
Abstract. Dispersion and energy parameters of the HE1m

modes of multimode two-layer step-index optical ébres are
studied. The results of studies on chromatic dispersion for
wavelengths k < 1:3 lm and k > 1:3 lm, phase and group
delays, waveguide and material dispersions of the modes, as
well as results of calculations of ébre core diameters,
normalised powers and corresponding effective areas of
HE1m modes are presented under conditions of the zero
chromatic dispersion at k0 � 1:55 and 1.06 lm.

Keywords: multimode two-layer optical ébre, higher modes, chro-
matic dispersion coefécient, effective mode area.

1. Introduction

Today such urgent applied and theoretical problems as
coherent coupling, optical arbitrary waveform generation,
precise optical metrology, etc. necessitate the development
of optical ébres, which have a zero-chromatic-dispersion
wavelength l0 < 1:3 mm and are capable of transmitting
high-power picosecond and femtosecond laser pulses. This
has aroused interest in the use of multimode two-layer step-
index optical ébres [1], which can operate in a single-mode
regime at ébre lengths of some tens of meters [2 ë 4]. The
working modes, which are excited most effectively in such
ébres by linearly polarised radiation, are HE1m modes with
the radial index m5 2. To simplify the analysis, model
linearly polarised LPnm modes are often used instead of
actual HEnm modes and their superposition. In this
approximation LP0m modes correspond to HE1m modes.

The waveguide characteristics of HE1m modes allow one
to compensate the material dispersion for l being both less
and greater than 1.3 mm. Multimode ébres have a larger
cross-section area of the core, which makes it possible to
transmit high-power radiation pulses at HE1m modes
(m5 2) in the single-mode regime. These and other advan-
tageous dispersion and energy parameters of HE1m modes
require thorough research.

All calculations in the paper were performed for SiO2

fused silica ébres 1 and 2, which operate at l0 � 1:55 and
1.06 mm, respectively, and have GeO2-doped cores with
5 mol.% and 20 mol.% of the dopant concentration (see
Table 1). The refractive indices of the core (n1) and
claddings (n2) corresponding to these l0 were calculated
using the Sellmeier dispersion formula [5].

2. Phase and group delays of HE1m modes

Figures 1 and 2 show the qualitative characteristics of the
HE1m-mode phase (neff) and group (ngr) delay coefécients as
functions of the characteristic ébre parameter V �
�2pa=l)(n 2

1 ÿ n 2
2 )

1=2, where a is the ébre core radius.
The phase delay coefécient neff � c=vph of each HE1m

mode varies from n2 (at the mode cut-off) to n1 (away from
the mode cut-off). The group delay coefécient ngr�c=vgr
�neff ÿldneff=dl�neff �Vdneff=dV of each HE1m mode
varies from n2 (at the mode cut-off) to a maximum value
which grows with the mode radial index m and tends to n1
(away from the mode cut-off). The peculiarities of the
behaviour of neff and ngr upon variation in V are important
for énding the ébre parameters in which the chromatic
dispersion is zero [6].

In calculations of the waveguide dispersion (see below),
we also used the value of the normalised phase delay
Beff � (n 2

eff ÿ n 2
2 )=(n

2
1 ÿ n 2

2 ), which varies for each mode
from 0 to 1 upon varying V from its value at the mode
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Figure 1. Phase delay of HE1m modes (m � 1ÿ 10).



cut-off to inénity. The values of B are virtually independent
of the difference Dn � n1 ÿ n2 under the condition that
Dn < 0:1.

3. Chromatic dispersion of HE1m modes

The chromatic dispersion coefécient calculated with the
help of a rigorous expression [7]

S � 1

c

dngr
dl
� ÿ l

c

dn 2
eff

dl2
(1)

depends on the wavelength and ébre parameters, i.e. the
core diameter 2Â and refractive indices of the core and
cladding. Thus, S � S�2a; l; n1(l); n2(l)� is a function of
many variables.

It is rather difécult and impossible sometimes to énd the
ébre parameters and wavelength l0 corresponding to the
zero chromatic dispersion (S � 0) with the help of expres-

sion (1). Thus, it is convenient to make use of an
approximate expression to calculate S at érst, and then,
after determining the ranges of V and l where the zero
chromatic dispersion is possible, to énd exact ébre param-
eters and l0 using expression (1).

It is known [8] that for optical ébres with a relatively
small difference in the refractive indices (Dn < 0:1) the
chromatic dispersion coefécient can be approximated as a
sum of the material (Sm) and waveguide (Sw) components:

S � ÿ 1

lc
�Sm � Sw� � ÿ

1

lc

�
l2

d2n

dl2
� DnV

d 2�VB�
dV 2

�
: (2)

The material dispersion coefécient Sm (material dispersion
below) depends on ébre material properties and wave-
length, and the waveguide dispersion coefécient Sw

(waveguide dispersion below) depends only on Dn and
2Â. For l < 1:3 mm, the material dispersion is positive, and
for l > 1:3 mm it is negative (Fig. 3). The waveguide
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Figure 2. Group delay of HE1m modes (m � 1ÿ 10).
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Figure 3. Wavelength dependences of the material dispersion for ébres 1
and 2.
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dispersion also has positive and negative regions (Fig. 4). If
the ébre parameters are chosen well, the waveguide
dispersion can compensate for the material dispersion.

Figure 4 presents the dependences of Vd 2(VB)=dV 2 on
V for the érst ten HE1m modes. For given Dn, these
dependences allow one to énd the waveguide dispersion
Sw. One can see from the plots that for each HE1m mode,
Vd 2(VB) � dV ÿ2 grows with V from zero to a maximum
value (the more, the higher the order m of the HE1m mode),
then decreases to achieve a minimum negative value (see the
inset in Fig. 4) and then tends to zero at V!1.

Note that for all HE1m modes, there are such values of V
(or 2a) that permit material and waveguide dispersions to
compensate for each other at the working wavelength l0,
giving S � 0. With increasing m, the possibility to realise
such compensation grows in both positive and negative
regions of the material dispersion. Based on this approach,
rough calculations showed that with a multimode two-layer
optical ébre operating in a single-mode regime at relatively
large differences in the refractive indices of the core and
cladding (Dn � 0:05) and large orders (m5 6) of HE1m

modes, it is possible to have S � 0 for wavelengths as short
as 0.7 ë 0.8 mm. When l > 1:3 mm, the condition S � 0 can
hold true even for small Dn (Dn < 0:01).

It follows that to énd the optimal ébre parameters
ensuring S � 0, it is best to use rough formula (2) at érst and
then to reéne these parameters using rigorous expression (1).

One can see from Fig. 5 that the coefécient S has two
zero values for higher-order HE1m modes (m5 2), the
second value corresponding to a wavelength shorter than
l0. Besides, for higher-order HE1m modes it is possible for
ébre 1 to obtain a small chromatic dispersion in the
wavelength range lying between zero values of S and
extending both to ranges below 1.3 mm and above
1.3 mm. It is especially the case with HE12ÿ HE14 modes
for which jSj < 10 ps nmÿ1 kmÿ1.

Greater differences in Dn are required to make multi-
mode two-layer optical ébres operate in a zero-chromatic-
dispersion regime at shorter wavelengths. In particular, at
l0 � 1:06 mm, Dn is equal to � 0:03 for ébre 2 (Fig. 5b);
even in this case, the condition S � 0 could be fulélled only
for HE1m modes with (m5 3).

4. Calculation results of the core diameters
of multimode two-layer optical ébres to provide
zero chromatic dispersion for the HE1m modes

Table 1 presents the calculation results of the core diameter
2a of multimode two-layer optical ébres for érst ten HE1m

modes for ébres 1 and 2 (the dash means that it is
impossible to obtain zero chromatic dispersion for this
particular mode). It follows from the table that the use of
higher modes allows one to increase signiécantly the ébre
core area and the effective mode area, which in turn permits
increasing almost distortion-free transmission of higher
laser-radiation powers. The calculations showed that the
core diameter 2a, for which S � 0 at the given wavelength,
decreases with Dn.

Table 1 also presents the calculated values for the
fraction of the power P1 propagating in the ébre core
[9]. The fraction of the power that travels in the cladding is
P2 � 1ÿ P1. In the region of small V (close to the mode cut-
off regime) the main fraction of the power propagates in the
ébre cladding (P1 � 0). In the region away from the mode
cut-off, almost all the power propagates in the core (P1 � 1).
It follows from Table 1 that a major part of the power
propagates in the ébre core only at higher modes (m5 2).
Moreover, this part is larger at l0 � 1:06 mm than at
1.55 mm and grows with the radial index of the mode,
reaching 90%.

Table 1also presents the effective areas Aeff for HE1m

modes calculated with the help of the expression [10]

Aeff �

� � 2p

0

�1
0

jE�r;j�j2rdrdj
�2

� 2p

0

�1
0

jE�r;j�j4rdrdj
; (3)

where E(r;j) is the exact electric-éeld distribution across
the ébre for the HE1m mode. Calculations of Aeff for ébre 1
showed that it makes 111 mm2 for the HE12 mode, which is
ten times higher than the effective area of the fundamental
HE11 mode and for the HE110 mode Aeff is 3683 mm2. In the
case of ébre 2, Aeff for HE1m modes proved 6 ë 8 times
smaller.

5. Conclusions

Dispersion and energy parameters of HE1m modes of a
multimode two-layer step-index optical ébre have been
studied. The ébre has been made to operate in a single-
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Figure 5. Wavelength dependences of the chromatic dispersion coefé-
cient of HE1m modes for ébres 1 (a) and 2 (b).
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mode regime at one of HE1m modes (m5 2). It has been
shown that the use of multimode optical ébres operating at
this working mode allow one to obtain zero chromatic
dispersion in the wavelength range below and above 1.3 mm
and nearly-zero chromatic dispersion (about
4 ps nmÿ1 kmÿ1) in wide enough wavelength range
(Dl � 0:3ÿ 0:4 mm). Large core diameters of these kinds
of optical ébres allow almost distortion-free transmission of
high-power optical signals.
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Table 1. Values of 2a, P1 and Aeff at l0 � 1:55 mm for ébre 1 and at l0 � 1:06 mm for ébre 2 when S � 0.

®ÑÆÂ
Fibre 1 Fibre 2

2Â
�
mm P1 Aeff

�
mm2 2Â

�
mm P1 Aeff

�
mm2

HE11 4.248 0.386 11.983 ë ë ë

HE12 15.936 0.708 110.713 ë ë ë

HE13 26.756 0.774 287.503 11.336 0.913 46.796

HE14 37.496 0.811 543.411 14.578 0.906 76.757

HE15 48.198 0.835 877.571 18.080 0.908 117.155

HE16 58.878 0.852 1289.373 21.656 0.912 167.004

HE17 69.542 0.865 1778.341 25.262 0.917 226.082

HE18 80.192 0.876 2343.842 28.882 0.921 294.257

HE19 90.834 0.884 2983.411 32.510 0.925 371.485

HE110 101.468 0.892 3683.228 36.142 0.928 457.716

200 A.S. Belanov, E.M. Dianov, A.A. Sysolyatin, et al.


