
Abstract. Two-dimensional Bragg resonators based on planar
dielectric waveguides are analysed. It is shown that the doubly
periodic corrugation deposited on the dielectric surface in the
form of two gratings with translational vectors directed
perpendicular to each other ensures effective selection of
modes along two coordinates at large Fresnel parameters.
This result is obtained both by the method of coupled waves
(geometrical optics approximation) and by the direct
numerical simulations. Two-dimensional Bragg resonators
make it possible to fabricate two-dimensional distributed
feedback lasers and to provide generation of spatially
coherent radiation in large-volume active media.

Keywords: distributed feedback lasers, two-dimensional Bragg
resonator, mode selection.

1. Introduction

Conventional distributed feedback lasers [1 ë 7] use the
coupling of waveguide modes propagating in dielectric
structures with aperiodic modulation of parameters, for
example, the layer thickness:

b�z� � b0 � b1 cos �hz, (1)

where b0 is the average layer thickness; b1 is the modulation
amplitude; �h � 2p=d; d is the modulation period. These
structures produce a one-dimensional Bragg resonator in
which two counterpropagating waves are scattered. This
resonator provides efécient mode selection along their
longitudinal index. In the case of the planar geometry,
radiation mode-locking along the second transverse coor-
dinate z can be ensured by the diffraction spread of wave
beams if the transverse size lx of the system is limited by the
Fresnel condition l 2x=lzl < 1, where lz is the resonator
length. Authors of paper [8] studied theoretically the
efécient method of spatial mode-locking of radiation at

large Fresnel parameters l 2x=lzl4 1, which is based on the
use of a two-dimensional distributed feedback. In the
optical spectrum, a two-dimensional distributed feedback
can be realised with the help of a dielectric plate with a
doubly periodic sinusoidal modulation of one of the
surfaces (Fig. 1a,b)

b�x; z� � b0 � b1�cos �h�x� z� � cos �h�xÿ z�� (2)

with translational vectors K� � �hx0 � �hz0 directed perpen-
dicular to each other (x0, z0 are the unit vectors of the
coordinate system). Two-dimensional Bragg structure (2)
provides coupling and mutual scattering of four partial
wave êuxes C�z and C�x with wave vectors h propagating in
�z and �x directions and speciéed by the vector potentials:

A � Re
n�
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Figure 1. General scheme of a laser with a two-dimensional distributed
feedback (a), transverse cross section of a two dimensional Bragg
resonator (b) and the diagram illustrating scattering of partial waves
(c); k�x;z are the wave vectors of partial waves; ( 1 ) active medium; ( 2 )
Bragg grating.



where a1;2 are transverse mode structures of a planar
dielectric wavegude. Effective coupling of waves on
structure (2) takes place when the resonance condition is
fulélled: h � �h (see Fig. 1c). In this case, waves C�z scatter
into waves C�x , and the direct coupling of waves Cÿz $ C�z
and Cÿx $ C�x is absent.

Note that similar to planar Bragg resonators of the
microwave region, which are based on corrugated metal
plates [9 ë 11], the doubly periodic sinusoidal corrugation for
practical realisations can be replaced by a chess-type cor-
rugation (see Fig. 1a):

b�x; z� � b0 � b1 f �x� f �z�,

f �x� � 1; 2qp=�h < x < �2q� 1�p=�h;
ÿ1; �2qÿ 1�p=�h < x < 2qp=�h; q � 1; 2; . . .

�
(4)

By using the method of coupled waves we studied
selective properties of two-dimensional Bragg structures
and showed that such systems ensure effective mode
selection along two coordinates. In this case, the modes
located in the vicinity of the Bragg frequency have the
highest Q factor. These results are conérmed by the direct
numerical simulation based on the standard CST Micro-
Wave Studio code.

2. Eigenmodes of a two-dimensional
Bragg structure

Eigenwaves of a planar dielectric waveguide are either TE-
or TM-polarised. In the case of a one-dimensional Bragg
structure, the waves of these polarisations are coupled [3].
For Bragg structure (2) studied below taking into account
that the conditions for the Bragg scattering are fulélled for
partial waves Cx and Cz propagating in mutually perpen-
dicular directions, only for the TM-polarised waves the
partial waves have the common electric éeld component
(Ey) and thus are eféciently coupled. For TE-polarised
waves, the electric éeld is directed perpendicular to the
wave vector and during scattering on structure (2) the
electric éelds of partial waves Cx and Cz are mutually
perpendicular. Thus, the efécient coupling of waves with
these polarisations is absent. Note, however, that it is
possible to organise coupling of TE- and TM-polarised
waves (Cx and Cz) but with a lower coupling coefécient
than that in the case of TM-wave scattering. Let us restrict
ourselves to the case when the width of the dielectric layer is
associated with the condition kb0(eÿ 1)1=2 < p (where
k � o0=c, e is the dielectric constant) for which in the
frequency range speciéed by the active medium band there
is an only propagating TM-wave with one variation along
the y axis (the number of variations is a quantity exceeding
the number of éeld zeros by unity). The éeld components of
partial waves can be presented in the form

a1y�y� � a2y�y� � cos gy, a1z�y� � a2x�y� �
ÿig
h

sin gy (5)

for jyj < ly=2,

a1y�y� � a2y�y� �
g

p
sin

�
gly

2

�
eÿpjyj,

a1z�y� � a2x�y� �
ÿig
h

sin

�
gly

2

�
eÿpjyj (6)

for jyj > ly=2. Here, g � (ek 2 ÿ h 2)1=2 and p � (h 2 ÿ k 2)1=2

are transverse wave numbers inside a dielectric and in
vacuum, respectively, which can be found from the
characteristic equation for symmetric TM-modes of a
dielectric waveguide:h
�eÿ 1�k 2 ÿ g 2

i1=2
� g

e
tan

�
gly

2

�
. (7)

Mutual coupling and scattering of four partial wave
êuxes on the two-dimensional Bragg structure in the geo-
metric optics approximation, which is valid at large Fresnel
numbers, is described by the system of equations [9]:

qC�z
qz
� idC�z � ia�C�x � Cÿx � � 0,

(8)
qC�x
qx
� idC�x � ia�C�z � Cÿz � � 0.

Here, d � h(o0)ÿ �h is the frequency detuning from the
frequency of the exact Bragg resonance and a is the
coupling coefécient, which can be presented in the form [3]

a � vb1h

4

�eÿ h 2=k 2��1� 1=e 2�
�h 2=e 2k 2 � h 2=k 2 ÿ 1�b0 � 2�h 2 ÿ k 2�ÿ1=2

, (9)

where v � 1 in the case of sinusoidal modulation (2) and
v � 16p 2 in the case of chess corrugation (4).

By representing the solution of equations (8) in the form
�e i�Lxx�Lzz�, we obtain the dispersion equation for normal
waves in the inénite two-dimensional Bragg structure:

�d 2 ÿ L 2
x ��d 2 ÿ L 2

z � ÿ 4a 2d 2 � 0. (10)

At d > 0, dispersion characteristics d(Lx;Lz) (Fig. 2)
represent two sheets (at d < 0, the solution is mirror
symmetric to that shown in the égure). Sheet ( 1 ) intersects
the vertical axis at the point d=a � 2 (mirror point
d=a � ÿ2). These points correspond to the extrema of
the function d(Lx;Lz) at which the minima of the group
velocities of normal waves are achieved. As shown below, a
part of high-Q eigenmodes of the two-dimensional Bragg
structure are located near these points. These modes, in
principle, are similar to the modes of a conventional one-
dimensional Bragg structure. The speciéc feature of the
two-dimensional Bragg structure consists in the presence of
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Figure 2. Dispersion parameters d�Lx;Lz� of normal waves for the two-
dimensional Bragg structure in the region d > 0.
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sheet ( 2 ), which intersects the vertical axis at the point
d � 0. For this sheet in the vicinity Lx;z � 0 not only the
group velocity but also its derivatives tend to zero, which
favours the formations of high-Q modes in the mentioned
vicinity.

The spectrum of eignemodes can be found from the
solution of Eqns (8) with boundary conditions

C�z
���
z�0
� 0, Cÿz

���
z�lz
� 0, C�x

���
x�0
� 0, Cÿx

���
x�l
� 0, (11)

at which external energy êuxes are absent.
To solve boundary problem (8), (11), we will introduce

functions Fz � C�z � Cÿz and Fx � C�x � Cÿx for which
equations (8) will be rewritten in the form

q 2Fz

qz 2
� d 2Fz � ÿ2adFx,

(12)

q 2Fx

qx 2
� d 2Fx � ÿ2adFz,

with boundary conditions�
qFz

qz
� idFz

�����
z�lz=2�lz=2

� 0,

�
qFx

qx
� idFx

�����
x�lx=2�lx=2

� 0.

(13)

Equations (12) can be solved by the method of sepa-
ration of variables, by substituting expressions for Fx;z in the
form

Fz�x; z� � Bz fx�x� fz�z�,
Fx�x; z� � Bx fx�x� fz�z�,

(14)

where Bx;z are arbitrary constants, fx(x) are the eigenfunc-
tions of operators Tz and Tx;

Tx f �x� �
d2f �x�
dx 2

� d 2f �x�. (15)

Eigenfunctions fx(x) of the operator Tx satisfying the
equation Tx fx(x) � gx fx(x) can be represented in the form

fx�x� �
�d� Lx�1=2
�dÿ Lx�1=2

n
�d� Lx� exp

�
iLx�x� lx=2�

�
ÿ�dÿ Lx� exp

�ÿ iLx�xÿ lx=2�
�o

, (16)

where Lx � (d 2 ÿ gx)
1=2, gx is the eigenvalue of the operator

Tx deéned from the characteristic equation

exp�2iLxlx� �
�dÿ Lx�2
�d� Lx�2

. (17)

By substituting (14) into expression (12), from the condition
of the nontrivial solution condition we obtain the relation

gxgz � 4a 2d 2. (18)

Here, gx, gz are eigenvalues of the operators Tz and Tx,
respectively. The solution of algebraic equation (18)

determines the spectrum of complex resonator eigenfre-
quencies d.

To determine the spatial éeld structures of partial waves
constituting the resonator eigenmode, we will substitute (14)
into (12) and after integration taking into account boundary
conditions (13) we obtain:

C�z � 2ia�d� Lz� exp�� iLzlz=2� sin�Lz�z� lz=2�� fx�x�,

C�x � 2ia�d� Lx� exp�� iLxlx=2� sin�Lx�x� lx=2�� fz�z�.
(19)

Under conditions of strong coupling of waves alx;z 4 1,
we can solve boundary problem (8), (11) in the explicit form
[9]

dn;m � �
p 2mn

2alzlx
� i

p 2

2a 2lzlx

�
n 2

lz
�m 2

lx

�
, (20a)

dn;m � �
�
2a� p 2

4a

�
n 2

l 2z
�m 2

l 2x

��
� i

p 2

2a 2

�
n 2

l 3z
�m 2

l 3x

�
, (20b)

where n and m are the subscripts of modes along the
longitudinal and transverse coordinates.

Frequencies and Q factors of eigenmodes are deter-
mined, respectively, by the real and imaginary parts of the
eigenvalue dn;m:

on;m � c�h� cRe dn;m, (21a)

Qn;m � ��h=2�Im dn;m. (21b)

According to (20), the two-dimensional Bragg resonator has
a high selectivity both in the longitudinal n and transverse
m mode subscripts. This selectivity is ensured by the
excitation of electromagnetic energy êuxes not only in the
longitudinal direction (�z) (which takes place in conven-
tional one-dimensional Bragg resonators [1 ë 7]) but
additionally in the transverse direction (�x). The resonator
eigenmodes are located in the vicinity of the exact Bragg
resonance frequency �o � �hc [d � 0, (20a)] as well as in the
vicinity of the Bragg scattering region d � �2a (20b)
(Fig. 3). It is obvious that the modes described by
expression (20b) have analogues in the mode spectrum of
a one-dimensional Bragg resonator and are associated with
sheet ( 1 ) (see Fig. 2) of dispersion parameters of normal
waves. A speciéc feature of two-dimensional Bragg
resonators is the presence of high-Q modes located in
the absence of corrugation defects in the centre of the Bragg
band and described by expression (20a). These modes are
associated with sheet ( 2 ) of dispersion parameters. Modes

Qn;m

ÿ2a 0 2a Re�dn;m�

2,2
1,2
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Figure 3. Mode spectrum of the two-dimensional Bragg resonator.
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with subscripts fn � 0; m � 1g and fn � 1;m � 0g have the
highest Q factors (Fig. 3). These modes in the applied
geometrical optics approximation are degenerate with
respect to the frequency and in the case lx � lz they are
degenerate with respect to the Q factor. To remove the
degeneracy with respect to the Q factor, it is necessary to
use the rectangular structures. At lz > lx the mode with the
subscripts fn � 1; m � 0g has the highest Q factor.
According to (20, (21), the Q factor of this mode is
determined by the relation

Q1;0 �
�hk 2a 2l 2z lx

p 2
. (22)

It should be emphasised that within the framework of the
used assumptions (geometrical optics approximation and
neglect of ohmic losses) the relation between the mode Q
factors with different subscripts is independent of the
geometric dimensions of the system. The éeld structures of
partial waves of the fundamental mode for the case lz � 2lx
are presented in Fig. 4. To reéne the value of the
fundamental mode Q factor at relatively small parameters
alx;z, we solved equation (18) numerically by using the
particle swarm optimisation (PSO) method. The results
presented in Fig. 5 demonstrate that relation (22) yields
good approximation for the Q factor at alz > 2.

It is important to note that the existence of modes inside
the Bragg resonance band in the absence of periodicity

defects is a speciéc feature of the two-dimensional Bragg
structures under study, which differ both from one-dimen-
sional (one periodic) prototypes [1 ë 4] and from two-
dimensional photonic crystals [12 ë 14], where periodicity
defects should be introduced to produce modes.

3. Simulation of selective parameters
of two-dimensional Bragg structures

To conérm the results of the analytic consideration, we
performed additional simulation of electrodynamic param-
eters of planar two-dimensional Bragg structures based on
dielectric waveguides within the framework of a three-
dimensional electromagnetic CST MicroWave Studio code.
The eigenmodes of the electrodynamic system were
determined by simulating its excitation by the external
short current pulse from a point dipole placed inside the
resonator. The duration of the `powering' current pulse was
o0Dt � 40, which corresponded to the spectral width
Do=o0 � 0:3. We analysed the éeld evolution inside the
resonator. After several passes of partial wave êuxes in the
resonator, characteristic maxima, which correspond to the
position of the highest-Q eigenmodes, should be formed in
the spectrum of the excited éeld.

Figures 6, 7 present the results of simulation for the
resonator with the plate thickness b0 � 0:45l, dielectric
constant e � 1:5, width lx � 27l and length lz � 81l (the
Fresnel parameters are Nz � l 2z =llx � 250 and Nx � l 2x=llz
� 10). The corrugation depth was b1 � 0:045l and the
period was d � 0:925l. The exciting dipole was placed at
the point with the coordinates (2lx=3; 2lz=3). The total
simulation time was o0tmax � 8000, which corresponds to
� 20ÿ 30 passes of waves in the resonator.

The evolution of the electic éeld at some point inside the
structure Ey(lx=3; lz=3; t) at the entire simulation interval is
shown in Fig. 6a. Figure 6b presents the exponential éeld
decay at the interval o0t � 3000ÿ 6000 at which the
fundamental mode is selected. For comparison, the same
égure shows the curve corresponding to the signal decay
with the decrement, which was obtained by solving char-
acteristic equation (18) for the fundamental mode of the
Bragg resonator. One can see good agreement between the
simulation results and the results of analytic consideration
within the framework of the method of coupled waves. The
Q factor Q1;0 calculated by the éeld decay velocity was
� 500. Figure 6 also shows the signal spectrum calculated
during the entire simulation time (Fig. 6c) and at the énite
time interval (Fig. 6d). It follows from these égures that the
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Figure 4. Field structure of partial waves C�z (a) and C�x (b) for the fundamental mode with the subscripts fn � 0, m � 1g; lz � 5, lx � 2:5.
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Figure 5. Dependence of d for the fundamental mode on the resonator
dimension at lx � lz=2; the dashed cure shows the analytic dependence in
the approximation alx;z 4 1.
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fundamental mode is selected at the highest-Q Bragg
resonance frequency. This mode can interpreted as an
eigenmode of the two-dimensional Bragg resonator with
the subscripts fn � 1;m � 0g. Thus, the highest-Q fre-
quency and the absolute value of its Q factor found in
the direct numerical simulation agree well with the analytic
results. Simulation simultaneously conérms the presence of
high-Q modes in the centre of the non-transparency band in
the two-dimensional Bragg resonator. Note that in conven-
tional one-dimensional Bragg structures the modes are
located at the edges of the non-transparency region. In
this case, there exists the problem of discrimination of a low-
frequency or high-frequency mode (see, for example, [7]).

Figure 7 presents spatial éeld structures of partial wave
êuxes under conditions of selection of the fundamental

mode of the two-dimensional Bragg resonator. In fact, this
égure shows distributions Hx (Fig. 7a) and Hz (Fig. 7b) of
the magnetic éeld component. As follows from the repre-
sentation for partial wave components (3), the éeld Hx is
proportional to the sum of partial wave êuxes jC�z ÿ Cÿz j
propagating along the z axis and the éeld Hz ë to the sum of
êuxes jC�x ÿ Cÿx j propagating along the x axis. The
comparison with the analytic results (Fig. 5) shows that
the éeld structures in the simulation reproduce with a high
accuracy these results including the relation between the
amplitudes of the partial waves.

Note that the resonator dimensions used above in the
direct numerical simulation are not limiting from the point
of view of selective possibilities and their choice is limited by
the computational resources. As follows from the results of
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Figure 6. Simulation results of excitation of the two-dimensional structure by a short electromagnetic pulse: amplitude evolution of the éeld projection
jEyj at the observation point over the entire simulation interval (o0t � 0ÿ 8000) (a), éeld evolution at the stage of the exponential decay
(o0t � 3000ÿ 6000), for comparison thick curve shows the signal decay with the decrement obtained from the solution of characteristic equation (18)
(b) as well as the éeld spectra So (c) and (d) corresponding to (a) and (b), respectively; lz � 81l, lx � 27l, b0 � 0:45l, e � 1:5.
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Figure 7. Spatial structure of the amplitudes of éeld projections jHxj (a) and jHzj (b) upon selection of the resonator fundamental mode.
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the analytic consideration, the two-dimensional Bragg
resonator preserves the selectivity upon an increase in the
dimensions lz and lx, because, as one can see from
expressions (20), (21), the relation between the mode Q
factors with a different number of the éeld variation along
the axes x and z does not depend on the above parameters.
However, at a éxed coupling coefécient, the Q factors of all
the modes increase and at some level will be levelled off by
ohmic losses. On the other hand, a simultaneous decrease in
the coupling coefécient, which can be achieved by decreas-
ing the modulation depth of the medium, has natural
technological limitations. Nevertheless, the characteristic
system width lx, at which the two-dimensional Bragg
resonator ensures the mode selection, is of the order of
its length lz and the latter can have the same order as that in
the case of one-dimensional resonators.

4. Conclusions

We have shown that two-dimensional doubly periodic
structure (2) deposited on the dielectric surface ensures
effective mode selection along two coordinates. This result
has been obtained both within the framework of the
method of coupled waves (geometrical optics approxima-
tion) and the direct numerical simulation. Two-dimensional
Bragg structures allow one to design lasers with a two-
dimensional distributed feedback. The analysis of the
dynamics of these lasers within the framework of the
semiclassical approach [8] has shown that at moderate
excesses above the threshold it is possible to establish the
stationary single-frequency lasing at large Fresnel param-
eters. In this case, the éeld distribution of partial waves in
the stationary lasing regime is close to the structure of the
above-described fundamental mode of the two-dimensional
Bragg resonator. Note in conclusion that ampliécation of
TM-polarised waves takes place not for all types of the
active medium. For example, TM-waves are ampliéed in
semiconductor lasers but cannot be used in heterostructure
lasers. In the latter, coupling on a two-dimensional Bragg
grating of TE- and TM-waves should be used. In this case,
we deal with ampliécation of the active medium of two
counterpropagating TE-modes, while TM-waves propagat-
ing in the transverse direction perform radiation mode
locking of separate parts of the active medium. To this end,
the description of the electrodynamic parameters of two-
dimensional Bragg resonators making use of TE- and TM-
wave coupling is reduced, with the accuracy to the coupling
coefécient, to that presented above.
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