
Abstract. A ring optical resonator with an arbitrary but
continuous change in the permittivity of the élling medium
along the resonator axis is considered. It is shown that in the
case of a small deviation of the permittivity from its average
value, the double degeneracy of eigenfrequencies inherent in a
homogeneous resonator is removed and the corresponding
modes acquire the properties of standing waves. Simple
universal expressions are derived to calculate eigenfrequencies
and distribution coefécients in modes. Conditions are found
under which splitting in the frequency spectrum of an
inhomogeneous resonator is absent. The general results
obtained in the paper can be used in numerical experiments.
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1. For ideal homogeneously élled stable optical cavities
without intracavity, output and diffraction losses, the
solution of the spectral problem is known in the high-
frequency approximation. The inhomogeneous élling is one
of the types of perturbation of an ideal optical resonator. In
practice, inhomogeneities are caused by intracavity ele-
ments. Usually, measures are taken to eliminate
backscattering from these inhomogeneities but even quality
samples do not guarantee complete absence of back-
scattering, and consequently, the inhomogeneity as its
reason. In addition, it is impossible to eliminate the
possibility of using partially reêecting intracavity elements
to produce the required spectral properties of a complex
cavity. Although the inhomogeneity is usually of a mixed
type, it is expedient to select a purely transverse (depending
only on the cross section coordinates, normal to the base
contour of the optical resonator) and a purely longitudinal
(depending only on the coordinate z along the base contour
axis) inhomogeneities. Such a division in the inhomogeneity
types makes it possible to simplify considerably the optical
resonator model and to obtain important qualitative
results. The transverse inhomogeneity mainly determines
the mode transverse structure and eigenfrequencies of
higher-order modes. Zero-order (longitudinal) modes and
their frequencies are changed when the longitudinal
inhomogeneity is introduced.

In this paper, the perturbation of an optical resonator by
a longitudinal inhomogeneity is considered. In this case, it is
sufécient to consider a one-dimensional resonator model
and to study one of the most complicated spectral problems
appearing in the theory of ring optical resonators (RORs),
when an ideal resonator possesses a doubly degenerate
spectrum. It was found that the inhomogeneity can elim-
inate this degeneracy and change the character of
longitudinal modes. It is convenient to study the inêuence
of these perturbations on the ROR spectrum by particular
examples. The spectral problem for a ROR with the simplest
types of the longitudinal inhomogeneity was approximately
solved in [1, 2], where the splitting of the degenerate
spectrum in an ideal resonator was estimated and mode
peculiarities were found (the results of other papers on this
subject are also presented). In the presence of splitting, the
spectrum becomes simple and the modes are the standing
waves (in an ideal ROR for each eigenfrequency they are
usually assumed to be two counterpropagating travelling
waves). The conditions under which splitting is absent were
found.

It was assumed in [1, 2] that longitudinal inhomogene-
ities have discontinuities. This allows one to use Fresnel
formulae and reêection and transmission coefécients at
points of discontinuities. Thus, the spectral problem for
differential operators can be reduced to algebraic. Although
the method of papers [1, 2] remains suitable in the case of
any piecewise-uniform élling medium, the disadvantage of
this model is a cumbersome computation algorithm. There-
fore, it is reasonable to abandon the model of `sharp'
inhomogeneities (signiécantly changing at the wavelength)
and consider `soft' inhomogeneities. First, inhomogeneities
of this type can exist in the resonator. Second, it is
impossible to predict beforehand how adequate `sharp'
inhomogeneities can be described within the framework
of a `soft' model.

The aim of this paper is to solve the spectral problem for
the ROR with a rather smooth and weak change in a élling
inhomogeneity of an arbitrary type and to determine the
spectral properties and the mode structure depending on the
integral parameters of the variable refractive index. The
general solution of this problem can be rather simple and
easily reproducible when the inhomogeneity type is spe-
ciéed. Limitations on the degree of the inhomogeneity
smoothness should be also speciéed for which this solution
can be obtained.

2. Let us formulate the spectral problem for a longi-
tudinally inhomogeneous ROR and transform it to the form
convenient for deriving the approximate solution. Because
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the optical properties of a élling medium change only along
the ROR axis, the derivatives over the transverse coor-
dinates can be neglected and the éeld E (z; t) can be assumed
one-dimensional (04 z4L, where L is the ROR perime-
ter). For simplicity, its polarisation is assumed linear. By
considering the stationary oscillations with the frequency o,
we obtain the equation

d2E

dz 2
� k 2Q 2�z�E � 0 (1)

for the amplitude of these oscillations. The wave number k
and the refractive index Q(z) are introduced by the relations
k 2 � o 2me0 and e(z)=e0 � Q 2(z), where e0 is the permittivity
of an empty resonator; the magnetic permeability m is
constant and the permittivity e (z) arbitrarily depends on the
coordinate. We assume that Q 2(z) � 1� d(z), where 04
d(z)5 1. In the optical frequency range, k is large and
solutions (1) can be sought for in the asymptotic
approximation. However, expression (1) is hardly suitable
for this type of approximations. Therefore, we will use the
known transformation to write (1) in the normal Liouville
form:

ÿ d2u

dx 2
� q�x�u � w 2u. (2)

Here, we introduce a new variable

x�z� � 1

L

� z

0

Q�z�dz, (3)

a new function

u�x� � Q 1=2�z�x��E�z�x�� (4)

and a constant

L � 1

p

� L

0

Q�z�dz. (5)

The variation interval in z is transformed into the variation
interval (0; p) in x. The parameter k of Eqn (1) changes to a
large parameter w � Lk. The variable coefécient q(x) is
independent of k, which allows one to seek for the
asymptotic approximation of the solution of Eqn (2) and
by using expressions (3) and (4) to pass from it to the
required solution of expression (1).

The ROR modes should satisfy the boundary conditions

E�0� � E�L�, dE�0�
dz

� dE�L�
dz

.

In this connection, it is necessary to seek for the
eigenfunctions and their corresponding eigenvalues of
equation (2) with boundary conditions of a periodic type:

u�0� � u�p�, du�0�
dx
� du�p�

dx
. (6)

3. Consider an auxiliary spectral problem generated by
relations (2), (6), where the spectral parameter w is related to
the frequency and can be assumed large. The coefécient q (x)
is uniformly smaller than w, which imposes certain limi-
tations on the smoothness degree of the function d(z) (see

below). We will solve this spectral problem (determination
of eigenvalues and eigenfunctions) in an explicit form but
approximately for w!1.

As the fundamental system of solutions (FSS) of
expression (2) we will select two its solutions, i.e. f(x; w)
and y(x; w).

f�0; w� � 1,
df�0; w�

dx
� 0, y�0; w� � 0,

dy�0; w�
dx

� 1.

It is obvious that these solutions also satisfy the integral
equations

f�x; w� � cos�wx� � 1

w

� x

0
sin� w�xÿ x 0��q�x 0�f�x 0; w�dx 0, (7)

y�x; w� � 1

w
sin�wx� � 1

w

� x

0
sin� w�xÿ x 0��q�x 0�f�x 0; w�dx 0. (8)

Any solutions of problem (2), i.e. the eigenfunction and its
derivative can be represented in the form of linear
combinations of functions from the FSS and their
derivatives, respectively:

u�x; w� � c1f�x; w� � c2y�x; w�,

du�x; w�
dx

� c1
df�x; w�

dx
� c2

dy�x; w�
dx

.

The constants c1, c2 are such that the reduced expansions
satisfy boundary conditions (6):

c1 � c1f�p; w� � c2y�p; w�, c2 � c1
df�p; w�

dx
� c2

dy�p; w�
dx

. (9)

The nonzero solution of uniform system (9) exists only at

det

f�p; w� ÿ 1 y�p; w�
df�p; w�

dx

dy�p; w�
dx

ÿ 1

0B@
1CA � 0.

It follows that the eigenvalues should be the roots of the
equation

dy�p; w�
dx

� f�p; w� ÿ 2 � 0. (10)

To derive asymptotic expressions for the roots of Eqn (10),
we will érst énd the asymptotic expressions for the FSS.
For this purpose, we will use integral expressions (7), (8).
Because the integral term is of the order O(1=w), we can
pass to the érst iterations of their solution:

f�x; w� � cos�wx� � 1

w

� x

0

sin� w�xÿ x 0��q�x 0� cos�wx 0�dx 0,

dy�x; w�
dx

� cos�wp� �
� x

0

cos� w�xÿ x 0��q�x 0� cos�wp�dx 0.

By using the second iteration, we can obtain approxima-
tions of the order O(1=w 2) for f(p; w) and dy(p; w)=dx:

f�p; w� � cos�wp� � 1

w

� p

0
dx 0 sin� w�pÿ x 0��q�x 0� cos�wx 0� �
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� 1

w 2

� p

0

dx 0 sin� w�pÿ x 0��q�x 0�

�
� x 0

0

dx 00 sin� w�x 0 ÿ x 00��q�x 00� cos�wx 00�, (11)

dy�p; w�
dx

� cos�wx� � 1

w

� p

0
dx 0 cos� w�pÿ x 0��q�x 0� sin�wx 0�

� 1

w 2

� p

0

dx 0 cos� w�pÿ x 0��q�x 0�

�
� x 0

0

dx 00 sin� w�x 0 ÿ x 00��q�x 00� sin�wx 00�. (12)

If we substitute (11), (12) into Eqn (10), which is used to
derive eigenvalues, after some transformations we obtain

dy�p; w�
dx

� f�p; w� ÿ 2 � 2�cos�wp� ÿ 1� � Aÿ1
w

sin�wp�

� Aÿ2�w�
w 2

, (13)

where

Aÿ1 �
� p

0

q�x 0�dx 0;

Aÿ2�w� �
� p

0

dx 0q�x 0�
� x 0

0

dx 00 sin� w�x 0 ÿ x 00�� (14)

� sin� w�pÿ x 0 � x 00��q�x 00�.

The order of the quantity Aÿ2(w) is equal to O(1=w), which
follows from the properties of the Fourier transform of a
rather smooth function q(x). Roots of Eqn (10) taking (13)
into account can be found in the same approximation:
wnp � 2pn� dn (n � 0, 1, 2, . . .). Substituting this expression
into (1) makes it possible to derive the approximate
equation with respect to dn:

0 � 2�cos�wnp� ÿ 1� � Aÿ1
wn

sin�wnp� �
Aÿ2�wn�

w 2
n

� ÿd 2
n �

Aÿ1
2pn

dn �
Aÿ2�2pn�
�2pn�2 .

From here we obtain two small corrections d�n :

d�n �
1

2pn

�
Aÿ1
2
�
��

Aÿ1
2

�2
� Aÿ2�2pn�

�1=2�
. (15)

The order of these corrections is equal to O(1=w) but they
also take into account the components of the order
O(1=w 2 ). It follows from (15) that the eigenvalues produce
two series of discrete real values:

w�n � 2pn� 1

2pn
Aÿ1
2
� dn0,

dn0 �
1

2pn

��
Aÿ1
2

�2
� Aÿ2�2pn�

�1=2
. (16)

The decomposition of the spectral set into two series of
eigenvalues fully agrees with the known theorem of the
general spectral theory (see, for example [3]). At the same
time, the asymptotic accuracy found by us is higher that in
known papers of the general type and is sufécient to obtain
physically signiécant results. It follows from (16) that
eigenvalues produced doublets with centres at points

wn0 � 2pn� 1

2n

Aÿ1
2p

(17)

upon splitting in the doublet

Dwn �
2

p
dn �

1

pn

��
Aÿ1
2

�2
� Aÿ2�2pn�

�1=2
. (18)

Expressions (17), (18) can be speciéed if we take into
account explicit expression (14) for Aÿ2(w). In the
approximation w�n � 2pn, we obtain

Aÿ2�2pn� � ÿ
� p

0
dx 0q�x 0�

� x 0

0
dx 00 sin2

�
2pn�x 0 ÿ x 00�

�
q�x 00�

� ÿ 1

4
A 2
ÿ1 �

1

4

�
p
2

�2ÿ
q 2
2c � q 2

2s

�
,

where

q2c �
2

p

� p

0

q�x 00� cos�4pnx 00�dx 00;

q2s �
2

p

� p

0

q�x 00� sin�4pnx 00�dx 00. (19)

Thus, splitting in the doublet of eigenvalues signiécantly
depends on the amplitudes of the sine (odd) and cosine
(even) harmonics with the spatial frequency 4pn in the
expansion of the periodic function q(x) in the Fourier series.
It follows that using (18) it is easy to obtain that

2Dwn �
1

4pn

ÿ
q 2
2c � q 2

2s

�1=2
. (20)

In a homogeneous resonator, q(x) � const, the amplitudes
of the harmonics vanish and splittings in the doublets (i.e.
the proper doublets) disappear as is the case in the absence
of nonreciprocity.

4. Let us énd asymptotic expressions for the eigenfunc-
tions of spectral problem (2), (6). In the mathematical
literature (see, for example, [3]), instead of problem with
boundary conditions (6) two other problems with other zero
boundary conditions of a regular type [4] are proposed to be
solved. This methyod is rather complicated, and therefore,
we offer here another purely formal (without rigorous
mathematical substantiation) approach, which is quite
suitable for physical applications. It is intuitively under-
standable, easily reproducible and can be used in other
similar situations. For further action, it is sufécient to seek
for the eigenfunctions in the approximation O(1=w). It is
obvious that the eigenfunction corresponding to w�n is
deéned with an accuracy to the arbitrary constant c2:

u�n �x� � c2

�
c1
c2

f�x; w�n � � w�n y�x; w�n �
�
. (21)
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The ratio c1=c2, which we will call the distribution
coefécient, is determined unambiguously from the boun-
dary conditions, i.e. the system of equations (9) for the zero
determinant of its matrix coefécients:�

c1
c2

��
n

� w�n y�p; w�n �
1ÿ f�p; w�n �

.

The Wronskian of the FSS at the point x � 0 is 1, which
means that it is identically equal to 1. This allows one to
rewrite the last equality in the form:�

c1
c2

��
n

� ÿ w�n y�p; w�n �
1ÿ dy�p; w�n �=dx

. (22)

Let us present the asymptotic estimates necessary for the
calculation. It follows from (8) that

w�n y�p; w�n � � sin�w�n p�

� 1

w�n

� p

0

sin
�
w�n �pÿ x 0��q�x 0� sin�w�n x 0�dx 0.

By using estimate (16), we obtain the asymptotics

w�n y�p; w�n � � � sin dn

� 1

2pn

� p

0

q�x 0� sin��dn ÿ 2pnx 0� sin�2p nx 0�dx 0.

Further approximations and simple trigonometric trans-
formations allow one to reduce this expression to the énal
form:

w�n y�p; w�n � �
1

4pn
p
2

h
�
�
q 2
2c � q 2

2s

�1=2
� q2c

i
. (23)

It follows from (12) that

dy�p; w�n �
dx

� cos�w�n p�

� 1

w�n

� p

0

cos� w�n �pÿ x 0��q�x 0� sin�w�n x 0�dx 0.

The substitution of asymptotic representation (16) allows
one to simplify this expression:

dy�p; w�n �
dx

� cos d�n �
1

4pn
Aÿ1

�
d�n �

p
2
q2s ÿ

p
2
q2cd

�
n

�
� 1� 1

4pn
Aÿ1

p
2
q2s. (24)

By substituting (23) and (24) into (22), we obtain�
c1
c2

��
n

� ÿ 1

4pn

�
� p

2

ÿ
q 2
2c � q 2

2s

�1=2 � p
2
q2c

��
1

4pn
p
2
q2s

�ÿ1

� ÿ�
ÿ
q 2
2c � q 2

2s

�1=2 � q2c
q2s

. (25)

Further study of distribution coefécient (25) requires
taking into account the speciéc character of the longitudinal
inhomogeneity. If a reference cross section x � 0 can be

chosen so that the auxiliary function q(x) should be either
even with respect to it or should differ insigniécantly from
even, then jq2s=q2cj5 1. In this case, expression (25) can be
further simpliéed:�

c1
c2

��
n

� ÿ� q2c � 2q 2
2s=q2c � q2c
q2s

.

It follows from here that the distribution coefécients are
markedly different for the eigenvalues of this doublet and
the corresponding eigenfunctions are also different:�

c1
c2

�ÿ
n

� 2
q2s
q2c

, uÿn �x� � c2wy�x; w� � sin�wÿn x�, (26)

�
c1
c2

��
n

� ÿ2
�
q2c
q2s
� q2s
q2c

�
,

(27)

u�n �x� � c2f�x; w�n � � cos�w�n x�.

In (26) the distribution coefécient in modulus is much
smaller than unity (the eigenfunction is close to the odd
function), while in (27) ë much larger than unity (the
eigenfunction is close to the even function). One can write
out more exact expressions for the eigenfunction, which is
necessary for their following application:

uÿn �x� � 2q2s�cos wÿn x� � q2c sin�wÿn x�,

u�n �x� � ÿ2q2c cos�w�n x� � q2s sin�wÿn x�. (28)

Here, eigenfunctions are determined accurate to the
constants, which can be unambiguously selected from the
ordinary normalisation conditions (to unity) of the
eigenfunction. It is easy to show than in both cases these
constants are equal to (2=p)1=2. The orthogonality of real
eigenfunctions is considered in the general sense. The
orthogonality, as the reality of the eigenvalue, follows from
the general theorems of the spectral theory [3].

5. The obtained results allow one to make a conclusion
about the spectrum of ROR eigenfrequencies and modes. In
this case, it is sufécient to use coupling relations (3) ë (5). It
is obvious that the ROR eigenfrequencies produce a discrete
sequence of doublets

o�n �
1

me0

1

L
w�n ,

where the eigenvalues w�n � wn0 � 1
2Dwn are deéned by

expressions (17), (18) and the resonator optical length L
is calculated by using expression (5). The ROR modes
represent inhomogeneous standing (real) waves. The
spectrum is simple, i.e. only one mode corresponds to
the eigenfrequency. To derive an explicit expression for the
mode, we will use substitutions (3), (4) in expressions (28)
for the eigenfunctions:

E�n �z� � Qÿ1=2�z�u�n
�

1

L

� z

0

Q�z�dz
�
. (29)

The orthonormalisation of modes in an inhomogeneous
ROR considered here differs from the orthonormalisation
of eigenfunctions. Let E1;2(z) be two modes and u1;2(x) be
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the eigenfunctions corresponding to them. By using
expressions (3), (4), we obtain

1

L

� L

0

Q 2�z�E1�z�E2�z�dz �
� L

0

u1�x�u2�x�dx.

Therefore, the mode normalisations has the form

1

L

� L

0

q 2�z�E 2
1;2�z�dz � 1,

and the condition for their orthogonality is� L

0

Q 2�z�E1�z�E2�z�dz � 0.

6. The frequency spectrum of a one-dimensional lossless
ROR with an arbitrary nonuniform élling represents a
discrete doublet sequence of real numbers, the doublet
centres with a higher degree of accuracy corresponding
to the frequencies of a homogeneous ROR with the same
perimeter (corrected to the average refractive index). We
have obtained asymptotic estimates of eigenfrequencies:

o�n �
1

me0

1

L
w�n ,

where w�n are deéned by expressions (16) ë (18). The
frequency interval in each doublet is determined by
expression (18) and associated with the harmonic amplitude
of the refractive index at the dimensionless spatial
frequency approximately equal to 4pn, where n is the
doublet number. If the fundamental frequency (i.e. the
number n � n0) corresponds to the wavelength l0, the
mentioned complex amplitude corresponds to the spatial
harmonic with the wavelength l0=2. If the inhomogeneous
ROR tends to an ideal one (resonator `bleaching'), it is
desirable to suppress maximally this harmonic.

In the same approximation we have found the distri-
bution coefécient in the inhomogeneous ROR mode [see
expressions (28), (29)]. In some particular cases, the dis-
tribution coefécient depends only on the ration of the real
and imaginary parts of the above complex amplitude, i.e. on
its phase. In the general case, the modes of each doublet
represent standing waves orthogonal in the generalised sense
and nearly orthogonal in the general sense (both sine and
cosine). If the conditions for which splitting disappears are
fulélled, the spectrum approximately can be assumed
degenerate and the corresponding modes ë travelling waves
(although in the exactly degenerate spectrum, they can be
treated as orthogonal standing waves or any their linear
combination).

The general results obtained in this paper are rather
universal and simple. They can be easily used in numerical
calculations. We have established that the derived expres-
sions are valid if the largest change in the permittivity dpl
occurs in the intermediate layer, whose size is

Dz > L

�
dpl
wn0

�1=2
�
�
Ll0

dpl
2p

�1=2
.

Under typical conditions, Dz > 0:1 mm, although this
restriction, in our opinion, can be less stringent (the
obtained expressions will be valid at smaller Dz).

Usually, a quantitative analysis should precede a numer-
ical experiment. In the case under study, general expressions
derived in this paper can be used for this analysis (in this
case, it is possible to do without the numerical experiment).
A signiécant result is the analytic determination of con-
ditions for which spectrum splitting disappears.
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