
Abstract. The inêuence of phase memory effects on the
spectrum of resonance Raman scattering by three-level atoms
with the K conéguration of levels experiencing collisions with
buffer gas atoms in a strong monochromatic radiation éeld is
studied theoretically. Systems with a small Doppler broad-
ening compared to the collision frequency (large buffer gas
pressures) are analysed in the general case of an arbitrary
change (from complete change to complete preservation) in
the phase memory at any of three transitions in the K system.
It is shown that in the absence of the collision relaxation of
the low-frequency coherence at the transitions between two
lower levels of the Ksystem, the radiation scattering spectrum
has a spectrally narrow component at the Raman frequency,
which, despite the homogeneous broadening of the absorption
line, exhibits a strongly pronounced anisotropy. In the direc-
tion, close to the propagation direction of exciting radiation,
this line maximally narrows down. It is signiécant that upon
optical pumping to the level unaffected by a strong éeld the
resonance Raman spectrum noticeably differs from the
spectrum in the case of the probe éeld. A simple expression
is proposed for calculating the degree of the phase memory
preservation in collisions from the relative amplitude of the
Raman resonance.

Keywords: resonance Raman scattering, collisions, coherence,
populations of levels, spectrum, resonances, êuorescence.

1. Introduction

Resonance scattering (resonance êuorescence, resonance
Raman scattering) of strong monochromatic radiation by
atoms and molecules has been actively studied for many
years. Special attention in these studies is paid to a three-
level L-system consisting of two close lower levels and the
third remote level which is optically connected with two
lower levels (see, for example, [1 ë 5] and references therein).
The effect of coherent trapping of populations is well
pronounced in a three-level L system with long-lived lower
levels and in êuorescence spectra it is observed in the form
of a characteristic narrow dip (`dark' resonance) [4, 5].

The êuorescence spectrum of the upper level in the L
system is commonly studied by using two light éelds. The
frequency of one (strong) éeld is éxed and the frequency of
the other (probe) éeld acting on the adjacent transition is
scanned [4, 5]. In theoretical papers the êuorescence spec-
trum in such systems was studied under some or other
assumptions and approximations: calculations have been
performed either by neglecting the motion and collisions of
atoms or by using simplest relaxation models. At the same
time, a complete and correct account for relaxation proc-
esses in calculating spontaneous emission spectra is very
important. In this paper, we studied theoretically the
spontaneous emission spectrum of three-level atoms with
the L conéguration experiencing collisions with buffer gas
atoms in the éeld of a strong electromagnetic wave. It was
assumed that only one external éeld affects the atom (probe
éeld is absent) and spontaneous emission is detected at the
transition adjacent with the transition perturbed by the
external éeld. Because an open L system is considered,
particles are not completely transferred to the lower level
not excited by the external éeld. The analysis was performed
for the general case of an arbitrary change (from complete
change to complete preservation) in the phase memory in
collisions at any three transitions in the L system.

2. Basic equations

Consider a gas of three-level absorbing particles in a
mixture with a buffer gas. We will neglect collisions
between absorbing particles by assuming that the concen-
tration of the buffer gas is greater than that of the
absorbing gas. Let three-level atoms with the L conégura-
tion (Fig. 1) be excited by a monochromatic éeld

EE � ReE exp�ikrÿ iot�
with the frequency o close to the frequency omn of the
mÿ n transition between m and n levels (here, E and k are
the electric éeld strength and the radiation wave vector).
The spontaneous decay of the m level over the m! n and
m! l channels is characterised by the constants Amn and
Aml. The escape of atoms from the region of interaction
with the light beam (due to their motion and chemical
reactions) and possible transitions of atoms from the m, n
and l levels due to the spontaneous decay to other levels will
be characterised by the relaxation constants gm, gn and gl.
The transitions of atoms to the n and l levels (i.e. to the
interaction region with the light beam because of their
motion) are described by the pump rates qn(v) and ql(v),
where v is the particle velocity.
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We will describe spontaneous emission at the mÿ l
transition according to [1] by introducing the classic éeld
Em. In this case, the calculation of the spontaneous emission
spectrum is formally similar to the calculation of the
spectrum in the case of the classical probe éeld Em, if in
the latter calculation only emission is selected and Em is
treated as the spectral density of zero oscillations of
vacuum. Thus, to describe spontaneous emission at the
mÿ l transition, we use the kinetic equations for the
elements of the density matrix [1]:�

d

dt
� Gm

�
rm�v� � S�rm�v�� � 2Re�iGrnm�v��,

�
d

dt
� gn

�
rn�v� � S�rn�v�� � Amnrm�v� � qn�v�

ÿ 2Re�iGrnm�v��,�
d

dt
� gl

�
rl�v� � S�rl�v�� � Amlrm�v� � ql�v�

� 2Re�iG �mrml�v��,
(1)�

d

dt
� Gm � gn

2
� i�O0 ÿ kv�

�
rnm�v�

� S�rnm�v�� ÿ iG �� rn�v� ÿ rm�v��,�
d

dt
� Gm � gl

2
ÿ i�O0m ÿ kmv�

�
rml�v�

� S�rml�v�� � iGrnl�v� ÿ iGmrm�v�,�
d

dt
� gn � gl

2
ÿ i�e0 ÿ qv�

�
rnl�v�

� S�rnl�v�� � iG �rml�v� ÿ iGmrnm�v�,

where

Gm � Anm � Aml � gm; O0 � oÿ omn;

O0m � om ÿ o
ml
; e0 � O0m ÿ O0; q � km ÿ k; (2)

G � dmnE

2�h
; Gm �

dmnEm

2�h
;

d

dt
� q

qt
� vH;

ri(v) is the velocity distribution of particles at the i level
(i � m, n, l ); S(ri(v)) and S(rij(v)) are collision integrals;
dmn and dml are matrix elements of dipole moments at the
mÿ n and mÿ l transitions; oml is the mÿ l transition
frequency; om is the frequency at which the spectral density
of spontaneous emission is calculated; and km is the wave
vector of spontaneous emission.

We assume below that quantities qi(v) in (1) are time
independent and their dependence on v is Maxwellian:

qi�v� � QiW�v�, W�v� � exp
�ÿ�v=vT�2�ÿ ���

p
p

vT
�3 ;

(3)

vT �
�
2kBT

M

�1=2
, i � n, l ,

where Qi is the total (integrated over v) pump rate to the i
level; W(v) is the Maxwell velocity distribution; kB is the
Boltzmann constant; M is the absorbing particle mass; T is
the medium temperature; and vT is the most probable
velocity of absorbing particles.

For collision integrals (1), we will use the model of
strong collisions [1], taking into account the collision
transitions between n and l levels:

S�rm�v�� � ÿvmrm�v� � vmrmW�v�,

S�rn�v�� � ÿ�vn � vnl�rn�v� � �vnrn � vlnrl�W�v�,

S�rl�v�� � ÿ�vl � vln�rl�v� � �vlrl � vnlrn�W�v�,

S�rnl�v�� � ÿvrnl�v� � ~vrnlW�v�, (4)

S�rnm�v�� � ÿv1rnm�v� � ~v1rnmW�v�,

S�rml�v�� � ÿv2rml�v� � ~v2rmlW�v�,

ri �
�
ri�v�dv, i � m, n, l, nl, nm, ml,

where nm, nn and nl are the frequencies of elastic collisions
of absorbing particles in the states m, n, l with buffer
particles; nnl and nln are frequencies of collision transitions
n! l and l! n in the Maxwell velocity distribution of
particles; n, n1, n2 and ~n, ~n1, ~n2 are `nondiagonal' frequencies
of the escape and arrival of particles, respectively, these
frequencies being complex quantities in the general case.
The condition

~v � ~v1 � ~v2 � 0 (5)

corresponds to the case, when collisions cause complete
relaxation of coherences rnl(v), rnm(v), rml(v� (the absence
of phase memory in collisions at all transitions). In the
absence of the collision relaxation of coherence rnl(v) (at
the lÿ n transition the phase memory in collisions is
preserved), collision transitions between n and l levels are
absent (nnl � nln � 0) and the `escape' (n) and `arrival' (~n)
frequencies are real and equal to each other [1]:

~v � v � vn � vl � vtr, (6)

m

gm

Amn

n

E

Aml Em

vln

vnl

gn qn�v�

gl ql�v�

l

Figure 1. Energy level diagram of and transitions between levels.
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where vtr means the average transport frequency of elastic
collisions between active particles and buffer particles [6].
The quantity vtr is related to the diffusion coefécient D of
particles interacting with radiation by the expression D �
v2T=(2ntr) [7]. In the absence of the collision relaxation of
coherences rnm(v) or rml�v�, relations ~n1 � n1 � nm � nn and
~n2 � n2 � nm � nl are fulélled, respectively.

We will seek for the solution of Eqn (1) in the form

ri�v� � Ri�v� � ri�v�, i � m, n, l, nl, nm, ml. (7)

The matrix elements Ri (v) correspond to the solution of the
problem on the interaction with only one strong éeld E.
Small additions ri (v) are caused by the presence of a weak
éeld Em.

Under stationary and spatially uniform conditions,
system of equations (1) after substitution of (7) into it in
the érst approximation with respect to Gm is split to two
subsystems:

�Gm � vm�Rm�v� � vmRmW�v� � 2Re�iGRnm�v��,

�gn � vn � vnl�Rn�v� � AmnRm�v� �QnW�v�

� �vnRn � vinRl�W�v� ÿ 2Re�iGRnm�v��,
(8)

�gl � vl � vln�Rl�v� � AmlRm�v� �QlW�v�

� �vlRl � vnlRn�W�v�,�
Gm � gn

2
� v1 � i�O0 ÿ kv�

�
Rnm�v�

� ~v1RnmW�v� ÿ iG ��Rn�v� ÿ Rm�v��
and�

Gm � gl
2

� v2 ÿ i�O0m ÿ kmv�
�
rml�v�

� ~v2rmlW�v� � iGrnl�v� ÿ iGmRm�v�,
(9)�

gn � gl
2
� vÿ i�e0 ÿ qv�

�
rnl�v�

� ~vrnlW�v� � iG �rml�v� ÿ iGmRnm�v�.

The quantities Rm, Rn, Rl, Rnm, rml, rnl in (8) and (9) are
the integrals with respect to velocities from quantities
Rm(v), Rn(v), Rl(v), Rnm(v), rml (v), rnl(v), respectively.

According to general rules [1], the probability of
spontaneous emission w at the frequency om per one
absorbing atom is determined by the expression

w � 2

N
Re
ÿ
iG �m rml

�
, (10)

where N � Rn � Rl � Rm is the concentration of absorbing
particles. Thus, according to the posed problem we should
énd the quantity rml from the system of equations (8), (9).

3. Weakly rate-selective interaction of atoms
with radiation

The solution of system of equations (8), (9) in the general
case of arbitrary relation between the homogeneous and
Doppler widths of the absorption line leads to a
cumbersome expression for the probability of spontaneous
emission, which can be analysed only with the help of
numerical methods. To simplify the problem, we will
consider a weakly selective interaction of atoms with
radiation with respect to rates, when the distribution of
atoms in states m, n, l hardly differs from the Maxwellian
distribution. This case corresponds to small Doppler widths
kvT, kmvT compared to the transport collision frequency:

kvT; kmvT 5 vtr. (11)

Condition (11) allows one to apply a very simple and
efécient method for solving Eqns (8), (9) with respect to
integral quantities Rm, Rn, Rl, Rnm, rml, rnl relative to
velocities, the so-called method of preliminary averaging
with respect to velocities. This computation method based
on averaging with respect to velocities in the kinetic
equations for the matrix density is described in detail in
paper [8]. By applying this procedure to Eqns (8) and (9)
similarly to that in paper [8], we obtain

GmRm � 2Re�iGRnm�,
�gn � vnl�Rn � AmnRm �Qn � vlnRl ÿ 2Re�iGRnm�,

�gl � vln�Rl � AmlRm �Ql � vnlRn,

(12)

�G� iO1�Rnm � ÿiG ��Rn ÿ Rm�,

�Gm ÿ iOm�rml � iGrnl ÿ iGmRm,

�G1 ÿ ie�rnl � iG �rml ÿ iGmRnm.

Here, we introduced the following notations:

G � Gm � gn
2

�Re�v1 ÿ ~v1�

�Re

� �kvT�2
2

�
Gm � gn

2
� v1 � iO0

�ÿ1�
,

Gm �
Gm � gl

2
�Re�v2 ÿ ~v2�

�Re

� �kmvT�2
2

�
Gm � gl

2
� v2 ÿ iO0m

�ÿ1�
,

G1 �
gn � gl

2
�Re�vÿ ~v� (13)

�Re

� �qvT�
2

2 � gn � gl
2
� vÿ ie0

�ÿ1 �
,

O1 � O0 � Im�v1 ÿ ~v1�, Om � O
0m ÿ Im�v2 ÿ ~v2�,

e � Om ÿ O, O � O0 � Im�vÿ~vÿ v2 �~v2�.
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The quantities G, Gm and G1 in (13) depend on the degree of
preservation of the phase memory in collisions at tran-
sitions mÿ n, mÿ l and lÿ n, respectively. In the absence
of the phase memory at all transitions [see expression (5)]
due to condition (11) the relation G,Gm,G1 4 kvT is
fulélled. In the case of complete preservation of the
phase memory at the lÿ n transition [see expression (6)]
and in the absence of the phase memory at transitions
mÿ n and mÿ l, relations G1 5 kvT and G,Gm 4 kvT are
fulélled. Quantities G, Gm, G1 also depend on frequency
detunings of exciting and scattering radiation. However, in
describing the spontaneous emission spectrum in cases
under study, we can neglect this dependence. Indeed, in the
absence of the phase memory at all transitions, the second
terms in right-hand sides of expressions for G, Gm and G1

become main and, hence, in these expressions the last terms
containing the dependence on O0, O0m and e0 can be
neglected. When the phase memory is preserved at all
transitions, last terms in expressions for G, Gm, G1 will be
the main ones. However, their dependence on O0, O0m and
e0 becomes signiécant only in the long wing of the spectral
line, which we do not consider in this paper.

The standard solution of Eqns (13) leads to the expres-
sion for the spontaneous emission probability w:

w � 2jGmj2
N

Re
�G1 ÿ ie�Rm � iGRnm

�G1 ÿ ie��Gm ÿ iOm� � jGj2
, (14)

where

Rm �
KNn

1� K�Aml � ~gm � ~gn�=~gn
; iGRnm �

Gm�Gÿ iO1�
2G

Rm;

K � 2jGj2
Gm

Re
1

Gÿ iO1
; Nn �

Qn � �Qn �Ql�vln=gl
~gn

; (15)

~gm � gm � vlngm=gl; ~gn � gn � vnl � vlngn=gl.

The physical sense of quantities K and Nn in (15) becomes
clear from relations following from (12):

Rm �
K

1� K
Rn, Rn � Nn

�
1� Aml � ~gm

~gn

K
1� K

�ÿ1
. (16)

The quantity K, as one can see from the érst relation in (16)
characterises the degree of equalising populations of levels
m and n, and therefore it can be interpreted as a saturation
parameter for the mÿ n transition. The quantity Nn in
accordance with the second relation in (16) is the
population of the n level in the absence of radiation (at
K � 0). In a particular case

gm � gl � gn � g (17)

Expression (15) for the quantity Nn takes the form

Nn � N

�
Qng

Qn �Ql

� vln

�
�g� vnl � vln�ÿ1. (18)

When the pump rates to the n and l levels (Qn � Ql) are
equal and the collision exchange between these levels is
weak (nnl, nln 5 g) half the absorbing particles is at the n
level in the absence of radiation, Nn � N=2 as should be
expected.

Note in conclusion to this section that expression (14)
for the spontaneous emission probability is a particular case
of the expression for the absorption probability Pm of a
probe éeld at the adjacent transition mÿ l. The expression
for Pm follows from Eqns (1) if they contain terms
corresponding to the probe éeld absorption [one should
add the terms ÿ2Re�iG �mrml(v)�, ÿiG �mrnl(v) and iGmrl�v) to
the right-hand sides of the érst, fourth and éfth expressions
in (1)]. Under stationary and spatially uniform conditions
for the absorption probabilities of the probe éeld we obtain
the expression:

Pm �
2jGmj2
N

Re
�G1 ÿ ie��Rl ÿ Rm� ÿ iGRnm

�G1 ÿ ie��Gm ÿ iOm� � jGj2
, (19)

where

Rl �
Qn �Ql

gl
ÿ
�
gm
gl
� 1� K

K
gn
gl

�
Rm (20)

is the population of the l level. Thus, spontaneous emission
probability w is described by expression (19) with the
quantity Rl being excluded. Expression (19) for the
absorption probability of the probe éeld is a natural
generalisation of the corresponding expression for particles
at rest {see, for example, expression (8.77) in [1]} and
coincides with it at vT � 0. The motion of atoms is
manifested only in the change of relaxation constants
G1, Gm, G due to additions reêecting the diffusion law of the
particle transfer.

Let us emphasise the following important circumstance.
In this paper we will consider the spontaneous emission
spectrum under conditions of signiécant (but not complete)
optical transfer of particles to the lower level not excited by
the external éeld (at Rl 4Rn, Rm). Under these conditions,
the spontaneous emission spectrum strongly differs from the
probe éeld spectrum. Indeed, under conditions of strong
optical pumping of particles to the l level in expression (19),
we should put Rl � N and quantities Rm and Rnm can be
neglected (the probe éeld spectrum under these conditions is
considered in [9]). Under the same conditions the term in
expression (14), which is proportional to the external-
radiation-induced coherence Rnm of states m and n, is
signiécant and cannot be neglected. This causes consid-
erable difference of the spontaneous emission spectrum from
the probe éeld spectrum.

4. Analysis of the resonance
light scattering spectrum

Let us analyse expression (14) for the spontaneous emission
probability. The denominator in (14) is quadratic with
respect to the frequency detuning Om, i.e. the spontaneous
emission spectrum has two resonances (two spectral
components). This circumstance reêects the effect of éeld
splitting of the m level into two quasi-energy levels. The
position of the resonances can be easily determined by
expanding the denominator in (14) to the product of two
linear factors. In the case of noticeable splitting of levels
(OR 4 jGm ÿ G1j) the result is known (see, for example,
[1 ë 3]): the maxima of the spectral components are located
in the vicinity of Om � O�m , where

Om
� � 1

2
�O� OR�, OR �

ÿ
4jGj2 � O 2

�1=2
. (21)
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According to (21) the distance between the maxima of the
spectral components is equal to the generalised Rabi
frequency OR.

The nondiagonal element Rnm in (14) characterises the
coherence of the states m and n, which is induced by a strong
external éeld. In expression (14) the term proportional to
Rnm describes the change in the line shape of scattered
radiation and rather than its integrated intensity because� �1

ÿ1
w dOm � 2pjGmj2

Rm

N
. (22)

Thus, the integrated intensity of scattered radiation is
affected by a strong éeld only via the population of the m
level.

It is convenient to represent expression (14) for the
spontaneous emission probability in the form

w � 2jGmj2
Rm

N
Bw ,

(23)

Bw � Re

��
G1 ÿ ie� Gm�Gÿ iO1�

2G

�
���G1 ÿ ie��Gm ÿ iOm� � jGj2

�ÿ1�
.

The factor Bw in (23) describes the shape of the
spontaneous emission spectrum. Figures 2 ë 4 show the
spectra of resonance radiation scattering calculated by (23)
at different intensities (it is proportional to jGj2), the
frequency detunings O of pump radiation and angles y
between the wave vectors km and k. The spectra were
calculated for the most interesting cases of complete
preservation of the phase memory in collisions at the
lÿ n transition (~n � n, nln � nnl � 0, in this case G1 5 kvT)
and in the absence of the phase memory at the mÿ n and
mÿ l transitions (~n1 � ~n2 � 0, in this case G, Gm 4 kvT). The
relaxation constants gm, gn Ë gl were assumed equal [see
expression (17)], which always holds true when atoms
escape from the region of their interaction with a light beam
due to their motion (levels m, n and l do not decay into
other levels). To normalise the spectra in all égures, we used
the quantity w0, which implies the spontaneous emission
probability at the line centre at the mÿ l transition in the
absence of pumping and under the conditions that the
population Rm of the m level from which emission occurs
remains the same as that in the presence of pumping:

w0 �
2jGmj2
Gm

Rm

N
. (24)

One can see from Figs 2 ë 4 that the spontaneous
emission spectrum exhibits two spectral components: a
broad one in the vicinity of the frequency of the mÿ l
transition (near Om � 0) and a narrow one in the vicinity of
the Raman frequency (near Om � O). The broad component
is isotropic with respect to the mutual orientation of wave
vectors of strong and scattered radiation. The narrow
component, despite the homogeneous broadening [Doppler
broadening is small compared to the collision frequency, see
expression (11)], exhibits a strongly pronounced anisotropy.
This line in the scattering spectra narrows down maximally
in the direction close to the propagation direction of exciting

radiation (y � 0). The spectrum of scattered radiation
depends on the exciting radiation intensity (cf. Figs 2a,
3a and 4a).

Note that only when the exciting radiation intensity is
not high and the spectral components are not overlapped (at
large frequency detunings of exciting radiation, jOj4G), we
can speak of some lines in the êuorescence and Raman
spectra (correspondingly near Om � 0 and Om � O). At a
high radiation intensity, especially under the resonance
conditions (for jOj < G), two-photon and step processes
are not independent, and we deal with resonance Raman
scattering. This is especially obvious in the case of an exact
resonance (O � 0) and a high intensity (2jGj4Gm, G1) of
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Figure 2. Spectra of resonance radiation scattering by three-level L
atoms in the case of complete preservation of the phase memory in
collisions at the lÿ n transition (~n � n, nln � nnl � 0, G1 5 kvT) and in the
absence of the phase memory at the mÿ n and mÿ l transitions
(~n1 � ~n2 � 0, G, Gm 4 kvT) for ntr=�kvT� � 10, Amn=�kvT� � 10ÿ2,
Aml � Amn, g=Amn � 10ÿ4, Qn � Ql, �kÿ km�=k � 10ÿ4, jGj=�kvT� � 3
�2jGj2 � 90GmGm�, y � 0 (solid curves) and p (dashed curves) O � 0 (a),
O=�kvT� � 15 (b) and 50 (c). The inset shows at an enlarged scale the
resonance in the vicinity of Om � O.
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exciting éeld, when the scattered radiation spectrum is given
by the expression [in this case, it follows from expression
(23)]

Bw �
1

2
Re

�
1

Gm1 ÿ i�Om � jGj�
� 1

Gm1 ÿ i�Om ÿ jGj�
�
,

(25)

Gm1 �
Gm � G

1

2
.

One can see from (25) that in the case of the exact
resonance and a high intensity of the exciting éeld the
scattered radiation spectrum is symmetric with respect to
Om � 0 and both spectral components are indiscernible in
the amplitude and width (they are equal).

Consider in detail different regions of the scattered
radiation spectrum. Let the frequency detuning and the
intensity of exciting radiation be small

jOj5G,Gm , 2jGj5Gm , (26)

and the relaxation constants of coherences at the mÿ l and
lÿ n transitions differ signiécantly

G1 5Gm (27)

(collisions rather well preserve the phase memory at the
lÿ n transition). Under these conditions we obtain from (23)

Bw � Re

�
1

Gm ÿ iOm
ÿ
� jGj2

Gm
2 ÿ

Gm

2Gm

�
�Geff ÿ i�Om ÿ O��ÿ1

�
,

Geff � G1 �
jGj2
Gm

.
(28)

According to (28) the scattered radiation spectrum exhibits
two spectral components of the Lorenz shape: at the
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frequency of the mÿ l transition (Om � 0, the érst term in
braces) and at the Raman frequency (Om � O, the second
term). The half-widths Gm and Geff of the corresponding
components strongly differ (Gm 4Geff). The broad compo-
nent (with the half-width Gm ) is isotropic with respect to the
mutual orientation of the wave vectors k and km of exciting
and scattered radiation, while the narrow components (with
the half-width Geff) is strongly anisotropic (Figs 2a and 3a).
The anisotropy is most strongly pronounced at a low
intensity of exciting radiation (jGj2 5GmG1), when the half-
width Geff of the narrow component is equal to G1:

Geff ' G1 �
gn � gl

2
� q 2D. (29)

The expression for G1 in (29) is valid under condition (6)
and when the inequality gn � gl 5 2ntr is known to be
fulélled. If gn � gl 5 2q 2D, the half-width of the narrow
anisotropic component in the scattered radiation spectrum
proves to be proportional to the diffusion coefécient:

Geff ' q 2D. (30)

This circumstance can be used to measure the diffusion
coefécient of absorbing particles in the atmosphere of the
buffer gas employing spectroscopic data.

The narrow anisotropic component is manifested in the
scattered radiation spectrum as a dip or a peak against the
background of a broad band depending on the exciting
radiation intensity. There is a dip (`dark' resonance) against
the background of the broad band, if jGj2 > GmGm=2
(Fig. 2a) or a peak, if jGj2 < GmGm=2 (Fig. 3a). At the
given intensity of exciting radiation so that jGj2 � GmGm=2,
the narrow component in the scattered radiation spectrum is
absent (Fig. 4a). Note that in the open L system the `dark'
resonance in the scattered radiation spectrum (Fig. 2a)
appears under the action of only one external éeld.

Consider now the case of ultimately large frequency
detuning of exciting radiation,

jOj4G, (31)

at its moderately high intensity, so that

jOjG1 5 jGj2 5 jOj2. (32)

In this case, expression (23) for the scattered radiation
spectrum can be transformed to the form:

Bw �
�
1ÿ Gm

2G

�
Gm

�
Gm

2 �
�
Om �

jGj2
O

�2 �ÿ1

�
� jGj2

O 2
� Gm

2G

�
�G1 � g1�

�
�G1 � g1�2

�
�
Om ÿ Oÿ jGj

2

O

�2 �ÿ1
, g1 �

jGj2Gm

O 2
. (33)

The érst term in (33) describes the shape of the êuorescence
line, which is in the vicinity of Om � Oÿm � ÿjGj2=O and has
the half-width Gm. The second term describes the Raman
line shape, which is in the vicinity of Om � O�m � O�
jGj2=O and has the half-width G1 � g1. The êuorescence line
is isotropic with respect to the mutual orientation of the
wave vectors k Ë km of exciting and scattered radiation,

while the Raman line is anisotropic. The anisotropy is most
strongly manifested when the phase memory at the nÿ l
transition is preserved (see insets in Figs 2c and 3c). In this
case, the quantity G1 is determined by expression (29) and,
hence, the half-width G1 � g1 of the Raman line depends on
the diffusion coefécient D of particles interacting with
radiation. If the condition

gn; gl; g1 5 q 2D (34)

is fulélled, the half-width of the Raman line is proportional
to the diffusion coefécient:

G1 � g1 ' q 2D. (35)

One can see from (33) that the ratio of the amplitude of
Raman resonance to the amplitude of the êuorescence
resonance is

AR �
�
g1 �

Gm

2

Gm

G

��
�G1 � g1�

�
1ÿ Gm

2G

��ÿ1
. (36)

In the absence of the phase memory at all transitions (in
this case, G1 � Gm � G4 g1,Gm), the relative amplitude of
the Raman resonance is small (AR 5 1). The preservation
of the phase memory at the nÿ l transition (in this case,
Gm � G4G1, g1,Gm) leads to a drastic increase in the
amplitude of the Raman resonance and it can be many
times higher than the amplitude of the êuorescence
resonance (AR 4 1). If condition (34) is fulélled, the
relative amplitude achieves its maximum value:

AR �
Gm

2q 2D

Gm

G
� Gm

2q 2D
. (37)

Thus, when the phase memory is preserved at the nÿ l
transition and condition (34) is fulélled, the relative
amplitude of the Raman resonance is inversely proportional
to the diffusion coefécient D of particles interacting with
radiation, i.e. it increases with increasing the buffer gas
pressure.

When the phase memory is preserved partially (not
completely) at the nÿ l transition, the degree of its
preservation is conveniently characterised by the parameter
Re~n=Re n (04Re~n=Rev4 1). This parameter can be found
using the relative amplitude AR (36) of the Raman reso-
nance. Indeed, at a partial preservation of the phase
memory at the nÿ l transition, the second term in (13)
for G1 becomes the main one, so that

G1 � Re�vÿ~v�. (38)

Under the condition g1 5G1 we obtain from expressions
(36) and (38) a formula relating the relative amplitude AR

of the Raman resonance with the degree of phase memory
preservation in collisions:

Re ~v

Re v
� 1ÿ Gm

2ARRe v

Gm

G
� 1ÿ GmD

v 2
TAR

Gm

G
. (39)

The second approximate equality in (39) (with the diffusion
coefécient D in the right-hand side) is in fact precise at a
high enough degree of the phase memory preservation at
the nÿ l transition (for 1ÿRe~n=Re n5 1) because in this
case we can assume [see expression (6)]

Re v � vtr � v 2
T=�2D�.
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It follows from (33) that the ratio of the radiation energy
in the Raman resonance to the energy on the êuorescence
resonance (energies are integrals with respect to the fre-
quency)

ER �
� jGj2

O 2
� Gm

2G

��
1ÿ Gm

2G

�ÿ1
. (40)

In this expression the factor Gm=(2G) is caused by the
exciting-radiation-induced coherence Rnm of the states m
and n. It characterises the relaxation probability of the
coherence Rnm in the radiation channel. If the collisions do
not preserve the phase memory at the mÿ n transition, this
factor is small [Gm=(2G)5 1] and the energy of the Raman
line is much lower that that of the êuorescence line ER 5 1.
If the phase memory at the mÿ n transition is preserved,
the factor Gm=(2G) is close to unity and almost all the
energy will be conéned in the Raman line (ER 4 1)).

5. Conclusions

We have studied theoretically the inêuence of phase
memory effects in collisions on the spectrum of the
resonance Raman scattering of radiation by three-level
atoms with the L conéguration experiencing collisions with
the buffer gas atoms in a strong éeld of monochromatic
radiation. The spectrum of resonance radiation scattering
has been studied at the transition adjacent with the
transition perturbed by the external éeld. The case of the
homogeneous broadening of the absorption line has been
analysed for large enough buffer gas pressures when the
collision frequency is large compared to the Doppler width
of the absorption line (ntr 4 kvT).

The scattered radiation spectrum has two spectral
components. When the intensity of exciting radiation is
not high and these components are not overlapped (at a
large frequency detuning of exciting radiation, jOj4G), we
deal with separate êuorescence and Raman lines near
Om � 0 and Om � O, respectively). Under resonance con-
ditions (for jOj < G) two-photon and step processes are not
independent and we should speak of resonance Raman
scattering.

It has been shown that the most interesting features
appear in the scattered radiation spectrum in the absence of
the collision relaxation of the low-frequency coherence at
the transition between two lower levels of the L system. It
has turned out that in this case the spectral component in
the vicinity of the Raman frequency drastically narrows
down and, despite the homogeneous broadening of the
absorption line, has a strongly pronounced anisotropy with
respect to the mutual orientation of the wave vectors of
exciting and scattered radiation (maximum narrowing
occurs in the direction close to the propagation direction
of exciting radiation). In addition, the width and amplitude
of the narrow anisotropic component depend on the
diffusion coefécient D � v 2

T=(2ntr) of particles absorbing
radiation. Thus, the diffusion coefécient of absorbing
particles in the buffer gas atmosphere can be measured
using spectroscopic data. A simple formula has been
obtained, which can be used to énd the parameter
Re~n=Re n ë the degree of phase memory preservation in
collisions at the nÿ l transition ë by the relative amplitude
of the Raman scattering resonance.

Under the conditions of signiécant optical transfer of
particles to the lower level unaffected by the external éeld

(Rl 4Rn, Rm), the spectrum of the resonance Raman
scattering differs considerably from the probe éeld spectrum
(the probe éeld spectrum under these conditions is described
in paper [9]). The spectra coincide only at a small frequency
detuning (jOj5G, Gm) and a high enough intensity
(jGj2 4GmGm=2) of exciting radiation, when a dip observed
against the broad-band background (Fig. 2a). At a small
intensity (jGj2 < GmGm=2) and exact resonance for exciting
radiation (O � 0), the Raman spectrum exhibits a peak
(Fig. 3a), while the probe éeld spectrum would exhibit a dip
[9]. In the case of a large frequency detuning of exciting
radiation (jOj4G), the amplitude of the narrow Raman
resonance is many times higher than the amplitude of the
êuorescence resonance (Fig. 3c), whereas in the probe éeld
spectrum the amplitude of the narrow resonance in the
absorption line wing does not exceed the resonance ampli-
tude near the centre of this line.

The peculiarities of the scattered radiation spectrum
mentioned in this paper are most strongly pronounced in the
case of a high enough degree of phase memory preservation
in collisions at the nÿ l transition (for 1ÿRe~n=Re n5 1).
For alkali metal atoms (they are well simulated by the L
scheme of levels) in the atmosphere of inert buffer gases, the
cross section of collision transitions between n, l compo-
nents of the superéne structure of the ground state is 6 ë 10
orders of magnitude smaller than the gas-kinetic cross
sections [10]. Thus, these objects should exhibit a high
degree of phase memory preservation in collisions so that
1ÿRe~n=Re n9 10ÿ6. Therefore, alkali metal atoms in the
atmosphere of inert gases are suitable enough to énd and
study all the peculiarities of the scattered radiation spectrum
considered in this paper.
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