
Abstract. A mathematical model is constructed to describe
the formation of inhomogeneous surface structures 10 ë 50 lm
in height on metal surfaces exposed to repetitive laser pulses
with the following parameters: pulse duration of � 20 ns,
pulse repetition rate of � 10 kHz, pulse intensity in the range
107 ÿ 108 W cmÿ2 and beam diameter from 50 to 100 lm.
The model takes into account melting of the metal and melt
êow over a distorted surface. The surface proéle amplitude
evaluated in the model agrees with experimental data.

Keywords: repetitive laser pulses, interaction of radiation with
matter, microstructures, melting, melt êow, mathematical model.

1. Introduction

In many instances, laser irradiation produces inhomoge-
neous structures on solid surfaces. Although such structures
are sometimes similar in geometry (height, lateral dimen-
sions, proéle), the mechanisms underlying their formation
depend signiécantly on incident intensity and pulse
duration. The types of surface structures that can be
produced by cw, single-pulse and repetitive-pulse exposures
have been the subject of several reviews [1 ë 4]. It is worth
mentioning that, at incident intensities from � 105 to
106 W cmÿ2, quasi-cw laser irradiation may give rise to an
interesting effect: deep-penetration (dragger-like) melting [3]
due to molten metal ejection from the laser heating zone by
the high vapour pressure. Note that, in many instances,
theoretical analysis of surface structures was carried out by
numerically solving input equations under simplifying
assumptions or by examining the onset in the formation
of such structures. The latter approach is not always
applicable when the parameters of structures in the énal
stages of their development are sought. Moreover, charac-
teristics of surface structures produced on a target by cw
and pulsed (repetitive-pulsed) laser irradiation may differ
not only quantitatively but also qualitatively.

The formation of microstructures on a length scale of
tens of microns on metal targets exposed to multiple laser

pulses was studied by several groups [5 ë 8], in particular
with the use of a 0.51-mm copper vapour laser.

It was assumed in [9] that, under repetitive-pulsed laser
irradiation with an incident intensity from � 107 to
108 W cmÿ2 and a pulse duration of � 10ÿ8 s, the gen-
eration of surface structures is mainly due to the melt êow
driven by thermocapillary forces. A simple mathematical
model was proposed for the initial stages in the formation of
inhomogeneous surface structures [10]. The key point of the
model is that, in a nonuniform thermal éeld, thermocapil-
lary forces drive the melt from higher temperature zones to
lower temperature zones (where the surface tension is
higher). In particular, the melt êow was shown to play a
signiécant role in the stage when the liquid phase persists
after the laser pulse.

More detailed studies of the initial stages in the
formation of surface structures [11, 12], with all the factors
determining the process taken into account, culminated in a
mathematical model which involves, as a key step, jointly
solving the heat equation (with allowance for melting and
vaporisation) and the Navier ë Stokes equation for the melt
êow. It has been shown that, at incident intensities in the
range � 107 to 108 W cmÿ2, the thickness of the forming
melt layer is of the order of a micron. The melt persists for a
time much longer (by about one order of magnitude) than
the laser pulse duration. The maximum melt êow velocity is
200 cm sÿ1, and the travel distance of the melt during the
time it exists is 0.2 mm. Therefore, an individual laser pulse
produces relatively small changes in the surface proéle. The
height of the residual surface proéle after a laser pulse (at
the conditions under consideration) was shown to be
� 0:1 mm. In practical applications, however, each point
on the target surface is exposed to a large number of pulses
(� 103 to 104). As a result, the surface proéle height may
reach tens of microns. Therefore, to assess the effect of
multiple pulses, the model must be modiéed to explicitly
take into account changes in the proéle of the surface over
which the melt êows.

The purpose of this work is to develop a mathematical
model for the effect of repetitive laser pulses (in the ranges
of parameters indicated above) on the surface proéle of a
target. A nonlinear evolution equation is obtained which
describes surface proéle dynamics as a function of the
number of laser pulses. It is shown that the formation of
inhomogeneous surface structures with proéle heights of the
same order as those observed in experiments can be under-
stood in terms of a thermocapillary mechanism.
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2. Mathematical model

According to [9 ë 12], the main mechanism behind the
formation of surface structures at the irradiation param-
eters indicated above is the irradiation-induced melting of
the metal and melt êow over the surface. Thermocapillary
forces drive the melt to zones where the temperature is
lower and, hence, the surface tension is higher. The melt
êow is also inêuenced by capillary forces, which tend to
reduce the surface curvature of the liquid.

To construct a model describing the effect of multiple
pulses on the target surface, melting dynamics must érst be
analysed for a single pulse. This problem was examined in
detail in [11, 12]. It was obtained a system of equations
describing metal melting and the melt êow in response to a
single pulse.

These results show that, under the conditions in ques-
tion, heat conduction can be considered in a quasi-one-
dimensional approximation (only along the normal to the
surface). The point is that the heat and melt transport along
the surface during an individual pulse is insigniécant (and
occurs on a length scale of a fraction of a micron or less).
The beam radius used in experiments is x0 � 50 mm. As
mentioned above, the displacement of the melt over the
surface in a time period of � 10ÿ7 s is � 0:2 mm. During this
time period, heat is transported over a distance lT �
(at)1=2 � 1 mm. Therefore, Dx5 x0, lT 5 x0, which justiées
the above approximation.

The problem under consideration includes many param-
eters, the most essential of which are the irradiation
parameters (pulse duration and spatial intensity distribu-
tion) and the properties of the target material. For
numerical modelling in this study, the shape of an individual
pulse is taken in the form

It�t� � I
t

t
exp

�
ÿ t

t

�
. (1)

For deéniteness, the pulse duration t is taken equal to 20 ns
(like in the experiments described in [11, 12]). The radiation
wavelength is assumed to be small compared to the
characteristic length scale of surface structures, and
hence diffraction effects are insigniécant. This assumption
is justiéed because the radiation wavelength in the experi-
ments in question was l � 0:5 mm, whereas the surface
structures were tens of microns in size. The target is taken
to have the same properties as nickel:

m � 9:63� 10ÿ23 g, rLm � 2:66� 103 J cmÿ3,

Tm � 1728K, Tb � 3073K, r � 8:91 g cmÿ3,
(2)

rLv � 5:68� 104 J cmÿ3, c � 5:49 J cmÿ3.Kÿ1,

k � 0:66W cmÿ1.Kÿ1, Z � 2:0� 10ÿ2 g cmÿ1 sÿ1.

Here m is the atomic mass, Lm is the speciéc heat of fusion,
Lv is the speciéc heat of vaporisation, Tm and Tb are the
melting and boiling temperatures, r is density, k is thermal
conductivity, c is the thermal capacity, and Z is the melt
viscosity.

Let the metal surface be initially êat. Consider a two-
dimensional (2D) system in which the z coordinate is
measured outwards from the undisturbed surface, and
the x coordinate is measured along the surface. The incident

intensity depends only on x. Such a situation occurs, e.g.,
when a beam of radius r0 is incident on the edge of a plate of
thickness d5 r0, and the x coordinate is measured along the
edge. As shown previously [11, 12], the time variation of the
melt layer thickness z � h (x; t) during one of the érst laser
pulses is described by the equation

qh
qt
� u0�x; t� ÿ

q��vh�
qx

, �v � 1

h

� h

0

vdz. (3)

The shape of the surface is then well represented by the
local value of h and is determined by both the melting/
solidiécation processes and melt êow. Equation (3) is a
continuity equation in the approximation that the melt
layer is thin and may slowly move along the surface,
�v � �v(x; t) is the through-thickness average velocity of the
melt êow over the surface, and u0(x; t) is the rate at which
the melt thickness varies through melting/solidiécation,
with the constraint

� 1
0 u0(x; t)dt � 0 (which means that the

thickness of the melt layer is zero at the beginning and end
of the pulse).

The Navier ë Stokes equation for a viscous êuid that
slowly êows over a êat solid surface has the form [11, 12]

q 2v
qz 2
� 1

Z
qp
qx

, Z
qv
qz

����
z�h
� da

dx
, v
��
z�0 � 0, (4)

where p � p0 ÿ aK is the pressure in the melt, which takes
into account the external pressure (including the vapour
pressure) and the capillary (Laplace) pressure ÿaK, due to
the surface curvature K, and a(T ) is the surface tension.
The solid surface is located at z � 0. Solving this problem,
we obtain

v�x; z� � 1

2Z
qp
qx

z 2 � 1

Z

�
da
dx
ÿ h

qp
qx

�
z. (5)

Therefore,

�v � 1

h

� h

0

vdz � ÿ 1

3Z
h 2 qp

qx
� 1

2Z
h
qa
qx

. (6)

Since the local melt thickness in the case of a êat substrate
coincides with the coordinate of the corresponding point on
the melt surface, z � h(x), the 2D curvature, which is
assumed to be small, is given by

K � q 2h=qx 2. (7)

The surface tension of the melt, a, depends on the surface
temperature. To a good approximation, it can be repre-
sented as

a�T � ' a0 � a1�Tÿ T0�, a1 �
da
dT

< 0, (8)

with the melting point as the initial temperature T0 (for
nickel, a0 � 1:6� 103 erg cmÿ2 and a1 � 0:383 erg cmÿ2�
Kÿ1).

Numerical estimates indicate that the duration of the
pressure (pv) pulse produced by the evaporated material is
about one order of magnitude shorter than the time period
during which the melt exists and êows, and that the pressure
pulse causes no signiécant melt redistribution over the target
surface. This is due to the exponential temperature variation
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in the pressure: pv � exp (ÿTv=T ), where Tv is determined
by the heat of vaporisation, and T is the surface temper-
ature, with T5Tv. Therefore, the vapour pressure of the
target material can be left out of consideration.

As pointed out above, the temperature that appears in
Eqn (8) can be evaluated with sufécient accuracy based on a
1D problem of radiative heating in which only the heat
transport into the metal is taken into account.

All the above allows the sought evolution equation to be
simpliéed, which was done in subsequent calculations.

Using Eqn (1) and a particular value of t, one can énd
the surface temperature and melt thickness as functions of
time and I [appearing in (1)]: T (t; I ) and h(t; I ) (without
allowance for the melt êow over the surface). This problem
was solved previously [11, 12] for the range of irradiation
parameters of interest. The results for nickel (t ns) are
presented in Fig. 1.

Substituting (6) ë (8) in (3) and solving this equation, one
can énd the surface proéle after melt solidiécation (accord-
ing to calculations, at I � 1:5� 108 W cmÿ2 the melt
persists for t � 20t � 400 ns). Since a single pulse produces
only slight changes in the surface proéle (dh � 0:1 mm), the
effect of the érst few pulses can be assessed by summing up
those of the individual pulses. The effect of a single pulse
can be evaluated under the assumption that the target
surface is initially êat.

Turning to the effect of a large number (� 102) of pulses,
one must take into account that in this case the surface
proéle may experience considerable changes. In addition,
there are changes, érst, in the êow behaviour of the melt (an
increase in melt travel distance and changes in capillary and
thermocapillary forces) and, second, in absorbed radiation
energy (due to local changes in the angle of incidence of the
radiation on the surface).

Let the X coordinate be measured along the surface, and
the local Z coordinate, orthogonal to X, be measured
outwards along the normal to the surface. We also use
the x and z coordinates, referred to the original (êat) target
surface. If the surface proéle (at some instant in time) is
z � h(x), then

X �
� x

0

�
1� �dh=dx�2 �1=2dx.

Using the curvilinear coordinates X and Y, the Navier ë
Stokes equation can be written with allowance for the

surface curvature (in the approximation of a thin melt layer
and slow êow):

1

1ÿ ZK

q
qZ

�
�1ÿ ZK � qv

qZ

�
ÿ K 2

�1ÿ ZK�2 v �
1

Z
qp
qX

. (9)

Here, v is the velocity of the melt êow over the surface, and
the surface curvature

K � q 2h=qx 2�
1� �qh=qx�2 �3=2 (10)

is not necessarily small.
Let H be the melt layer thickness along the normal to the

surface. The Z coordinate in (9) then takes values between
zero and H. According to previous calculations [11, 12],
Hmax � 1 mm. Therefore, if the radius of curvature is not
very small (exceeds several microns), the correction related
to curvature K in (9) can be neglected. Under these
conditions, it follows from Eqn (9) that

�v � 1

H

�H

0

vdZ � ÿ 1

3Z
H 2 qp

qX
� 1

2Z
qa
qX

. (11)

This relation was derived using the boundary conditions

Z
qv
qZ

����
Z�H
� da

dX
, v
��
Z�0 � 0.

The continuity equation in terms of the X and Z
coordinates has the form

qH
qt
� u0 ÿ

q��vH �
qX

. (12)

Using Eqns (11) and (12), one can énd the proéle of a thin
layer of the melt that êows over a disturbed surface during
a single pulse.

Before passing on to a sequence of many pulses, we
derive from (11) and (12) an equation for the surface proéle
at the end of a successive pulse. Since, according to our
calculations, the melt exists under the conditions in question
for a time of the order of 102 ns, at a pulse repetition rate of
� 104 Hz (pulse separation of � 105 ns) the melt fully
solidiées before the next pulse. Therefore, each pulse
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Figure 1. (a) Melt thickness and (b) êat-surface temperature as functions of time and incident intensity for the time dependence (1) with t � 20 ns.
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and the associated melting/solidiécation cycle can be con-
sidered separately from other pulses, and only the surface
distortion produced by the previous pulse can be taken into
account.

Let us integrate Eqn (12) over the time period during
which the melt exists as a result of the nth pulse. Taking into
account the relation

� 1
0 u0(x; t)dt � 0, we obtain for the

change in the melt thickness

DHn � ÿ
q
qX

��1
0

�vHndt

�
, (13)

where Hn(x; t) is the melt thickness during the nth pulse.
Taking into account the change in the slope of the surface
with respect to the original plane, z � 0, we obtain the
change in the surface shape produced by the nth pulse:

hn�1 ÿ hn � DHn

�
1� �qhn=qx�2

�1=2
. (14)

Given that dX � �1� (qhn=qx)
2
�1=2

dx, we have

hn�1 ÿ hn � ÿ
q
qx

��1
0

�vHndt

�
. (15)

Taking into account (11), we obtain the recurrent relation

hn�1 ÿ hn � ÿ
q
qx

(
1

3Z
B1�In��

1� �qhn=qx�2
�1=2

� q
qx

 
a�

1� �qhn=qx�2
�3=2 q 2hn

qx 2

!

� a1
2Z

B2�In��
1� �qhn=qx�2

�1=2 qInqx

)
, (16)

where

B1�I � �
�
H 3�t; I �dt, B2�I � �

�
H 2�t; I � qT �t; I �

qI
dt (17)

are integral moments. These moments can be determined
using the time-dependent intensity (1), a particular value of
t and the data presented in Fig. 1. The integration is
performed over the time during which the melt exists. This
time depends on the local incident intensity, i.e. on the
point on the target surface.

The former and latter terms in braces in (16) represent
the melt êows due to capillary and thermocapillary forces,
respectively. Based on the above, in deriving (16) we
neglected the effect of external pressure on the melt êow,
taking the pressure in the melt to be equal to the capillary
pressure: p � ÿaK. In in (14) is the coefécient I in (1) for the
pulse under consideration (nth). This coefécient depends on
the x coordinate. In particular, for a Gaussian laser beam
we have

I � I�x� � Im exp
ÿÿx 2=x 2

0

�
. (18)

This approach makes it possible to examine the effect of
radiation whose intensity may vary from pulse to pulse,
provided the time-dependent intensity of each pulse follows
Eqn (1) with sufécient accuracy and with the same value of
t.

Finally, taking into account that the surface proéle
varies little from pulse to pulse and taking in this approx-

imation the pulse number n to be a continuous variable, we
obtain from (16) the sought evolution equation for the
surface proéle:

qh
qn
� ÿ q

qx

(
1

3Z
B1�I ��

1� �qh=qx�2 �1=2
� q

qx

 
a�

1� �qh=qx�2 �3=2 q
2h

qx 2

!
� a1

2Z
B2�I ��

1� �qh=qx�2 �1=2 qIqx
)
.

(19)

Consider now the functions B1(I ) and B2(I ). Note érst
of all that an important role is played by the absorbed
radiation energy, which depends on the angle y between the
incident beam and the normal to the surface. In the simplest
case, when the angular dependence of the absorption power
is neglected (in the case of unpolarised radiation, this is
justiéed in a relatively wide angular range), there remains a
'geometric' factor related to the increase in spot size on the
surface with increasing angle of incidence. Therefore, B1 and
B2 are, in fact, functions of

Iabs � I cos y � I�
1� �qh=qx�2 �1=2 , (20)

where I is the coefécient in (1), determining the radiation
intensity absorbed at normal incidence. Hereafter, we
assume that the normal incidence absorption power A(0)
is included in I. If the angular dependence of the absorption
power is taken into account in explicit form, the following
approximation for the absorption power works well in the
case of unpolarised radiation at not too large angles of
incidence [4]:

A�y� � A�0�
2

�
cos y� 1

cos y

�
.

Therefore,

Iabs � I
A�y�
A�0� cos y �

1

2
I

�
1� 1

1� �qh=qx�2
�
. (21)

At not too large angles of incidence, Eqns (20) and (21) give
similar results.

Further, since melting occurs only when the surface
temperature during the pulse exceeds the melting temper-
ature Tm, there is a threshold intensity below which no
melting occurs, that is,

H � 0 for Iabs 4 Ith.

Estimates indicate that, for Iabs ! Ith (and of course for
Iabs > Ith),

B1�I � � �Iabs ÿ Ith�4, B2�I � � �Iabs ÿ Ith�3, (22)

where Iabs is related to I by (20) [or (21)].
Ith can be estimated from the fact that, at this absorbed

energy (at normal incidence), the maximum surface temper-
ature reaches Tm. Calculations indicate that, at a pulse
duration of 20 ns, Ith � 4:92� 107 W cmÿ2 for a material
having the same properties as nickel. By normalising the
intensity to Ith and expressing all linear dimensions in
microns, Eqn (19) can be brought to the form
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qh
qn
� ÿ q

qx

(
b1�q ��

1� �qh=qx�2 �1=2
� q

qx

 
1�

1� �qh=qx�2 �3=2 q
2h

qx 2

!
ÿ b2�q ��

1� �qh=qx�2 �1=2 qqqx
)
.

(23)

For b1 and b2, we obtain the following approximate
expressions:

b1�q� � 11:06967�qÿ 1�4 ÿ 4:14200�qÿ 1�5

ÿ 0:06344�qÿ 1�6 � 0:12525�qÿ 1�7,

b2�q� � 8:03590�qÿ 1�3 ÿ 2:08703�qÿ 1�4 (24)

ÿ 1:46955�qÿ 1�5 � 0:45846�qÿ 1�6 for q > 1,

b1�q� � 0, b2�q� � 0 for q4 1.

Here,

q�x� � Iabs�x�
Ith

� I�x�=Ith�
1� �qh=qx�2 �1=2 . (25)

The functions b1(q) and b2(q) are well represented by
expressions (24) in the intensity range 14 q4 3:45, or
Ith 4 Iabs 4 Imax, where Imax � 1:7� 108 W cmÿ2. The b1(q)
and b2(q) curves are presented in Fig. 2.

3. Numerical modelling results

Equation (23), supplemented by expressions (24) and (25),
is an inhomogeneous nonlinear partial differential equation
of order no greater than four. However, by virtue of the
constraint

B1�I � � B2�I � � 0 for Iabs < Ith, or

b1�q� � b2�q� � 0 for q < 1,

it degenerates into the trivial equation qh=qt � 0 in regions
where no melting occurs. This degeneracy may also take
place where the incident intensity is initially high enough to
cause melting. The point is that the surface distortion
increases during melting, which may eventually lead to
q4 1, or

I�
1� �qh=qx�2 �1=2 4 Ith.

As a consequence, there appear `frozen' regions in the
intensely heating zone. The reduction in the order of
Eqn (23) in some points and regions considerably compli-
cates numerical analysis of this equation. The diféculties
involved can be partially alleviated by using appropriate
numerical implementation and improving the calculation
accuracy.

Figure 3 illustrates the surface shape after n � 10, 50 and
100 pulses with the Gaussian intensity proéle given by (18)
and with parameters

x0 � 45 mm and Im � 1:7� 108 W cmÿ2. (26)

The surface was initially êat. Figure 4 shows the time
dependences of the maximum and minimum deviations
from the initial (zero) level.
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Figure 2. ( 1 ) b1�q� and ( 2 ) b2�q� curves.
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The resultant surface proéle is very stable. In particular,
even if the original surface is distorted, irradiation will
produce a surface proéle similar to those in Fig. 3. As an
example, Fig. 5 illustrates the dynamics of the surface
proéle (under the same irradiation conditions as in
Figs 3 and 4) for an initial surface distortion of the form

h0�x� � h�x; 0� � 5 cos

�
5x

2x0

�
,

where h0 is in microns.

It should be emphasised that the calculated proéle height
agrees with the relevant experimental data [5 ë 9].

4. Approximate solutions

It follows from the structure of Eqns (23) ë (25) that the
process comprises three characteristic stages.

In the érst stage, the slope of the surface is insigniécant:
jqh=qxj5 1. The surface curvature (10) is also small. There-
fore, we can take �1� (qh=qx)2 �1=2 � 1 and neglect capillary
forces [the érst term in braces in (23)]. Equation (23) then
simpliées to

qh
qn
� q

qx

�
b2�q�

qq
qx

�
� a�x�,

or

qh
qn
� ÿ a1

2Z
q
qx

�
B2�I �

qI
qx

�
� a�x�. (27)

This equation has a trivial solution:

h�x; n� � a�x�n. (28)

The initial linear rise in surface proéle amplitude with
increasing number of pulses is well seen in Fig. 4. Relation
(28) can be used to énd the surface proéle for an arbitrary
beam proéle. As an example, Fig. 6 shows a êat-top beam
proéle of the form

q�x� � q0
1� exp�ÿx 2

0 =w
2�

1� exp
��x 2 ÿ x 2

0 �=w 2
� (29)

(with parameters w � 0:5x0, x0 � 45 mm and q0 � 3:45) and
the corresponding a(x) proéle. It can be seen that, in this
stage, the surface proéle may reêect rather éne details of
the intensity distribution (represented by the second
derivative with respect to the coordinate). Calculations
show however that, in the case of proéle (29), during
further exposure the surface shape approaches that in
Fig. 3a (which requires � 300 pulses).

Expressions (27) and (28) can easily be generalised for a
2D intensity proéle. To this end, it is sufécient to rewrite
Eqn (27) in the form

qh
qn
� ÿ a1

2Z
H2

�
B2�I �H2I

� � a�x; y�. (30)

Here, H2 is the 2D gradient operator in terms of the x and y
coordinates on the target surface. Accordingly, we obtain
h(x; y; n) � a(x; y)n.

In the second stage, capillary forces come into play, but
the slope of the surface remains low: jqh=qxj5 1. Accord-
ingly, Eqn (23) contains no nonlinear terms and is
inhomogeneous:

qh
qn
� ÿ q

qx

�
a
3Z

B1�I �
q 3h

qx 3
� a1
2Z

B2�I �
qI
qx

�
. (31)

In this stage, the development of surface inhomogeneities is
inhibited by capillary forces, which tend to reduce the
surface curvature. Moreover, instead of a êat-bottom crater
(Fig. 3b), a deep hole is produced (Fig. 3a), similar to that
in the keyhole melting regime but due to a fundamentally
different mechanism.

In the third stage, the surface proéle amplitude is so
large that a signiécant role is played by the reduction in
absorbed radiation due to the increase in the angle of
incidence. Equation (23) is then essentially nonlinear and
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Figure 5. Dynamics of an initially distorted surface proéle exposed to
multiple laser pulses.
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Figure 6. (a) Flat-top beam proéle given by (29) and (b) the correspon-
ding distortion a of the surface proéle (per pulse).
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involves singular regions of variables. This stage is very
difécult to study analytically or numerically. Quantitatively,
it begins at jqh=qxj � 1. The necessary number of pulses
estimated using relation (28) is n � (a 0max)

ÿ1. For the
Gaussian beam proéle given by (18), a 0max � 2� 10ÿ3 (which
can be estimated from Fig. 3). Therefore, the third stage
begins at n � 500. This estimate is supported by numerical
simulation. It should be emphasised however that, strictly
speaking, the nonlinear stage begins at different instants in
different points on the target surface. The transition érst
occurs at the periphery of the beam, where the heating
conditions are closer to the threshold. Next, the threshold is
reached at a distance �x0=2 from the centre of the beam,
etc.

An interesting consequence of the above is the inverse
problem: the possibility of producing a predetermined h(x)
proéle. To this end it is sufécient to produce an intensity
proéle, I(x), that will ensure the necessary function a(x).
Using Eqns (27) and (28), one can then determine the
number of pulses needed to obtain therequired h(x) proéles.

5. Conclusions

The mathematical model constructed in this work accounts
for the characteristic shape and length scale (amplitude and
slope) of inhomogeneous surface structures produced on
metallic targets by multiple laser pulses at incident
intensities from � 107 to 108 W cmÿ2 and beam diameters
from � 50 to 100 mm. Analysis of the model indicates that
thermocapillary forces play a central role in the formation
of surface structures during the érst few hundred pulses. At
the same time, in the énal stages of the process the surface
proéle is determined not only by capillary forces but also by
the changes in absorbed energy due to the increase in the
slope of the surface. The length scale of the surface
structures evaluated in the model agrees with experimental
data. An evolution equation is derived which directly
(without intermediate calculations of the temperature éeld
and melt êow velocity) determines the surface proéle
produced by a sequence of laser pulses.

The model can be generalised to include a variety of
factors, such as an arbitrary 2D intensity distribution and
beam scanning over the target surface.
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