
Abstract. Frequency doubling of phase-modulated laser
pulses, which is caused by a quasi-synchronous interaction of
counterpropagating waves, is studied theoretically in crystals
with an aperiodic domain structure. The simultaneous
inêuence of the change in the domain period and the
phase-modulation depth of fundamental radiation on the
formation of a second-harmonic pulse is analysed in the
nonstationary regime. It is shown that there exists an optimal
relation between chirps in an aperiodic crystal and the phase
modulation of fundamental radiation at which the maximum
nonlinear compression of the second-harmonic pulse duration
is possible.
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Nonlinear-optical crystals with a quadratic susceptibility
can be used for nonlinear compression of ultrashort laser
pulses in different types of parametric interaction of waves
in the nonstationary regime. Compression means a decrease
in the pulse duration of radiation generated in nonlinear-
optical processes compared to the pulse duration of input
radiation. Therefore, compression of this type is often
called the `nonlinear pulse compression'. For example,
during sum-frequency generation, the efécient pulse com-
pression at the sum frequency can be achieved in the case of
the optimal relation between the group-velocity mismatch
and intensity [1] or in the case of the inclined phase fronts
[2, 3] of incident wave beams in the nonstationary regime.
This pulse compression is also observed during the non-
stationary second harmonic generation (SHG) upon the
type II phase matching if mutually perpendicular polarised
pulses of fundamental radiation are directed into the
nonlinear crystal with an optimal time delay with respect
to each other [4 ë 6].

Note that the most spectacular nonlinear compression of
phase-modulated laser pulses occurs during the nonsta-
tionary SHG in quadratic nonlinear-opticalal pulses with

an aperiodic domain structure (ADS) in which the inverse
domain period changes linearly along the longitudinal
coordinate (the so-called ADS crystals with a linear chirp)
[7 ë 10]. It was shown that the effective pulse compression of
fundamental radiation with some depth of quadratic phase
modulation should be observed at the optimal quantity of
the ADS-crystal linear chirp Dopt � ÿv 2

0 =C and the optimal
crystal length Lopt � j(
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2
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v0)=(t0Dopt)j, where v0 � 1=V1ÿ
1=V2; V1 and V2 are the group velocities of fundamental
radiation and second harmonic (SH) pulses, respectively;
C � t0(t

2
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1=2 is the parameter determining the phase-
modulation depth of the fundamental radiation pulse; t0
and t1 are the durations of transform-limited and phase-
modulated pulses of fundamental radiation, respectively.
The nonlinear compression physics in this case consist in the
following: different spectral components of the fundamental
radiation pulse are eféciently transformed along the crystal
into the corresponding SH pulse components so that
different spectral SH components leave the nonlinear crystal
simultaneously. As a result there arise optimal conditions
for nonlinear compression of the SH pulse. For example, the
use of this scheme allowed 150-fold nonlinear compression
of a 17-ps fundamental radiation pulse to be experimentally
achieved upon frequency doubling of laser radiation in the
LiNbO3 ADS crystal [8].

The aim of this paper is also to study the nonlinear
compression mechanism of short laser pulses during the
nonstationary SHG. Unlike previous papers, we consider
the case when the quadratic nonlinear-optical medium
generates a SH wave directed towards fundamental radia-
tion. This type of frequency conversion is called the
backward SHG [11]. At present, this and other types of
parametric frequency conversion can be successfully realised
in practice due to the improvement of the crystal growth
technology providing the quasi-synchronous interaction of
waves in media with ultrashort domain dimensions [12].

In the nonstationary regime the processes of the back-
ward SHG of the phase-modulated fundamental radiation
pulse in ADS crystals are described by a system of
equations, which in the moving coordinate system has
the form [13]
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with the boundary conditions
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�
;

(1a)

A2�z; t�jz�L � 0:

Here, A1 and A2 are the complex amplitudes of funda-
mental radiation and second harmonic, respectively; A0 is
the maximum real amplitude of fundamental radiation at
the input to the nonlinear medium; G is the nonlinear
coupling coefécient; L is the nonlinear medium length;
v � 1=V1 � 1=V2.

In (1) we used the Fourier expansion of the sign-
alternating quadratic-susceptibility function for the case,
when the inverse domain period changes along the direction
z and the linear phase detuning is compensated for only at
the crystal centre [7]:

d�z� � 2p
m

exp�ÿi�Dkz�D1z
2 �D2z

3 � :::��: (2)

Here, Dk � 2k1 � k2; k1 and k2 are the wave numbers of
fundamental radiation and second harmonic, respectively;
m is the quasi-synchronism order; D1 and D2 are the
Fourier expansion coefécients of the aperiodic lattice.

To solve the linear part of the system of differential
equations with partial derivative (1), we used the standard
method of the fast Fourier transform and to solve the
nonlinear part, we used the fourth-order Runge ëKutta
method. Then, the results of these methods were joined
together in accordance with the scheme of `symmetric
splitting' of steps, which was developed to analyse the
interaction of wave packets in dispersive media [14, 15].
Note that because of the `nonuniformity' of boundary
conditions (1a), the solution of system (1) requires addi-
tional iterative algorithms. In particular, algorithms based
on the `shooting' method [13] or Lagrange multipliers [16]
refer to such iterative algorithms.

In this paper, we developed a special iterative algorithm,
based on the Lagrange multiplier method, to determine the
unknown SH pulse proéle at the input to the nonlinear
medium (z � 0). Note that this method was used in [16] for
determining the unknown time proéle of the fundamental
radiation intensity distribution in order to obtain the
speciéed SH intensity distribution proéle during the non-
stationary SHG in homogeneous nonlinear-optical media
with the quadratic nonlinearity.

Unlike [16], we used the following boundary conditions
for the functions of the Lagrange multipliers: l1(z; t)jz�L �
0; l2(z; t)jz�L � ÿA2(z; t)jz�L, where l1(z; t) and l2(z; t) are
the functions of the Lagrange multipliers for fundamental
radiation and second harmonic, respectively. The sequence
of our algorithm work corresponds to the sequence of
algorithm work in [16]. (In calculations we assumed that
the transverse dimensions [beam radius] of fundamental
radiation are much smaller than the transverse dimensions
of the ADS crystal and quasi-synchronous interaction of
waves occurs only along the coordinate z.)

Based on the numerical solution of (1), we analysed the
effect D1 (in calculations we assumed that only the linear
chirp is present in the ADS crystal: D1 6� 0, D2 � 0) on the
backward SHG eféciency and the SH pulse compression
coefécient s (s � t2=t1; t2 is the SH pulse duration at z � 0,
which was determined as a root-mean-square half-width of

the intensity distribution at the 1/e level from the maximum
one [17]). In calculations we used dimensionless quantities
A0 � 1, t0 � 1, v � 1, C � 50, G � 1 and L � Lopt. Let us
compare the characteristic interaction length Lnl � 1=(A0G)
and the quasi-static interaction length Lv � t0=v with the
length L of the nonlinear crystal under our conditions in
order to estimate the effect of the group velocity dispersion
and intensity of fundamental radiation on the backward
SHG process. In this case, the condition L4Lnl 4Lv is
fulélled, because L � 7, Lnl � 1 and Lv � 0:1. This means
that the inêuence on frequency conversion process of group
velocity detuning compared to other effects is decisive.
Preliminary estimates show that under these conditions
the decrease in the fundamental radiation intensity during
the nonstationary SHG does not exceed a few percent. In
this connection, this nonlinear-optical process was analysed
under conditions of a weak energy exchange (i.e. in the
speciéed-éeld approximation) by neglecting the distortion of
the SH pulse shape caused by the depletion of fundamental
radiation. Note that the developed approach can be used
only in the case of a strong energy exchange of interacting
waves. However, the theoretical analysis of the mentioned
problem is beyond the scope of this paper.

The results of calculations are presented in Fig. 1 which
shows the dependences of the SH pulse compression
coefécient s (solid curve) and the backward SHG energy
eféciency Z (dashed curve) on the normalised quantity of the
ADS-crystal spatial chirp D1=Dopt. One can se that when D1

increases, the SH pulse duration, after some growth,
decreases. At D1 � Dopt, maximum compression of the
SH pulse duration is observed. Thus, our calculations
show that the maximum compression during the backward
SHG is achieved for the optimal values of the length and the
linear spatial chirp of the ADS crystal, which are equal to
their corresponding optimal values during the forward
SHG.

Note that the maximum energy eféciency of the back-
ward SHG in the case under study is observed at D1 6� 0 and
not at D1 � Dopt or D1 � 0. One can see it well from the
dependence of the backward SHG eféciency plotted with the
help of a dashed curve. (However, calculations show that
the maximum value of the SH pulse peak intensity is
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Figure 1. Dependences of the compression coefécient s (solid curve) and
the energy conversion eféciency Z (dashed curve) on the spatial chirp
quantity D1=Dopt of the ADS crystal.
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observed under optimal conditions of compression for the
forward SHG at D1 � Dopt.) It follows from the analysis of
the égure that the energy eféciency of the backward SHG at
D1 � Dopt compared to the case of a periodic polarised
crystal (D1 � 0) decreases by approximately twice. This
relatively small decrease in the eféciency is caused by the
fact that the spectral width of the ADS-crystal synchronism
is larger than that of a periodic crystal [18]. Recent theoretic
investigations of the forward SHG [19] and the degenerate
parametric ampliécation of light [20, 21] also demonstrated
a similar behaviour of the frequency conversion eféciency of
phase-modulated laser pulses in ADS crystals. Note that as
we assumed in calculations, the maximum deviation of the
domain period from its exact value, at which the quasi-
synchronous interaction condition is fulélled for the central
frequency of the fundamental radiation pulse, does not
exceed the quasi-synchronism order m.

Figure 2 shows the time proéles of the normalised SH
intensity at the ADS-crystal input for different D1. It follows
from calculations that at D1 � Dopt the maximum intensity
is approximately 8 or 14 times higher than that at D1 � 0
and D1 � ÿDopt, respectively. At the same time the energy
eféciency Z of the backward SHG at z � 0 was 1.6%,
1.05% and 0.8% for D1 � 0, ÿDopt and Dopt, respectively
(see Fig. 1).

Note also that the experimental realisation of different
types of the parametric frequency conversion, including the
backward SHG in periodically polarised nonlinear crystals
with extremely small domains, can be achieved in practice,
because the growth technology of such crystals is well
developed at present [22]. For example, paper [12] demon-
strated experimentally the parametric ampliécation of light
in periodically polarised LiNbO3 crystals with a 800-nm
period for the ampliécation of an idler wave counter-
propagating with respect to the pump beam. It is shown
in [13] that the backward SHG of femtosecond laser pulses
in the ADS crystals can be used for optimal production of
femtosecond SH pulses as is in the case of the conventional
SHG [23].

Consider the speciéc experiment: frequency doubling of
radiation at 1.56 mm, with the maximum intensity
I0 � 10 GW cmÿ2, the duration t1 � 10:5 ps and the phase

modulation depth C � 1:4 ps2 upon the ee ë e-type inter-
action in the LiNbO3 crystal of length L � 0:1 cm with the
minimum and maximum domain period Lmin � 2:52 mm
and Lmax � 2:88 mm, respectively. In this case, v �
150 ps cmÿ1 and the domain period L0, at which quasi-
synchronous backward SHG of the 15th order is possible, is
2.7 mm [thus, D1 � p(Lmin ÿ Lmax)=(LLmaxLmin) � Dopt

� 1:55 mmÿ2]. At these parameters, the varying period
range of the ADS-crystal domains lies between the quasi-
synchronism orders m � 14 and 16 for the backward SHG
while the ADS-crystal chirp quantity and the phase mod-
ulation depth of the input fundamental radiation pulse
satisfy the optimal conditions for the effective compression
of the SH pulse. The results of calculations are presented in
Fig. 3. Figure 3a shows the change in the energy eféciency
of the backward SHG along the ADS-crystal length, while
Fig. 3b ë the normalised (by the maximum intensity of an
optimally compressed SH pulse) time proéles of the SH
intensity at the nonlinear medium input. One can see that
the change in the sign of the ADS-crystal chirp strongly
affects the time proéle of the SH intensity. The SH pulse
(solid curve) elongates at the opposite sign of the ADS-
crystal chirp with respect to its optimal value. Under the
optimal conditions, the SH pulse is eféciently compressed
(s � 0:05 is the dashed curve in Fig. 3b). Thus, in this case
the SH pulse is compressed approximately by 20 times.

Note that in the general case, the conditions for the
quasi-synchronism of different orders can be fulélled for
different types of the three-frequency interaction. In this
case, it is necessary to take into account all associated types
of the frequency-conversion processes. However, in the case
considered here, no such analysis is necessary. Calculations
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Figure 2. Normalised time proéles of the SH intensity for D1 � Dopt

(solid curve), 0 (~) and ÿDopt (dashed curve) at z � 0. The intensity
proéle of the input phase-modulated pulse of fundamental radiation
(dotted curve) is presented for comparison.
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Figure 3. Dependence of the energy eféciency of the backward SHG
along the ADS-crystal length (a) and the SH intensity proéles at the
nonlinear medium input (b); solid curves correspond to the calculations
obtained at D1 � ÿDopt, dashed curves ë at D1 � Dopt.

Nonlinear pulse compression in inhomogeneous photonic crystals 319



show that in the range of variations in the dimensions of
lithium niobate domains and in the spectral region, the
quasi-synchronism condition of the 25th order (the domain
dimension is � 2:73 mm) is fulélled only for the backward
third harmonic generation. Taking into account the decrease
in the frequency conversion eféciency with increasing the
synchronism order, the effect of the backward third har-
monic generation in the case under study should be
insigniécant.

Note also that in this case, the energy eféciency of the
backward SHG is relatively small, which is explained by the
choice of the quasi-synchronism order for which the
production of the domains with the required thickness is
possible at present. The use of a lower quasi-synchronism
order in the case of the corresponding decrease in the
domain thickness can lead to a signiécant increase in the
eféciency.

Thus, in this paper we have studied theoretically the
backward SHG of phase-modulated laser pulses in ADS
crystals and nonlinear pulse compression. We have consid-
ered the case, when the inverse domain period changes
linearly along the propagation direction of interacting
waves. The simultaneous inêuence of the change in the
domain period and the group velocity detuning has been
studied. It has been shown that there exists an optimal
relation between the quantities of the ADS-crystal chirps
and the phase modulation of fundamental radiation at
which the maximum compression of the SH pulse duration
compared to the input pulse duration is possible in the
nonstationary regime. The results of this paper can be used
for the compression of ultrashort laser pulses in practice.
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