
Abstract. Optical-gradient-force-induced spatially inhomo-
geneous disturbances of the dielectric permittivity of a
suspension of spherical nanoparticles are analysed in the
Maxwell Garnett approximation. Degenerate two-wave
mixing in such media is shown to cause the formation of a
spatial nanoparticle grating and the associated permittivity
grating in the colloid. Relations are derived for the complex
coupling constant of the waves. Codirectional and contra-
directional two-wave mixing in suspensions of light-absorbing
nanoparticles is considered. The two-beam coupling gain at
640 nm in various suspensions of Fe3O4 nanoparticles may
reach � 10 cmÿ1.
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1. Introduction

The optical nonlinearity of colloidal systems prepared from
various dispersion media and solid nanoparticles as a
dispersed phase manifests itself as a nonlinear and even
nonmonotonic [1 ë 4] dependence of their transmission on
the incident intensity, self-focusing and defocusing of laser
beams [3], degenerate optical phase conjugation [5] and the
formation of spatial optical solitons [6, 7].

The nonlinear optical limiting and bleaching effects at
532 and 1060 nm in nanoparticles of wide-gap semiconduc-
tors and dielectrics (TiO2, Al2O3, MgO, BaO and others)
dispersed in VM-4 vacuum pump oil were attributed by
Mikheeva and Sidorov [1] to photoconduction in a thin
surface layer, which inêuenced the effective refractive index
and extinction coefécient of the colloid. Kulchin et al. [3]
reported optical nonlinearity of Al2O3 nanoparticle suspen-
sions in VM-4 and immersion (cedarwood) oil at 633 and
532 nm: oscillations of their transmission as a function of
incident intensity and light-induced axisymmetric changes in
laser beam intensity, including the well-known self-focusing
and defocusing effects [8 ë 10]. They interpreted the observed
nonlinear changes in the refractive index of the suspensions

in terms of photoconduction in a thin surface layer of the
nanoparticles (like in previous work [1]) and pointed out
that the nonlinear response might be contributed by the
temperature nonlinearity of the dispersion medium and
quantum size effects.

Karavanskii et al. [2] used z-scan measurements at
532 nm (pulsed Nd :YAG laser, pulse width tp � 25 ns)
to assess the third-order nonlinearity of colloidal silver
solutions prepared by laser ablation in water and ethanol.
They showed that long-term (tens of hours) evolution of the
colloids, due to aggregation and sedimentation processes,
resulted in a transition from induced absorption to induced
transparency, which was attributed to the formation of an
oxide shell on the nanoparticles. Falc~ao-Filho et al. [4]
recently studied the nonlinear optical response of aqueous
suspensions of 10- to 30-nm-diameter silver nanoparticles to
80-ps Nd : YAG laser pulses. They used z-scan results to
evaluate the nonlinearity of the refractive index and
absorption coefécient of the suspensions up to the eighth
order. At a éll factor (volume fraction of nanoparticles)
f � 1:47� 10ÿ4, the Kerr coefécient n2 of the colloid was
determined to be ÿ31� 10ÿ19 m2 Wÿ1. The nonlinearity of
the refractive index and absorption coefécient of the
suspension was attributed to the nonlinear response of
the constituent materials to a strong optical éeld far
from resonance absorption lines [10]. At the same time,
the observed nonlinear dependence of the changes in
refractive index on f [4] suggests that there may be an
additional mechanism of nonlinearity, e.g. the optical
gradient force of the focused laser beam incident on the
nanoparticles [11 ë 14].

The optical nonlinearity of aqueous dispersions of
polystyrene nanoparticles and air nanobubbles was mod-
elled in terms of optical gradient forces [11 ë 15], and the
model was used to analyse spatial optical solitons [6, 7].
Gradient forces lead to a nonuniform nanoparticle distri-
bution over the colloid and, as a consequence, give rise to
spatially inhomogeneous disturbances of its dielectric per-
mittivity [16, 17] and local inhomogeneities of light
scattering [18 ë 20].

Note that Matuszewski et al. [6] and El-Ganainy et al. [7]
considered stationary soliton states developing in nano-
particle suspensions at high incident intensities
(� 10 GW mÿ2), requiring suféciently short pulse dura-
tions. The nonlinear response of a colloid can reach a
steady-state level in time tp owing to the displacement of the
nanoparticles under the action of the optical gradient force
over a distance L � tpv, which is of the same order as the
diameter w0 of the tightly focused light beam. Here, v � qP

E.Yu. Ageev, R.V. Litvinov, N.D. Khat'kov Tomsk State University of
Control Systems and Radioelectronics, prosp. Lenina 40, 634050 Tomsk,
Russia; e-mail: litvinovrv@rzi.tusur.ru;
L.V. Zagrebin, S.S. Shestov Centre for Information and Cell Medicine,
Denisovskii per. 26/1, 105005 Moscow, Russia

Received 17 June 2008; revision received 2 September 2008
Kvantovaya Elektronika 39 (5) 435 ë 441 (2009)
Translated by O.M. Tsarev

PACSnumbers:42.40.Eq; 42.65.An; 78.67.Bf; 82.70.Dd
DOI:10.1070/QE2009v039n05ABEH013928

Degenerate two-wave mixing via a dynamic grating
in Fe3O4 nanoparticle suspensions

E.Yu. Ageev, R.V. Litvinov, N.D. Khat'kov, L.V. Zagrebin, S.S. Shestov

729/693 ë KAI ë 14/vii-09 ë SVERKA ë 7 ÒÑÎÑÔ ÍÑÏÒ. å 1
Quantum Electronics 39 (5) 435 ë 441 (2009) ß2009 Kvantovaya Elektronika and Turpion Ltd



� dp=(3pcZw
2
0 ) is the particle velocity [11]; q is the fraction of

the light reêected from the particles; P is the incident power;
c is the speed of light; and Z is the viscosity of the liquid.
Taking P � 0:14 GW; tp � 6 ns; q � 0:1; Z � 1 mPa s
(water as the dispersion medium); dp � 50 nm and w0 �
10 mm, we obtain L � 15 mm. In the case of degenerate
mixing of two or more waves in a colloidal system, the
parameter that characterises the strong inhomogeneity of
the intensity distribution is the period of the interference
pattern L (L5w0), with a power per period � PL=w0. At
w0 � 50 mm and L � 5 mm, the displacement of a particle
under the action of the optical gradient force resulting from
the interference pattern is 6 mm. Thus, the optical non-
linearity of nanoparticle suspensions, due to optical gradient
forces, can be used to bring about a variety of nonlinear
optical effects.

In this paper, we analyse steady-state degenerate two-
wave mixing via a dynamic holographic grating in a
nanoparticle suspension.

2. Model

Consider the propagation of a monochromatic optical éeld
of frequency o in a suspension of spherical nanoparticles.
The nanoparticle diameter dp is considerably smaller than
the wavelength of the light l and than the skin layer
thickness of the nanoparticle material. This allows light ë
suspension interaction to be analysed in the dipole
approximation. In the absence of static electric and
magnetic éelds, the relative permittivity of the colloid, ec,
can then be represented by the Maxwell Garnett formula
[12 ë 16]:

ec � eb � 3NVp

eb�ep ÿ eb�
ep � 2eb ÿNVp�ep ÿ eb�

; (1)

where eb and ep are the relative permittivities of the
dispersion medium and dispersed phase, respectively, at the
frequency of the light wave; and N and Vp � pd 3

p/6 are the
nanoparticle concentration and volume, respectively. The
NVp product is the volume fraction of nanoparticles, or éll
factor f. In colloids f5 1 and, in the general case of light-
absorbing dispersion media with nonlinear optical proper-
ties, one can neglect the contribution to the permittivity of
the colloid, ec, from the small corrections jDebj5 jebj and
jDepj5 jepj to the permittivities of its components, eb and
ep, which appear in the second term on the right-hand side
of Eqn (1). Below, we consider colloids with nonabsorbing
dispersion media that have linear optical properties. The
expression for ec then takes the form

ec � n 2
b � 3NVpn

2
b

e 0p ÿ ie 00p ÿ n 2
b

e 0p ÿ ie 00p � 2n 2
b

; (2)

where nb is the refractive index of the dispersion medium,
and e 0p and e 00p are, respectively, the real and imaginary
parts of the permittivity of the dispersed phase.

The optical éeld exerts a gradient force F on the
nanoparticles [10 ë 15]. In the case of a monochromatic
optical éeld propagating in a nonmagnetic medium, the
gradient force can be represented as

F � a
2
H�EE ��; (3)

where H � (q=qx)ex � (q=qy)ey � (q=qz)ez; ex, ey and ez are
the Cartesian unit vectors; and E is the electric vector of the
optical éeld. Polarisation of a spherical particle at the
frequency of the optical éeld can be represented as [18 ë 20]

a � 3Vpe0n
2
b

e 0p ÿ ie 00p ÿ n 2
b

e 0p ÿ ie 00p � 2n 2
b

; (4)

where e0 is the permittivity of vacuum.
Like in previous studies concerned with analysis of

spatial solitons in nanoparticle suspensions [6, 7], we con-
sider a steady-state self-action of the optical éeld in a
colloid. The nanoparticle êux j produced by the gradient
force F meets the equation [21, 22]

Hj � H�mNFÿDHN� � 0; (5)

where m is the mobility of the particles, which can be
expressed through their diffusion coefécient using the
Einstein relation: D � kBTm (here, kB is the Boltzmann
constant and T is the absolute temperature).

The light-induced local changes of the nanoparticle
concentration N in the colloid give rise to spatially
inhomogeneous disturbances of its permittivity [see
Eqn (2)], which in turn inêuence the optical éeld. Another
mechanism that inêuences the optical éeld in the colloid is
Rayleigh scattering from nanoparticles [18 ë 20]. The local
energy losses of the optical éeld through Rayleigh scattering
can be quantiéed by the coefécient asc � Nssc (where ssc is
the effective scattering cross section), which can be repre-
sented in the case under consideration as

asc �
2

3
Np 5n 4

b
d 6
p

l 4

�e 0p ÿ n 2
b �2 � e 00 2p

�e 0p � 2n 2
b �2 � e 00 2p

: (6)

In general, as a result of the heating of the colloid
through light absorption by the nanoparticles and disper-
sion medium, the temperature nonlinearity of the medium
inêuences the optical éeld [3, 10, 23]. However, estimates
made by Karpov et al. [23] in studies of the optical
nonlinearity of hydrosols containing silver nanoparticles
show that the thermal mechanism makes no signiécant
contribution to the nonlinear response of the medium to
15-ns light pulses of intensity 8 GW cmÿ2. Therefore, in
what follows we neglect the thermal component of the
nonlinear response.

The Helmholtz equation for the electric vector of the
optical éeld,

H 2E� �k 2ec ÿ iascnbk�E � 0 (7)

(where k is the wavenumber), and Eqns (2) ë (6) describe
steady-state dynamic light scattering in a nanoparticle
suspension, with allowance for optical-éeld absorption and
scattering.

3. Wave mixing via a dynamic grating

Consider degenerate wave mixing in a colloid for the éelds

ER � R exp�i�otÿ kRr��; and ES � S exp�i�otÿ kSr�� (8)
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of the reference and signal beams, respectively, in trans-
mission (Fig. 1a) and reêection (Fig. 1b) geometries. Like
in previous studies [6, 7], the colloid is situated in a vessel
whose dimensions considerably exceed the beam diameter.
Far away from the beam axis, the nanoparticle êux is then
zero ( j (x; z! �1) � 0), and the nanoparticle concentra-
tion N0 is equal to that in the dark. From Eqns (3) and (5),
one can derive a relation between concentration N and the
electric vector E of the optical éeld under these conditions:

N � N0 exp

�
a

4kBT
EE �

�
� N0

�
1� a

4kBT
EE �

�
: (9)

At an incident intensity of � 1 GW mÿ2 and a refractive
index of the colloid close to that of water, nb � 1:33, the

absolute square of the electric vector of the optical éeld,
J � EE �, is � 1011 V2 mÿ2. At a nanoparticle concentra-
tion of � 1020 m3 and nanoparticle diameter of � 100 nm,
the exponent in (9) is much less than unity, and the Taylor
series expansion of the exponential can be restricted to the
linear term.

The total electric éeld E � ER � ES produces a spatial
grating of nanoparticles with a concentration

N � N0 �
�
aN0SR

�

4kBT
exp�Kr�� c. c.

�
; (10)

where K � kR ÿ kS. The grating gives rise to spatially
inhomogeneous disturbances of the permittivity of the
colloid and light scattering [see (2), (6) and (7)], leading to
variations in the wave amplitudes ER and ES along the

coupling length, which are slow compared to those over the
wavelength. Using the method of slowly varying amplitude
to solve Helmholtz equation (7), we can obtain equations
for the coupled waves in the paraxial approximation:

dS

dx
� � i

H

2
�SR ��R; dR

dx
� ÿiH

�

2
�S �R�S; (11)

where the minus sign in the former equation corresponds to
codirectional propagation (Fig. 1a), and the plus sign, to
contradirectional propagation (Fig. 1b). In Eqns (11), we
use the coupling constant

H � H 0f ÿH 0sc ÿ i�H 00f �H 00sc� � H 0 ÿ iH 00; (12)

which comprises the contributions of the optical gradient
force and light scattering, respectively:

H 0sc �
p 6e0N0d

9
p

8kBTl
4

�n 2
b ÿ e 0p�2 � e 00 2p

��e 0p � 2n 2
b � 2 � e 00 2p � 2

n 8
b e
00
p; (14)

H 00f �
3p 3e0N0d

6
p

8kBTl
�e 0p ÿ n 2

b ��e 0p � 2n 2
b � � e 00 2p

��e 0p � 2n 2
b � 2 � e 00 2p � 2

n 5
b e
00
p; (15)

H 00sc �
p 6e0N0d

9
p

24kBTl
4

� ��e
0
p ÿ n 2

b �2 � e 00 2p ���e 0p ÿ n 2
b ��e 0p � 2n 2

b � � e 00 2p �
��e 0p � 2n 2

b � 2 � e 00 2p � 2
n 6
b : (16)

The equations of coupled waves (11) have obvious érst
integrals,

J0;D � jRj2 � jSj2 � JR � JS; (17)

corresponding to the fundamental law of conservation of
energy when the energy is redistributed between light waves
coupled via a dynamic holographic grating. The minus and
plus signs in (17) correspond to codirectional (J0) and
contradirectional (JD) wave mixing, respectively.

Note that both the real part of the coupling constant,
H 0, responsible for variations in the phases of the light
waves, and its imaginary part, H 00, responsible for energy
exchange between the waves [24 ë 27], are determined by the
contributions of the two physical mechanisms (gradient
force and light scattering) underlying two-wave mixing in
nanoparticle suspensions [see (12) ë (16)]. The conductivity
of the nanoparticles [e 00p � sp=(oe0)] at the frequency of the
light wave inêuences the four components of the coupling
constant. For nonconducting nanoparticles (e 00p � 0), the
real part of H is contributed only the optical gradient force,
and its imaginary part, only by light scattering.

H 0f �
p 3e0N0d

6
p

16kBTl
��n 2

b ÿ e 0p��e 0p � 2n 2
b � ÿ e 00p�e 00p � 3n 2

b ����n 2
b ÿ e 0p��e 0p � 2n 2

b � ÿ e 00p�e 00p ÿ 3n 2
b ��

��e 0p � 2n 2
b �2 � e 00 2p �2

n 3
b ; (13)

z

K

a

b
K

y
x

0 d

IS0

IR0

IR

IS

y
x

0 d

z

IS0IR0

IRIS

Figure 1. (a) Codirectional and (b) contradirectional two-wave mixing
conégurations in a nonlinear medium (K � kR ÿ kS).
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4. Energy exchange in codirectional two-wave
mixing

Consider the key features of energy exchange in codirec-
tional two-wave mixing in a nanoparticle suspension when
the linear polarisation of the light waves is normal to their
propagation plane, i.e. parallel to the y axis (Fig. 1a).
Similar coupling geometries in various nonlinear media
other than nanoparticle suspensions were considered in
previous studies [24 ë 28]. It follows from Eqns (11) that, in
nanoparticle suspensions, the spatially inhomogeneous
disturbance of permittivity, De, is proportional to the
grating amplitude (De / SR �) [25]. Interactions in media
where De is proportional to the grating modulation depth
(De / 2SR �=J0) were considered by Vinetskii et al. [26, 27].
Because J0 for codirectional propagation is invariant [see
Eqns (11) and (17)], the equations of coupled waves (11)
written for the geometry under consideration have solutions
identical in structure to those reported earlier [25 ë 28].
According to those results, the energy exchange eféciency is
conveniently quantiéed by the two-beam coupling gain

G � 1

d
ln
JSdJR0

JS0JRd
;

where JR0 � jR0j2; JS0 � jS0j2; JRd � jRdj2; JSd � jSdj2; S0,
and R0 are the electric-vector amplitudes of the light waves
at x � 0; and Sd and Rd are those at x � d. In the case of
two-wave mixing in colloids,

G � H 00J0 � H 00f J0 �H 00scJ0 � Gf � Gsc; (18)

where Gf and Gsc are the gradient force and light scattering
contributions to the total energy exchange.

It follows from (15) and (16) that, for speciéc values of
nb, e

0
p and e 00p the direction of energy transfer from one light

wave to another, determined by the sign of G, is independent
of the relative beam intensities. The energy exchange is
unidirectional like in the case of scalar two-wave mixing in
photorefractive crystals [26 ë 28]. The relationship between
the gradient force and light scattering contributions to the
total energy exchange between the waves strongly depends
on the nanoparticle diameter. When the nanoparticle
diameter d f s meets the relation

df s �
l
p

�
9e 00p

nb��n 2
b ÿ e 0p�2 � e 00 2p �

�1=3

; (19)

these contributions are equal to one another. The
contribution of the gradient force prevails for dp < d f s,
and that of light scattering prevails for dp > d f s.

Note that, at a given complex permittivity of the
nanoparticle material (e 0p and e 00p), one can select a dis-
persion medium with a refractive index nb0 such that two-
wave mixing will involve no energy exchange (G � 0). For
nanoparticles from another material, with a refractive index
nb, G will be positive (negative) for nb > n 2

b0 (nb < n 2
b0). This

is illustrated in Fig. 2, which shows the calculated two-beam
coupling gain G and its components Gf and Gsc as functions
of the 640-nm refractive index nb for suspensions of
magnetite (Fe3O4) nanoparticles. In the calculations, we
used the following parameters J0 � 1011 V2 mÿ2, b �
JR0=JS0 � 1000, N0 � 0:45� 1020 mÿ3, dp � 70 nm ( f �
8:1� 10ÿ3), real part of the permittivity of Fe3O4

e 0p � 2:422 (from the Mineralogy Database [29]) and its
imaginary part e 00p � 3:083 (evaluated from the spectral
reêectivity data in the same database).

For aqueous suspensions (nb � 1:33) of Fe3O4 nano-
particles, the nanoparticle diameter df s at which the
contributions of the optical gradient force and light scatter-
ing to the two-beam coupling gain are equal to one another
[see (19)] is 189 nm. Therefore, when the two-wave mixing
conditions in a suspension of Fe3O4 nanoparticles corre-
spond to Fig. 2, the light scattering contribution to the total
energy exchange between the waves is small compared to the
gradient force contribution (Gsc 5Gf). At positive values of
G(nb), there is a local maximum. With increasing refractive
index nb, the light scattering contribution to the two-beam
coupling gain rises more rapidly than the gradient force
contribution [cf. Eqns (15) and (16)]. At nb � 4, these
contributions are comparable. At higher values of nb, the
light scattering contribution to the energy exchange prevails.

5. Energy exchange in contradirectional
two-wave mixing

Consider contradirectional two-wave mixing in a nano-
particle suspension when the linear polarisation of the light
waves is normal to their propagation plane, i.e. parallel to
the y axis (Fig. 1b). In contrast to codirectional two-wave
mixing, where the sum J0 is constant, contradirectional
mixing is characterised by a constant value of the difference
JD [see Eqns (11) and (17)]. Therefore, the equations
obtained by Vinetskii et al. [28] for contradirectional
two-wave mixing in media with spatially inhomogeneous
disturbances De / 2SR �=J0 have solutions different from
those to the equations for coupled waves in media with
disturbances De / SR �. Note that, as pointed out by Yeh
[30], the sum intensity is noninvariant (J0 6� const) in the
case of contradirectional wave mixing, which makes it
impossible to obtain a close-form solution of the vector
equations for coupled waves.

The solution to Eqns (11) in the case of contradirec-
tional wave mixing can be found in the same manner as the

G;Gf;Gsc

�
cmÿ1

1.5 2.0 2.5 nb

40

20

0

ÿ20

ÿ40

Gsc

Gf

G

Figure 2. Calculated two-beam coupling gain G and its components Gf

and Gsc as functions of the refractive index nb for suspensions of Fe3O4

nanoparticles.
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solution to the equations for codirectional wave mixing
[25 ë 28]. From Eqns (11) one can obtain nonlinear equa-
tions in JR � jRj2 and JS � jSj2. Integration of these
equations using the invariant JD [see Eqn (17)] gives

JS�x� �
JD

�JDJÿ1Sd � 1� exp�H 00JD�xÿ d �� ÿ 1
;

(20)

JR�x� �
JD

�JDJÿ1R0 ÿ 1� exp�ÿH 00JDx� � 1
:

JD can be determined by numerically solving the equation

JR0 ÿ JD
JR0

JSd � JD
JSd

� exp�H 00JDd�; (21)

which follows from (20) with the boundary conditions
JR(0) � JR0 and JS(d) � JSd.

Equation (21) allows us to introduce in the case of
contradirectional wave mixing the coefécient

G1 �
1

d
ln
JRd

JR0

JS0
JSd
� H 00JD (22)

analogous to the two-beam coupling gain for codirectional
wave mixing [see Eqn (18)] introduced in previous studies
[25 ë 28].

The coefécient G1, deéned by (22) for codirectional wave
mixing, differs from the two-beam coupling gain

G2 �
1

d
ln

�
JS0JR0

JSdJRd

�

introduced by Vinetskii et al. [28] for this type of coupling
in photorefractive crystals, which have inhomogeneous
disturbances of their permittivity, De / 2SR �=J0. In such
media, G2 is proportional to the coupling coefécient from
the equations for coupled waves. In media with De / SR �,
which include the colloids under consideration, G2 is a more
intricate function of H 00 than is the coefécient deéned by
(22).

Note that, in the case of codirectional propagation, G is
independent of the coupling length d [see Eqn (18)]. In
contradirectional wave mixing, G1 is a function of d because
the invariant JD depends on the hologram thickness [see
Eqns (21) and (22)]. At a small coupling length (d! 0), the
intensity of the light waves varies insigniécantly, and G1 is at
its maximum, equal approximately to H 00(JR0 ÿ JSd). For
b � JR0=JSd 4 1, the weaker wave is ampliéed exponentially
over the coupling length: JS0 � JSd exp (H

00JR0d ). When the
coupling length is large, an inversion occurs: JR0 � JS0 and
JRd � JSd. Therefore, JD � 0 (G1 � 0), which corresponds to
saturation of the energy exchange between the waves at
suféciently large d. Figure 3 shows the calculated two-beam
coupling gain G1, JS0, JRd as functions of d at l � 640 nm
for suspensions of Fe3O4 nanoparticles. These data illustrate

the above features of energy exchange in contradirectional
wave mixing. In the calculations, the nanoparticle concen-
tration was taken to be N0 � 1020 mÿ3, and the refractive
index of the dispersion medium was set to be equal to that of
water, nb � 1:33. The other parameters were the same as
those for the curves in Fig. 2.

6. Dynamic-grating amplitude for different types
of coupling

Two-wave mixing in suspensions of conducting nano-
particles leads to the formation of a dynamic permittivity
grating: De � (De1=2) exp (iKr)� c:c: In the case of codirec-
tional propagation, considered in Section 4, the small
contribution of light scattering can be neglected, and the
grating amplitude De1t in a nanoparticle suspension can be
represented in the form

De1t �
GJ0 expfi�fS0 ÿ fR0 ÿ fd ÿ �H 0f J0x=2��g
� bÿ1 exp�H 00f J0x� � b exp�ÿH 00f J0x� � 2�1=2

; (23)

where fS0 and fR0 are the initial phases of the signal and
reference beams, respectively, at x � 0,

G � e0p
2d 6

p n
4
bN0

16kBT

�e 0 2p ÿ n 2
b � 2 � e 00 2p

�e 0 2p � 2n 2
b � 2 � e 00 2p

; (24)

fd � 2 arctan

�
3n 2

b e
00
p

�e 0p � 2n 2
b ��e 0p ÿ n 2

b � � e 00 2p

�
: (25)

In the case of contradirectional propagation, considered
in section 5, with the light scattering contribution neglected,
the grating amplitude De1r in a nanoparticle suspension has
the form

De1r �
GJD expfi�fSd ÿ fR0 ÿ fd � Df�x��g

f�1� �JD=JSd�� exp�H 00f JD�xÿ d �� � �1ÿ �JD=JR0�� exp�ÿH 00f JDx� ÿ 2g1=2
; (26)

G1

�
cmÿ1 JS0; JRd

�
1010 V 2 mÿ2

0

10

5

0 2 4 6 8 d
�
mm

10

20

30

40

JRd

JS0

G1

Figure 3. Calculated two-beam coupling gain G1, JS0 and JRd as
functions of hologram thickness d in aqueous suspensions (nb � 1:33)
of Fe3O nanoparticles.
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where the phase advance due to wave mixing is

Df�x� � H 0f
2H 00f

� ln

�
exp�H 00f JD�xÿ d ���JD � JSd� ÿ JSd
exp�ÿH 00f JDx��JD ÿ JR0� � JR0

�
�H 0f JDd

2
: (27)

In codirectional wave mixing, the phase advance f of the
De grating is linear with the longitudinal coordinate x [see
Eqn (23)] and is proportional to the real part of the coupling
constant H 0f [see Eqn (13)]. For contradirectional propaga-
tion, the phase f of the grating is a nonlinear function of x
[see Eqns (26) and (27)] and depends on both the real (H 0f)
and imaginary (H 00f ) parts of the coupling constant [see
Eqn (15)]. Figure 4a shows the calculated phase f of the
grating as a function of x for codirectional and contra-
directional two-wave mixing at 640 nm in suspensions of
magnetite (Fe3O4) nanoparticles. In the calculations, the
nanoparticle concentration was taken to be N0 � 0:45�
1020 mÿ3 for codirectional propagation and 1020 mÿ3 for
contradirectional propagation. In both cases, the refractive
index of the dispersion medium was nb � 1:33, the hologram
thickness was d � 10 mm, and the phases of the light waves
were fSd � fS0 � fR0 � 0. The other parameters were the
same as those for the curves in Figs 2 and 3. Note that, in
the case of codirectional propagation, the linear phase
advance of the grating leads to a tilt of its isopleths with
respect to the x axis, which corresponds to a transverse
displacement (along the z axis) of the De grating relative to

the initial interference pattern with a period L by Dz(x) �
L�(H 0f J0x=2)� fd�=(2p). In the case of contradirectional
propagation, the nonlinear phase advance of the grating
leads to a continuous displacement of the hologram along
the x axis relative to the initial interference pattern.

Figures 4b and 4c show the dependences of the permitti-
vity grating amplitude De1t; 1r on f(x) in Fe3O4 nanoparticle
suspensions for codirectional and contradirectional prop-
agation, respectively (corresponding to the f(x) curves in
Fig. 4a). In the case of codirectional propagation, jDe1t(x)j
has a maximum at the point xmax where JS and JR are equal
to one another and the magnitudes of their gradients,
dJS=dx and dJR=dx, are maximal [25]. In the case of
contradirectional propagation, jDe1r(x)j reaches a maximum
at the boundary x � 0, where JS and JR are maximal.

It follows from Fig. 2 and relation (18) that, in the case
of two-wave mixing in an Fe3O4 nanoparticle suspension
with a refractive index of the dispersion medium nb0 � 2:52,
the imaginary part of the coupling constant is H 00 �
H 00f � 0. Therefore, there is no energy exchange between
the light waves, and the amplitudes of the dynamic gratings
produced in the colloid are independent of jDe1t; 1rj � const
[see Eqns (23) and (26)]. In the case of codirectional
propagation with H 00 � H 00f � 0, the phase advance along
the x axis is linear, in contrast to the case H 00f 6� 0 [see
Eqn (27)].

7. Conclusions

Mixing of two monochromatic light waves in a nanoparticle
suspension leads to the formation of a dynamic permittivity
grating and energy exchange between the waves. The
optical nonlinearity underlying such coupling is due to the
optical gradient force acting on the nanoparticles, which
produces a spatially inhomogeneous nanoparticle distribu-
tion in the colloid. This leads to inhomogeneous
disturbances of the permittivity of the medium and
inhomogeneous light scattering, which in turn inêuence
the optical éeld.

In the general case, the permittivity grating resulting
from two-wave mixing in a suspension of spherical nano-
particles comprises local and nonlocal components. The
latter is due to light absorption and scattering by the
nanoparticles. Two-wave mixing via the nonlocal compo-
nent of the dynamic grating in a suspension of magnetite
(Fe3O4) nanoparticles leads to efécient energy exchange
between the waves. When the nanoparticle diameter is
within 10 nm, the major contribution to the coupling comes
from the gradient mechanism of optical nonlinearity.

The direction of energy exchange between the waves is
independent of their relative intensities and, at a given
permittivity of the nanoparticles, it is determined by the
refractive index of the dispersion medium, nb. One can select
a dispersion medium with a refractive index nb0 such that
there will be no energy exchange between the waves. This
refractive index is close to that of the nanoparticles. In two-
wave mixing, the direction of energy transfer in colloids with
nb > nb0 is opposite to that in colloids with nb < nb0.

In the case of two-wave mixing in a suspension of
nonconducting nanoparticles, the nonlocal component of
the dynamic grating is negligible, there is no energy
exchange between the waves, and the coupling via the local
component leads only to changes in the phases of the light
waves.
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Figure 4. Phase f (a) and amplitudes jDe1tj (b) and and jDe1rj (c) of 10-
mm-thick permittivity gratings in aqueous suspensions of Fe3O4 nano-
particles for codirectional (solid curves) and contradirectional (dashed
curves) two-wave mixing.
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