
Abstract. Transmission regions of the silica-core Bragg
optical waveguides are analysed. It is shown that a relatively
small decrease in the refractive index of the core allows one
to narrow down the waveguide transmission region so that to
suppress in the spectrum the undesirable emission line
propagating in the waveguide, thus ensuring a minimal loss
of the fundamental mode at the working wavelength. The
example of calculations of a frequency élter based on a Bragg
optical ébre is considered, in which the fundamental mode has
minimal losses at 0.925 lm but completely suppressed at 1.06
lm. The loss spectrum of a Bragg waveguide and the éeld
distribution of the fundamental mode are presented.
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1. Introduction

It is well known that a multilayer quarter-wave structure is
the most suitable cladding of a Bragg waveguide, allowing
effective conénement of the mode within the core and the
lowest radiation loss [1, 2]. Being strictly proved for the case
of planar waveguides and quite applicable to cylindrical
multilayer structures [3 ë 5], this fact is widely used to select
optimal parameters for real Bragg waveguides [6]. In
practice, apart from minimising the loss at the working
wavelength, it is sometimes necessary to satisfy speciéc
requirements at other wavelengths (spectral bandwidth,
dispersion, etc.) [7 ë 10]. Although Bragg waveguides with a
step refractive index proéle have been studied in many
papers [3 ë 15], the general approach to the optimisation of
their parameters has not been developed so far. The main
diféculty is the multiparametric character of the problem
even in the case of simple models. This paper deals with a
particular example of calculating a frequency élter ensuring
a minimum radiation loss A at the working wavelength l0
and the mode suppression at the neighboring wavelength
l1 > l0. This problem arises when designing ébre lasers
based on Bragg waveguides [16 ë 18].

It was shown in papers [19, 20] that if refractive indices
n1 and n2 of the structure layers, refractive index n0 of the
core, and radius a of the core are speciéed, then one can
unambiguously determine thicknesses l1 and l2 of the layers
satisfying the condition of a local minimum of loss at the
wavelength l0 for a particular mode. In this case, it is
impossible to satisfy any other conditions at the wavelength
l1 because all the parameters of the waveguide are already
determined. The paper offers a method for énding Bragg
waveguide parameters satisfying simultaneously the require-
ments to minimisation of the loss at the working wavelength
l0 and to suppression of the Bragg mode at the cutoff
wavelength l1

A�l0� � Amin, A�l1� ! 1 (1)

for any l0 Ë l1. It is shown that a relatively small change in
the refractive index of the core, which in turn allows a
signiécant change in the loss spectrum of the Bragg
waveguide, is sufécient to meet conditions (1). A real
Bragg waveguide whose parameters are optimised for the
use in a neodymium ébre laser is calculated to illustrate the
realisation of this method.

2. The model of a Bragg waveguide

Consider a planar Bragg waveguide with a homogeneous
core of size 2a and the refractive index n0, which has a
Bragg cladding, namely, an inénite step structure with a
periodic refractive index n(x) � n(x� L). The l1- and l2-
thick layers have the refractive indices n1 and n2,
respectively and the structure period is L � l1 � l2.

Let an electromagnetic wave propagate along the z axis
of the waveguide. We consider a TE wave for which the
electric éeld strength has only one component Ey � E(x; z),
perpendicular to the xz plane (Fig. 1). We will seek for the
electric éeld strength in the form of a running wave
E(x; z) � u(x) exp (ibz). Then, from Maxwell's equations
we can easily derive a wave equation for u(x):

d2u

dx 2
� �k 2n 2 ÿ b 2�u � 0, (2)

where k � 2p=l is the wave number in vacuum; b is the
propagation constant (longitudinal wave number). Let us
denote by

q0 �
���������������������
k 2n 2

0 ÿ b 2
q

, q1 �
���������������������
k 2n 2

1 ÿ b 2
q

, q2 �
���������������������
k 2n 2

2 ÿ b 2
q

(3)
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the transverse propagation constants in the media with
refractive index n0, n1, and n2, respectively. The solution of
wave equation (2) in the Bragg cladding is a sum of
harmonic functions with unknown coefécients, which
should be found. When a4 x4 a� L, the solution of
expression (2) has the from

u1�x� � A1 cos q1�xÿ a� � B1 sin q1�xÿ a�

for a4 x4 a� l1, (4)

u1�x� � C1 cos q2�xÿaÿl1� �D1 sin q2�xÿ aÿ l1�

for a� l1 4 x4 a� L.

When a� L4 x4 a� 2, we have

u2�x� � A2 cos q1�xÿ aÿ L� � B2 sin q1�xÿ aÿ L�

for a� L4 x4 a� L� l1,

u2�x� � C2 cos q2�xÿ aÿ Lÿ l1� (5)

�D2 sin q2�xÿ aÿ Lÿ l1�

for a� L� l1 4 x4 a� 2L;

etc.
It is easy to énd the transition matrix

T̂ �
c1c2 ÿ

q1
q2

s1s2 s1c2 �
q1
q2

c1s2

ÿs1c2 ÿ
q2
q1

c1s2 c1c2 ÿ
q2
q1

s1s2




















from the condition of continuity of solutions u1, u2 and
their derivatives at interfaces x � a� l1 and x � a� L so
that

�wm�1 � T̂�wm. (6)

Here we introduce the vector-column of coefécients

�wm � Am

Bm





 



, m � 1, 2, ...

and notations c1 � cos q1l1, c2 � cos q2l2, s1 � sin q1l1, s2 �
sin q2l2. In a periodic structure, the matrix T̂ is independent
of the period number m. Therefore, the general solution of
recurrence equation (6) can be written in the form

�wm �M1v
mÿ1
1 �w1 �M2v

mÿ1
2 �w2. (7)

Constants M1;2 are determined by the boundary conditions
at the core ë cladding interface. Coefécients v1;2 are the
eigenvalues of the matrix T̂, which are found from the
characteristic equation

v 2 ÿ 2v�c1c2 ÿ ts1s2� � 1 � 0. (8)

The expression for them has the from

v1;2 � c1c2 ÿ ts1s2 �
��������������������������������������
�c1c2 ÿ ts1s2�2 ÿ 1

q
, (9)

where t � 1
2
(q1=q2 � q2=q1). We are only interested in the

real eigenvalue v whose modulus is less than unity, i.e this
solution corresponds to a decaying solution u(x). This v
always exists, if the discriminant of equation (8) is positive

�c1c2 ÿ ts1s2�2 ÿ 1 > 0. (10)

In view of the obvious relationship v1v2 � 1, the second
solution corresponds to the wave with an exponentially
growing amplitude, which was discarded for physical
reasons. It is more convenient to rewrite inequality (10)
in terms of phase variables X � q1l1 and Y � q2l2 [21] which
correspond to the phase incursion of the quasi-periodic
solution u(x) in each layer of the Bragg cladding:�

cosX cosYÿ 1

2

�
l2
l1

X

Y
� l1
l2

Y

X

�
sinX sinY

�2
> 1. (11)

It is necessary to éx layer thicknesses l1 Ë l2 to represent
inequality (11) graphically. It can be done if the funda-
mental TE mode symmetric with respect to the z axis has
the local minimum losses at the wavelength l0. In this case,
l1 and l2 should meet the quarter-wave condition [22]

l1 �
p�2m1 � 1�

2

�
k 2
0 n

2
1 ÿ k 2

0 n
2
0 �

p 2

a 2

�ÿ1=2
,

(12)

l2 �
p�2m2 � 1�

2

�
k 2
0 n2 2ÿ k 2

0 n
2
0 �

p 2

a 2

�ÿ1=2
,

where k0 � 2p=l0; m1,m2 � 0, 1, 2, ... .
Figure 2 illustrates inequality (11) for the thicknesses

derived from condition (12). Inequality (10) holds true in the
painted regions, i.e. there exist decreasing and increasing
real solutions u(x). Similar to the solid-state physics, these
regions are called forbidden bands in photonics [2, 13].
Following the character of the problem, we will call them
transmission regions of the waveguide. Only complex
solutions u(x) exist in the unpainted regions. These regions
correspond to the so-called allowed bands; we will call them
non-transmission regions. The region boundaries corre-
spond to purely periodic solutions u(x) with respect to x.
Therefore, Fig. 2 shows all types of solutions u(x) in the
Bragg cladding. It is necessary to satisfy additional require-
ments to select the solutions representing the Bragg
waveguide modes from the whole set of possible solutions
in a periodic medium.

n0 n1 n2

l1 l2

xx

z

ÿa 0 a

Figure 1. Schematic of a Bragg waveguide.
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The érst condition can be easily obtained by eliminating
the propagation constant b from (3):

X 2

l 21
ÿ Y 2

l 22
� k 2�n 2

1 ÿ n 2
2 �. (13)

Expression (13), which is another form of Snell's law, gives
a relationship between phase variables X and Y. This
relationship is independent of the propagation constant b
and is shown by dashed curves in Fig. 2.

The second requirement is derived by conjugating
smoothly the solution in the core u0(x) � cos q0x and
solution (4) in the érst layer of the Bragg cladding. It
has the from

ÿZ

X

l1
a
tanZ �

�
vÿ cosX cosY� l2

l1

X

Y
sinX sinY

�

�
�
sinX cosY� l2

l1

X

Y
cosX sinY

�ÿ1
, (14)

Z � q0a �
�

a 2

n 2
1 ÿ n 2

2

�
n 2
0 ÿ n 2

2

l 21
X 2 � n 2

1 ÿ n 2
0

l 22
Y 2

��1=2
,

where v is the eigenvalues (9) whose modulus is less than
unity. The relationship between X and Y deéned by
equation (14) is shown by black solid curves in Fig. 2.
The intersection of the solid and dashed curves corresponds
to a certain mode of the Bragg waveguide at a certain
wavelength.

3. Analysis of the model

The above graphic representation of the mode structure of
a planar Bragg waveguide is convenient for solving applied
problems related to the synthesis of such structures. As an
example, we will use it to construct a Bragg waveguide in
which the fundamental mode has the lowest losses at the
working wavelength l0 and is completely suppressed at a
given wavelength l1 > l0.

Let the size of the core be 2a and the refractive indices
n0, n1, and n2, or rather, the range of their variation
(n1; n2 4 jn0 � Dnj), be speciéed. We need to énd the layer
thicknesses l1 and l2 at which condition (1) is fulélled.

The transmission spectrum of the Bragg waveguide is
well studied. Papers [19, 20] show that when a4 l, the
transmission minimum is mainly determined by the thick-
ness of the érst layer and is observed at the wavelength

ll �
2n2l1
m

��
n1
n2

�2
ÿ 1

�1=2
, l � 1, 2, ... , (15)

while the maximum is observed at the wavelength

lk �
4n2l1
�2k� 1�

��
n1
n2

�2
ÿ 1

�1=2
, k � 0, 1, 2, ... . (16)

In other words, it is necessary to take such a structure that
conditions l0 � lk and l1 � ll were fulélled simultane-
ously. However, this is possible not for any l0 and l1,
because satisfy one of conditions (15), (16) does not
guarantee the fuléllment of the second condition. It is
possible to satisfying (16) at érst (i.e. l0 � lk) and then to
try to broaden the non-transmission band (in wavelength
units) so that the cutoff wavelength l1 fell into this band.
This operation is similar to narrowing the transmission
band. According to [2], the transmission bandwidth (in
frequency units) is

Do � ok

4

p
jn1 ÿ n2j
n1 � n2

, (17)

where ok � 2pc=lk. Because variations in the frequency do
and wavelength dl are related as do � ÿdl2pc=l 2, the
transmission band (in wavelength units) is decreased
according to (17) by increasing the contrast jn1 ÿ n2j,
which is not feasible because of technological constraints.

We use a somewhat different algorithm for broadening
the transmission bandwidth. Let us analyse Fig. 2 in more
detail. As was shown above, the coordinates X,Y of the
intersection point of (13) and (14) give the phase incursion in
each of the layers with refractive indices n1 and n2,
respectively. Due to the eféciency of the quarter-wave plates
[1, 2], if the waveguide is optimised for the wavelength l0,
dependence (13) for k0 � 2p=l0 intersects dependence (14)

0 0.5 1.0 1.5 2.0 2.5 X=p

0.5

1.0

1.5

2.0

2.5

Y=p

Figure 2. Transmission (painted areas) and non-transmission (unpainted
areas) regions of a Bragg waveguide with n0 � n2 optimised for the
wavelength l0. The thin and thick dashed curves correspond to calcula-
tions by using (13) for l0 and l1, respectively. The black solid curves is
the calculations with the help of (14).
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Figure 3. Transmission (painted areas) and non-transmission (unpainted
areas) regions of a Bragg waveguide with n0 � n2 ÿ 5� 10ÿ4 optimised
for the wavelength l0. The thin and thick dashed curves correspond to
calculations by using (13) for l0 and l1, respectively. The black solid
curves refer to calculations with the help of (14). The fundamental mode
is suppressed at l1.

Calculation of the frequency band of a Bragg waveguide 107



at a point with half-integer coordinates in fractions of p.
Thus, for example, in Fig. 2 these dependences intersect at
point (2.5,0.5). For the mode to be suppressed precisely at
the wavelength l1, it is necessary that dependence (13) for l1
goes through a point of integer coordinates, which corre-
sponds to approximate fuléllment of condition (15) and, as
was mentioned above, is not always feasible. It is also
possible to change dependence (14), so that dependences
(13) and (14) intersect outside the painted area, i.e. the
wavelength l1 lying within the waveguide non-transmission
region. This can be readily realised by slightly decreasing the
refractive index n0 of the core. One can see that by
comparing Fig. 2 plotted for n0 � n2 � 1:45, n1 �
n2 � 0:015 with Fig. 3, where n0 � n2 ÿ 5� 10ÿ4, n1 �
n2� 0:015. What is important is that the Bragg waveguide
remains optimal for the wavelength l0 in this case.

4. Application of the model

The model constructed in section 2 can be easily generalised
for the case of cylindrical symmetry. For this purpose it is
necessary to replace cosines and sines in expressions (4) and
(5) for the éeld in the Bragg cladding by Bessel and
Neumann functions and to take u0(r) � J0(q0r) for the
solution in the core, where J0 is the zero-order Bessel
function. Moreover, it follows from the theoretic results [11,
12] that the éeld in the cladding is well described with
asymptotic expressions similar to those used in the planar
case. Further analysis is similar to that given in section 2 for
the planar structure. For Bragg waveguides (optical ébres),
the spectral region in which the developed method can be
applied is limited by the transmission band of the core
material (�0:25ÿ 2 mm).

Let us present a numerical example that énds a practical
application; it is necessary to design a Bragg ébre whose
LP01 mode would have minimal losses at the working
wavelength l0 � 0:925 mm and be suppressed at
l1 � 1:06 mm. The wavelength l0 � 0:925 mm corresponds
to one of the allowed transitions ( 4F3=2 ! 4I9=2) of the
neodymium ion, and l1 � 1:06 mm to the basic laser
transition ( 4F3=2 ! 4I11=2). In this case, loss at l0 should
not exceed 10 dB kmÿ1. The calculated radius of the core is
a � 10 mm, refractive indices are n2 � 1:449 and
n1 � n2 � 0:015. If the refractive index of the waveguide
core is n0 � n2, the optimal thicknesses l1 and l2 are 5.45 and
6.53 mm, respectively. For a four-layer cladding, the losses
are A(l0) � 10 dB kmÿ1 and A(l1) � 5:5� 103 dB kmÿ1.

Based on the method considered in sections 2 and 3, the
problem under study can be solved with the help of a ébre
with a slightly decreased refractive index of the core
n0 � n2 ÿ 0:001. In this case, the optimal thicknesses l1
and l2 are 5.29 and 3.59 mm, respectively. For a six-layer
cladding, A(l0) � 5 dB kmÿ1, and the wavelength
l1 � 1:06 mm corresponds to the boundary of the waveguide
transmission window with a loss A(l1) > 105 dB kmÿ1.
Figure 4 shows the change in the loss spectrum with
decreasing the refractive index of the core. The calculations
were performed with the help of a numerical solution of the
wave equation [22]. One can see that a small change in the
refractive index allows us to expand the non-transmission
region, so that the unwanted wavelength l1 � 1:06m falls
into it. Figure 5 presents the éeld distribution of the
fundamental LP01 mode at l0 � 0:925 mm and the refractive
index proéle.

Note that inaccuracies in designing the refractive index
proéle affect the ébre parameters, deviations in the refrac-
tive index of the core being particularly essential. For
qualitative estimations, we present optimal step refractive
index proéles n2 � 1:449 and n1 � n2 � 0:015 at the wave-
length l0 � 0:925 mm corresponding to a local minimum of
the waveguide loss (Table 1).

If we initially form proéle 1 but decrease the refractive
index n0 of the core by 0.0005 (all other parameters
remaining the same: l1 � 5:45 mm, l2 � 6:53 mm), it causes
an increase in ébre loss by a factor of �100. If we form, for
example, proéle 3, a decrease in n0 by 0.0005 leads to an
increase in the loss by factor of �10. This difference is due
to the fact that in the érst case the conditions for resonance

A
�
dB kmÿ1

0.8 0.9 1.0 1.1 1.2 1.3 l
�
mm

100

101

102

103

104

Figure 4. Wavelength dependence of the losses in the Bragg ébre
optimised for l0 � 0:925 mm. The dashed curve corresponds to n0 � n2
and the solid line to n0 � n2 ÿ 0:001.

ju�r�j

0

0.2

0.4

0.6

0.8

1.0
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�
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Figure 5. Modulus ju�r�j of the éeld amplitude of the fundamental mode
for a Bragg ébre (n0 � n2 ÿ 0:001, l0 � 0:925 mm) and a schemeatic of
the refractive index proéle n�r�.

Table 1.

Proéle
number

Core refractive index l1
�
mm l2

�
mm

1 n0 � n2 5.45 6.53

2 n0 � n2 ÿ 0:0005 5.37 4.45

3 n0 � n2 ÿ 0:0010 5.29 3.59

4 n0 � n2 ÿ 0:0015 5.21 3.09
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reêection from the Bragg cladding are violated more
strongly.

The technology does not allow for step-index proéles
with sharp boundaries, whereas research works devoted to
optimisation of structures with smoothed boundaries are
almost absent. Here we should mention recent paper [23]
which showed that in a smooth proéle close to a step
quarter-wave one, the attenuation decrement of the trans-
verse wave in the Bragg cladding is �3=4 of the absolute
maximum equal to ln (n1=n2).

5. Conclusions

We have considered in this paper the transmission and non-
transmission regions of the silica-core Bragg waveguide.
The performed analysis allows us to determine whether a
certain mode solution can exist for a particular wavelength
without solving the dispersion equation. It has been shown
that a relatively small decrease in the reêective index of the
core allows one to change signiécantly the loss spectrum of
the Bragg waveguide. Inthis caswe it is possible to have the
best localisation of the fundamental mode at the working
frequency and simultaneously to narrow the transmission
region so that to suppress this mode in the immediate
vicinity of the working wavelength.

An example of calculating a Bragg-ébre frequency élter
is presented, which can be used as a waveguide medium for a
neodymium ébre laser. In this ébre the fundamental LP01

mode has a minimum loss at 0.925 mm and is fully
suppressed at 1.06 mm. The spectral transmission bandwidth
and the mode éeld distribution have been calculated for the
wavelength corresponding to the smallest losses in the ébre.
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