayleigh particles [see (7)] ( 1 ) and for air spheres with the following parameters of the logarithmically
normal distribution: reff � 100 nm, veff � 0:01 ( 2 ); reff � 500 nm, veff � 0:01 ( 3 ), reff � 1 mm, veff � 0:1 ( 4 ); and reff � 1:5 mm, veff � 0:025 ( 5 ).

*Note that the scattering of light at small angles in this experiment occurs
both in the cell and elements of the optical scheme.
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from the curves in Figs 10a, b that micron air spheres,
whose presence is conérmed in experiments with a modu-
lation interference microscope, are, probably, not
monolithic and consist of individual Rayleigh monomers
(gas nanospheres). Note that dependences of this type are
typical for nanoparticle clusters [9, 10]. Namely, the depend-
ence F

�w�
11 (y) neither corresponds to spherical Mie particles

nor Rayleigh particles, whereas the matrix element ÿf �w�12 (y)
(at least, in the angular range 0 < y < 408) behaves as if
scattering occurred by monomers composing a cluster; in
this case, monomers should be close to Rayleigh particles.

Figure 10c presents the dependences f �w�22 (y) and f
�e�
22 (y).

It follows from theoretical calculations that this matrix
element should be equal to unity both for Rayleigh spheres
and Mie particles in the entire range of scattering angles.
However, experimental dependences f

�w�
22 (y) for water con-

siderably differ from theoretical dependences for spherical
particles. This discrepancy can be caused by the deviation
from the spherical shape of scatterers, which is manifested in
the case of cluster aggregates. It is also caused by the
inêuence of the cell, which is conérmed by the dependence
f
�e�
22 (y).

Figures 10d, f present the angular dependences f
�w�
33 (y),

f
�e�
33 (y) and f

�w�
44 (y), f �e�44 (y). One can see that all these matrix

elements behave similarly and do not correspond to
theoretical calculations for Rayleigh air spheres and air
Mie spheres. Note that plots for these matrix elements for
an empty cell are located considerably lower than those for
water.

The measured values of matrix elements f
�w�
34 (y) and

f
�e�
34 (y) in Fig. 10e lie near zero; the deviation from zero does
not exceed 0.05 and are, probably, related to the measure-
ment error. Note that this dependence is predicted by
theoretical simulations of scattering in clusters consisting
of Rayleigh spherical monomers [9, 10].

Figure 11 presents again the experimental angular
dependences of the Mueller matrix elements for water
(data for an empty cell are absent) and the corresponding
theoretical dependences obtained by calculating the radia-
tion intensity scattered by clusters consisting of polydisperse
spherical nanobubbles (monomers) in water. Matrix ele-
ments for clusters were calculated for logarithmically
normal distributions of monomers with parameters reff �
90 nm, veff � 0:02, N � 100; reff � 80 nm, veff � 0:03,
N � 140; and reff � 70 nm, veff � 0:04, and N � 210 (N is
the number of monomers in a cluster). The parameters of
clusters were chosen to provide the best ét of the exper-
imental dependence F

�w�
11 (y), and clusters themselves had

approximately equal scattering cross sections Csca [see (5)].
Note that we did not solve the rigorous inverse problem of
determining the size of particles from scattering data, but
the size was estimated by selecting the values of parameters
within the framework of a quite narrow parametric model.
The clusters with indicated parameters are shown in Fig. 12.

The formation of clusters was numerically simulated in
the following way. Each new spherical particle with radius
determined by the logarithmically normal distribution was
attached with the equal probability to any point on the
surface of a cluster formed at the previous step. The fractal
dimensionality of the obtained clusters was calculated from
the dependence of the total volume V of spheres, contained
inside a sphere of radius r circumscribed around the cluster
centre, on r. This dependence can be everywhere, except the
more porous external envelope of the cluster, approximated

by a power function with the exponent Df, which is the
fractal dimensionality of the cluster [24]. The algorithm for
calculating Df is illustrated in Fig. 13 for a cluster shown in
Fig. 12c. The fractal dimensionality determined in this way
for the total number of monomers 102 ÿ 103 is Df � 2.4 ë
2.8. Clusters formed by the method described above and
used in our paper are similar to clusters formed in a ballistic
model of the attachment of individual particles [10, 24].

The theoretical dependences presented in Fig. 11 were
obtained by averaging over eleven orientations in the
scattering plane obtained by the rotation of clusters around
the y axis within 0 ë 1808. We used in calculations a software
developed in accordance with the mathematical model of
scattering by cluster particles [11]. This program is based on
the known T-matrix method (see, for example, [2]). One can
see that experimental data for matrix elements can be
approximated with good accuracy with the help of clusters
of gas nanobubbles. It is most likely that we are dealing with
different types of such clusters, and experimental depend-
ences in Fig. 11 are the result of averaging over the entire
ensemble of clusters. It also follows from these dependences
that the stabilisation of nanobubbles is not necessarily
related to the penetration of gas molecules into pores
and microcracks of macroscopic solid particles [14, 15].
Indeed, the presence of solid macroparticles is not necessary
for the interpretation of experimental data presented above,
and these hypothetical solid macroparticles are in no way
manifested in our experiments. Note also that strong
deviations of the experimental dependences f22(y), f33(y),
and f44(y) from theoretical calculations for clusters are
caused exclusively by the inêuence of a cell. This follows
from calibration experiments with polystyrene latex and
colloidal silica described below (Figs 14 and 15).

Figure 14 presents the experimental and theoretical
angular dependences of the Mueller matrix for the water
suspension of polystyrene latex. The experimental points are
connected with splines. The experimental dependences for
latex are best approximated by dashed theoretical curves.
This is consistent with experimental histograms obtained for
these latex particles with the help of a modulation inter-
ference microscope (Fig. 7b). The differences between the
theoretical and experimental dependences are, probably,
related to the inêuence of the cell and the additive
contribution of nanobubble clusters to the scattered signal.
As in Fig. 11, the greatest discrepancy between theoretical
and experimental results is observed for the normalised
diagonal matrix elements f22(y), f33(y), and f44(y). Note the
presence of weak oscillations of the dependences for matrix
elements f33(y) and f44(y) in the angular range 0 < y < 408;
the nature of these oscillations remains not clear yet.

Figure 15 presents the experimental angular depend-
ences of the Mueller matrix elements for the water
suspension of colloidal silica at the initial concentration
of particles nI � 2:1� 108 cmÿ3 and after tenfold dilution
down to the concentration nII � 0:1nI. As in Fig. 14, the
experimental points are connected by splines. For each
matrix element, the results of numerical simulation are also
presented which was performed for colloidal silica particles
with parameters of the logarithmically normal distribution
reff � 0:625 mm and veff � 0:004 corresponding to the data
obtained with the help of the modulation interference
microscope (Fig. 7c).

The dependence F11(y) for suspensions with the con-
centration nI exhibits oscillations, which were smoothed
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Figure 11. Light scattering matrix elements for highly puriéed water as functions of the scattering angle y. Experimental data are shown by circles.
Theoretical dependences are presented for Rayleigh particles [see (7)] ( 1 ) and clusters of polydisperse air nanospheres with the following parameters of
the logarithmically normal distribution and the number of monomers: reff � 90 nm, veff � 0:02, N � 100 ( 2 ); reff � 80 nm, veff � 0:03, N � 140 ( 3 );
and reff � 70 nm, veff � 0:04, N � 210 ( 4 ).
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Figure 12. Models of clusters of polydisperse air nanospheres with following parameters of the logarithmically normal distribution and the number of
monomers: reff � 90 nm, veff � 0:02, N � 100 (a); reff � 80 nm, veff � 0:03, N � 140 (b); and reff � 70 nm, veff � 0:04, N � 210 (c).
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after the tenfold dilution of the suspension. These oscil-
lations are caused by the diffraction of light by
monodisperse spherical particles of radius r > l (the dis-
tribution of colloidal silica particles can be considered
almost monodisperse). The type of oscillations can be easily
illustrated for a strongly diluted solution of particles with
the relative refractive index nr � 1, for which the scattering
indicatrix F11(y) is described by a simple expression [25]
(accurate to a dimensional factor)

F11�y� � hNiF 2�sr�, (14)

where s � 4p sin y=l is the scattering vector; hNi is the
average number of particles in the scattering volume; F(sr)
is the normalised scattering amplitude for a sphere of radius
r; and F(sr) � 3(sr)ÿ3( sin srÿ sr cos sr). According to (14),
the dependence F11(y) for r � reff � 0:625 mm exhibits
oscillations in the angular range 0 < y < 908.

1 3 10 r=reff

1000
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300

V=r 3eff

Figure 13. Dependence of the total volume V of spheres, located inside a
sphere of radius r circumscribed around a cluster centre, on r for a cluster
of polydisperse air nanospheres shown in Fig. 12c (*); the solid curve is
the power approximation of this dependence. The fractal dimensionality
of the cluster is Df � 2:73.
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Figure 14. Light scattering matrix elements for a polystyrene latex suspension in highly puriéed water as functions of the scattering angle y.
Experimental data are shown by circles (thin solid curve); theoretical dependences are obtained for the following parameters of the logarithmically
normal distribution: reff � 195 nm, veff � 0:015 (dashed curve) and reff � 185 nm, veff � 0:025 (thick solid curve).
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The experimental dependences f22(y), f33(y), and f44(y)
also reveal distinct characteristic oscillations. However, the
theoretical angular dependences of these matrix elements
show no oscillations. In our opinion, oscillations observed
experimentally are caused by the combined inêuence of a
cell and nanobubbles. Indeed, let us assume that the
experimental dependence can be represented in the form

F I;II
ij �y� � aC �clust�sca F

�clust�
ij �y� � F

�liq�
ij �y�

� bI:IIC
�sil�
sca F

�sil�
ij �y�, (15)

where F
�clust�
ij (y) and F

�sil�
ij (y) are matrix elements for

nanobubble and colloidal silica clusters, and F
�liq�
ij (y)

corresponds to the matrix elements of a cell élled with
liquid, but free of nanobubbles and colloidal silica par-

ticles *. The dimensional coefécients a and bI;II are
proportional to the concentrations of nanobubble clusters
(n�clust�) and colloidal silica clusters (nI;II) in the scattering
volume, respectively. Finally, C �clust�sca and C

�sil�
sca are the total

scattering cross sections for nanobubble and colloidal silica
clusters, which can be calculated by using software codes
based on the T-matrix method and by averaging over a
priori known size distribution of particles [2]. Note that the
dependences F

�sil�
ij (y) and f

�sil�
ij (y) should correspond to

theoretical curves, while the function F
�sil�
11 (y) should

oscillate according to expression (14). The smoothing of
oscillations of the dependence F II

11 (y) compared to F I
11(y) is

caused by the increase in the relative contribution of non-
oscillating terms in expression (15) after the tenfold
decrease in the concentration.
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Figure 15. Light scattering matrix elements for a colloidal silica suspension in highly puriéed water as functions of the scattering angle y. Experimental
data are obtained at the concentrations nI � 2:1� 108 cmÿ3 (circles, thin solid curve) and nII � 0:1n1 (squares, dashed curve); theoretical dependences
are obtained for the logarithmically normal distribution with parameters reff � 0:625 mm and veff � 0:004 (thick solid curve).

*Note that the form of this function is unknown
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Let us assume that the experimental dependences can be
represented by expression (15). The experimental matrix
elements f I;II

ij (y) are obtained by normalising the function
F I;II
ij (y) to the function F I;II

11 (y), which is speciéed by
expression (15) for i, j � 1 and contains both oscillating
and non-oscillating terms. The latter include, obviously,
aC �clust�sca F

�clust�
11 (y) and F

�liq�
11 (y). This means that all the

normalised experimental matrix elements should exhibit
oscillations with a period equal approximately to the
oscillation period of the dependence F sil

11 (y). Thus, the
presence of oscillations for normalised experimental matrix
elements conérms the validity of representation (15).

Note that experimental results obtained for colloidal
silica are especially important for the development of our
model concepts. According to the theoretical model [12, 13],
which is conérmed by the experimental data presented
above, macroscopic scatterers in water are micron clusters
consisting of air nanospheres. The calculation of the total
scattering cross section for all the clusters shown in Fig. 12
by using the computer program according to the theoretical
model [11] gives C

�clust�
sca � 0:53 mm2. Recall that scattering

by clusters with such value of C �clust�sca provides the best ét of
the experimental dependences (see Fig. 11). At the same
time, for colloidal silica particles with reff � 0:625 mm and
veff � 0:004, we obtainC �sil�sca � 1:12 mm2. By using the
experimental data set for pure water, we estimated unknown
factors a and bI;II in the angular ranges 584y4 508 and
1084y4 508 by the method of least squares with the help
of the algorithm

aC �clust�sca F
�w�
11 �y� � bI;IIC

�sil�
sca F

�sil�
11 �y� � F I;II

11 �y�, (16)

where F �w�11 (y) are experimental values of the matrix element
F11(y) obtained for pure water not containing colloidal
silica particles (see Figs 10a and 11a). We obtained in the
angular the values bI=bII�9:9, bIC

�sil�
sca (aC �clust�sca )ÿ1 � 188,

and bI;IIC
�sil�
sca =aC

�clust�
sca � 19 in the angular range

584y4 508; and bI=bII�10:1, bIC
�sil�
sca =aC

�clust�
sca � 192,

and bIIC
�sil�
sca =aC

�clust�
sca � 19:4 in the angular range

1084y4 508. Thus, in both cases, the ratio bI=bII is
close to the ratio nI=nII � 10, i.e. this procedure provides
the measurement of relative concentrations with high
enough accuracy. Note in this connection that the closeness
of values of bI=bII and nI=nII was also veriéed for
suspensions with different concentrations of colloidal silica
particles. We neglected in (15) the term F

�liq�
11 (y), which

seems justiéed in the case of a suspension of colloidal silica
with concentrations nI;II for scattering angles y > 58. If the
absolute concentration nI � 2:1� 108 cmÿ3 is known, the
absolute concentration n �clust� of macroscopic cluster
scatterers can be calculated by the expression

n �clust� � a
bI;II

nI;II � 2� 106 ÔÏÿ3.

This result is obtained for the angular range 1084y4 508
and is averaged over the two known concentrations of the
colloidal silica suspension. Thus, by adding probe particles
with the known concentration and scattering cross section
to liquid, we can measure the absoluter concentrations of
particles in liquid. Therefore, experiments with latex and
colloidal silica particles allows one not only to calibrate the
experimental setup by the known test objects and sub-
stantiate the validity of the representation of the scattered

signal as a sum of contributions from scattering by particles
of different types, but also to estimate concentrations of
these particles.

4. Conclusions

(i) Modulation interference phase microscopy experiments
have shown that water puriéed from external solid
impurities contains micron particles with the optical density
lower than the optical density of water. When a layer of
water evaporates, these particles also disappear. This means
that they could not penetrate into water samples from
outside.

(ii) Measurements of the angular dependences of the
scattering matrix elements conérm that this water really
contains micron particles. However, the scattering indicatrix
of these particles does not correspond to that of a
monolithic air sphere. This indicatrix can be best approxi-
mated by the indicatrix for an ensemble of clusters
consisting of polydisperse air nanospheres.

(iii) The angular dependences of the scattering matrix
elements fij(y) are consistent with dependences for scattering
by clusters with the characteristic radius � 0:5 mm and the
fractal dimensionality 2:44Df 4 2:8, which are formed by
air nanospheres with the logarithmically normal radial
distribution for 70 nm4 reff 4 90 nm.

(iv) In experimental studies of suspensions of colloidal
particles with known concentrations and the total scattering
cross section, it is possible to separate quite accurately
contributions from clusters consisting of air nanospheres
and calibrating colloidal particles to the total scattering
indicatrix. The concentration of such clusters was estimated
as � 2� 106 cmÿ3 in our case.
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