
Abstract. Thermal distortions of the radiation phase are
studied theoretically in laser ceramics. Special attention is
paid to the small-scale phase modulation inherent in ceramics,
which is caused by the arbitrary orientation of its single-
crystal grains. Expressions are derived which describe the
average phase distortion and its dispersion in disc elements in
approximations of a thin disc cooled through optical surfaces
and of weak heat exchange. The numerical calculation has
conérmed the high accuracy of these expressions. The
proposed approximate solutions of the heat conduction and
elasticity equations are of their own importance. In
particular, the obtained solutions can be used to describe
phase and polarisation distortions of radiation in an
arbitrarily oriented single-crystal disc.

Keywords: laser ceramics, thermal distortions of radiation, random
small-scale phase modulation, disc optical elements.

1. Introduction

The existing production technologies of laser ceramics allow
manufacturing optical elements, which are not inferior to
single-crystals in the purity of their chemical composition,
thermal conductivity, linear expansion, etc. At the same
time, ceramic elements can be fabricated with a large
aperture [1], faster, have a better quality and, what is not
the least of the factors, be much cheaper than single-crystal
elements. Moreover, the viscosity of ceramics damage [2]
and the parameter of the thermal damage in ceramics are
much higher than those in a single-crystal [3]. In addition, it
is possible to produce ceramics from materials, whose
single-crystals cannot be grown at the present technological
level (Y2O3, TAG, TSAG, etc.). All this generally explains
the constant expansion in the éeld of applications of laser
ceramics and the associated dynamic growth of the
technological and production base for its manufacturing.

As was found earlier in papers [4 ë 7], ceramics exhibits
during heating a number of speciéc properties manifested in
the small-scale inhomogeneity in the distribution of the

phase and polarisation distortion across the beam cross
section, which are especially noticeable in thin (disc) optical
elements.

When considering thermal distortions of the radiation
characteristics in disc optical elements made from ceramics,
we encounter a number of peculiarities. First, the heat
exchange with the environment mainly occurs through the
end surfaces. As a result, the temperature distribution in the
disc considerably differs from that in the rod. Second, the
element surface deformation makes a noticeable contribu-
tion to the total phase distortions of radiation. Third, due to
the small thickness of the disc ceramics element, there are
few ceramic grains on the beam path, which leads to a
signiécant inhomogeneity of the phase distortion [7].

The small-scale distortion modulation of the radiation
phase and polarisation in ceramics is caused by the arbitrary
polarisation of single-crystal grains. Hence, in the presence
of the mechanical stress associated with the application of
extraneous forces or with the temperature gradient, a
photoelastic effect appears, which is determined for the
speciéc point of the aperture by the orientations of all the
grains located on the beam path. Note that during the
transverse shift at a distance of the order of the grain size, a
set of grains pierced through by the beam is replaced by
another random set, which determines the transverse scale
of the phase and polarisation modulation.

The authors of paper [7] considered ceramics in the form
of a long cylinder (rod) and obtained analytic expressions
for the phase distortion and its statistical parameters, i.e. the
mathematical expectation and dispersion. In this case, they
took into account the heat êux directed to the generatrix
and neglected the êux through the endfaces. In addition, the
contribution of deformation of the end surfaces was
assumed low, which is quite reasonable in the case of
the rod geometry.

In this paper, we study thermal effects in ceramic
elements in the form of discs. We used two simpliéed
analytic solutions for the heat conduction equation ë in
the case of a thin disc and during a weak heat exchange
with the environment. Both these solutions together with the
solution of the deformation equation in a disc allow one to
derive, similarly to [7], expressions for the phase distortion
and its statistical parameters. In addition, we took into
account the deformation of the optical element surface,
which makes it possible to determine the distortion param-
eters of radiation reêected, for example, from one of the
faces.
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2. Formulation of the problem

Consider thermal phase distortions in a laser-ceramics
cylinder of dimensons R0 and 2l (Fig. 1). In solving the
deformation and heat conduction equations we will assume
that the thermal conductivity k, the Poisson ratio v and the
linear expansion coefécient aT of the ceramic medium and
single-crystal coincide. This assumption was made based on
papers [8, 9].

Let us restrict ourselves to the case, when the density of
the heat release power q depends not on the coordinate z
and the polar angle j but on the coordinate r:

q�r� � Ph

2lpr 2h

� r

0

F�u�du
F�u�, (1)

where Ph is the power of the heat release in the entire
sample; rh and F are the radius and shape of the heat
source; u � (r=rh)

2; r � (R0=rh)
2; The problem symmetry

with respect to the rotations around the cylinder axis allows
one in the stationary heat conduction equation to neglect
the derivative with respect to the temperature T along the
coordinate j:

d2T

dz 2
� 1

r

d

dr

�
r
dT

dr

�
� ÿ q�r�

k
. (2)

Solution (2) in the form of series is known in the general
case (it can be found, for example, in [10]), but it is not
always convenient for calculating the speciéc temperature
and, all the more, the corresponding temperature deforma-
tions. Therefore, of special interest are approximate
solutions, which take into account the problem symmetry
and the form of boundary conditions.

The inhomogeneous temperature distribution [the solu-
tion of equation (2)] leads to deformations, which in the
isotropic case are described by the equation for the displace-
ment vector u [11]:

3�1ÿ v�
1� v

grad div uÿ 3�1ÿ 2v�
2�1� v� rot rot u � 3aTHT. (3)

The solution of Eqn (3) for the disc in the plane stressed
state in the absence of the temperature dependence on z was
considered in detail in [12], where the expressions for the
components of the deformation tensor were obtained in
cylindrical coordinates:

err � aT�1� v�
�
ÿ ~T�r� � T�r� � 1ÿ v

1� v
~T�R0�

�
,

ejj � aT�1� v�
�

~T�r� � 1ÿ v
1� v

~T�R0�
�
, (4)

ezz � aT�1� v�
�
T�r� ÿ 2v

1� v
~T�R0�

�
,

where

~T�r� � 1

r 2

� r

0

T�r�rdr. (5)

Information on the temperature and stress tensor
distributions is sufécient to determine the optical path
distortions Cph and the polarisation change in an arbitrarily
oriented ceramics grain [4, 5, 13] and, hence, in the entire
ceramic element.

We will consider each ceramics grain as a phase plate in
which both the direction of the intrinsic polarisations and
the phase incursion for the `fast' and `slow' waves depend on
the temperature T, deformations e and Euler angles a, b, and
j specifying the direction of the crystallographic axes.

The directions of the crystallographic axes in each grain
are assumed random with the following probability density
functions for the Euler angles:

Pa �
1

2p
, Pb �

1

p
cos a, Pj �

1

2p
. (6)

We assume that e and T weakly change on the grain
length and can be replaced by their average values. Then, in
the absence of absorption the Jones matrix Mj of the jth
grain has the form [14]:

Mj � e iCj�

cos�dj=2�� i cos�2Yj� sin�dj=2� i sin�dj=2� sin�2Yj�
i sin�dj=2� sin�2Yj� cos�dj=2�ÿ i cos�2Yj� sin�dj=2�

� �
,

(7)

where dj � (Co ÿCe) is the phase difference of the `fast'
and `slow' polarisation waves; Yj is the angle between the
`fast' polarisation wave and the axis x of the laboratory
coordinate system. The quantities dj and Cj are expressed
via the tensor components of the dielectric impermeability
DBj in the form [4, 13]:

dj � � lkn 3
0

�
�DB11 ÿ DB22�2 � 4DB 2

12

�1=2
� ÿlkn

3
0

2

2DB12

sin 2Yj

,

tan�2Yj� �
2DB12

DB11 ÿ DB22

,

Cj �
kn 3

0 l

4
�DB11 � DB22� � bTkl� ezz�n0 ÿ 1�kl, (8)

where k is the wave number; n0 is the refractive index; the
subscript j in the tensor components DBmn is omitted.
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Figure 1. Disc optical element heated by a volume heat source q�r�.
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Expressions for DB11 ÿ DB22, DB11 � DB22 and DB12 via the
deformation tensor components are obtained in [4].

The Jones matrix Mtot for the entire ceramic element is
obtained by N Jones matrices of individual grains located in
the beam path:

Mtot �MNMNÿ1:::M2M1 �M exp
�
i
X
j

Cj

�
. (9)

There are no preferential directions in ceramics; therefore,
without the loss of generality, we will assume that the éeld
E0 at the input is linearly polarised along the x axis in the
laboratory coordinate system. Then,

Ex

Ey

� �
�Mtot

E0

0

� �
, (10)

where Ex and Ey are the components of the Jones vector at
the output from ceramics. The phase incursion Ctot for
radiation polarised along the x axis can be found via the
matrix Mtot:

Ctot � arg�Mtot 11� �
X
j

Cj � arg�M11� � Cph �Cpol. (11)

Thus, the phase incursion Ctot is divided into two terms, i.e.
the phase (Cph) and polarisation (Cpol) distortions. The
term Cph �

P
j Cj means the average phase distortion for

any two mutually perpendicular polarisations. For ceramics
with an arbitrary grain orientation the average value of the
term is independent of the angle j. If we want to obtain the
phase distortion of radiation with the linear polarisation
coinciding with the polarisation at the input to the ceramic
element, it is necessary to take into account the second
term, which depends on the angle j even after averaging
over the ceramics grains. In analytic consideration of
statistical parameters of the phase distortions, the account
for this term is rather problematic and hence, it is easier to
consider this term numerically (see section 5). The
dispersion and the average value for the term Cph can
be found analytically in two approximations (see sections 3
and 4).

Local depolarisation G � (jEyj=jE0j) (the fraction of the
power in the polarisation perpendicular to the initial one) is
deéned by the matrix Mtot:

G � jMtot 21j2. (12)

For the quantitative estimate of polarisation distortions,
the depolarisation

gd �

�
S

G�r;j�E 2
0 �r�ds�

S

E 2
0 �r�ds

(13)

is usually used, which is integral across the transverse cross
section, where the integration is performed over the
aperture S of the optical element.

Thus, expressions (7) ë (13) make it possible to describe
completely thermal distortions of the radiation parameters
in ceramics, if the temperature and deformation in the
optical element are known. For the disc geometry, these
quantities can be found analytically within the framework of
two approximations considered below.

3. A thin disc cooled through optical planes

In considering a very thin disc, the term d2T=dz 2 in heat
conduction equation (2) can be neglected. Together with the
boundary conditions, for example, the convective heat
exchange,

� k
dT

dz

����
z��l
� aconvT

��
z��l (14)

(aconv is the convective heat exchange coefécient), which
leads to the solution:

T�r; z� � q�r�
�

l

aconv
� 1

2k

�
l 2 ÿ z 2

��
. (15)

In practice, the temperature distribution of type (15) is
realised in rather thin discs cooled intensely through the
optical surfaces [15].

Let us estimate the domain of applicability of this
solution. Consider the width of the temperature drop
corresponding to the heat source of the form q(r) � Y(r),
where the function

Y�r� � const r4 rh
0 r > rh

� �
.

Then, at r4 rh, the temperature will be zero and at r5 rh,
the temperature will be equal to DT. The dimension of the
transition region a is given by the expression

kl
DT
a
� a

2
DTaconv, (16)

which means the equality of the average heat êux released
from the end surface of the transition region due to the heat
exchange with the environment and the heat êux released
long the r coordinate due to the thermal conductivity. To
fulél the thin disc approximation, it is necessary to have
rh 4 a:�

2kl
aconv

�1=2
5 rh. (17)

The comparison of the numerical calculations, which
will be considered in detail below (see section 5) showed that
the approximation under study well describes (the error does
not exceed 10%) thermal distortions in the case, when rh
exceeds by more than four times the left-hand side of
expression (17).

In solving equation (3) for the temperature distribution
of type (15), we failed to obtain simple expression for the
deformation components. Hence, similarly to [15], we
consider the case, when the dependence on the coordinate
z is assumed weak. This allows us to perform averaging over
this coordinate in expression (15):

T�r; z� � T�r� � q�r�
�

l

aconv
� l 2

3k

�
. (18)

The procedure for determining the average value and
dispersion of the phase incursion is described in [7].
Similarly, we obtain from (11) the expressions for the
mathematical expectations of the phase distortion hCphi
and its dispersion DC1:
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hCphi
2kl

� constdisk � PdiskT�r� ÿQdisk�1ÿ x�

� 11

64

�
T�r� ÿ 2 ~T�R0�

�� �n0 ÿ 1�aT�1� v�T�r�, (19)

DC1 � 4Q 2
disk�1ÿ x�2l 2

��
265

215

�
T�r� ÿ 2 ~T�r��2

� 330

215

�ÿ T�r� � 2 ~T�R0�
�2�

Nghlgi2
�
1� Dlg

hlgi2
�

�
�
11

64

�2
NgDlg

�ÿ T�r� � 2 ~T�R0�
�2�

, (20)

where

Qdisk � aT
n 3
0

4
�1� v��p11 ÿ p12�;

Pdisk �
dn0
dT
ÿ aT

n 3
0

4
�1� v��p11 � 3p12�;

hlgi is the average grain length; Dlg is the dispersion of the
grain length; Qdisk and Pdisk are thermooptic parameters of
the medium (Q characterises thermally induced anisotropy
and P ë isotropic distortions); x is the optical anisotropy
parameter introduced according to [4]. In (19) the temper-
ature distribution is given by expression (18).

4. A disc in the case of a weak heat exchange

Under the conditions of a weak (for example, convective
with the air) heat exchange, we will seek for the
approximate solution of equation (2) in the form

T�r; z� � Tr�r� � az 2. (21)

The substitution of (21) into (2) leads to the equation for
Tr(r), which is easily integrated. To determine the integra-
tion constants, we will use an assumption according to
which the heat is released identically from all the surface
points of the cylindrical sample:

dT

dg

����
surf

� const, (22)

where g is the normal to the surface. In this case, the
derivatives with respect to the temperature in the sample are
deéned by the expressions:

dT

dr
� 1

4pkl

�
Phr

R0�R0 � 2l� ÿ
Pin�r�

r

�
, (23)

dT

dz
� ÿ Phz

2pkR0l�R0 � 2l� , (24)

where Pin(r) � 4pl
� r
0 xq(x)dx is the heat release power in a

cylinder of radius r. Boundary conditions of type (14) and
assumptions (22) can be satiséed, when two inequalities���� DTr

Tsurf

����5 1,

���� DTz

Tsurf

����5 1 (25)

are simultaneously fulélled. Here, DTr and DTz are the
temperature drops on the endfaces and the generatrix,
respectively; Tsurf is the average surface temperature of the
sample. The quantity Tsurf determines the total heat release
power from the surface, which is equal in the stationary
case to the heat release temperature Ph inside the sample.
This implies that

Tsurf �
Ph

2paconvR0�R0 � 2l� . (26)

The quantity DT can be found from (23) and (24):

DTr �
aconvR0

2kl

�
R0

2
ÿ R0 � 2l

Ph

� R0

0

Pin

r
dr

�
,

(27)

DTz �
Phl

2

4pkR0l�R0 � 2l� .

Conditions (25) taking into account (26) and (27) take the
form:���� aconvR0

4kl

�
R0 ÿ �R0 � 2l �I �����5 1,

laconv
2k
� Bi5 1, (28)

where Bi is the Bio similarity criterion and I is determined
by the form of the heat source:

I �
� R0

0

�
Pin�r�

r

�
dr. (29)

It is easy to show that if the heat source has a Gaussian
shape of width rh, the integral I is close to two at R0 � 2rh.
Note that for the disc geometry (R0> l ) at I > 1, it is
enough to fulél only the érst inequality in (28) because the
second inequality will be fulélled automatically. Solution
(23), (24) can be used for cylindrical samples with an
arbitrary length-to-radius ratio if Eqn (28) is fulélled.

Consider appearing deformations. As was noted above,
in the case of a disc, the deformation caused by
T(r; z) � Tr(r) is given by expression (4). The substitution
of T(r; z) � az 2 into expression (3) in the case of a thin disc
leads to the solution:

err � ejj � aT
al 2

3
,

(30)

ezz � aT
1� v
1ÿ v

az 2 � aT
al 2

3

2v
vÿ 1

.

Solution (30) together with solution (4) yields the
solution of equation (3) for the disc with the temperature
of type (21). Note that in papers [14, 15] considering the
discs with R0 < 1, the temperature dependence on the
coordinate z was neglected.

In the weak heat release approximation, expression (19)
for hCphi remains valid because the addition to deformation
(30) does not affect hCphi. Expression (20) for DC1 taking
into account the dependence on z is supplemented with two
terms:

DC2 � DC1 � 4Q 2
disk�1ÿ x�2l 2

�
4

�1ÿ v�2
1298

215
�
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�
�XN

j�1

� �
lj

�
4l 2

3
ÿ z 2

�
dz

�2�
lg

� 4

1ÿ v
1298

215

�ÿ Tr�r�

� 2 ~Tr�R0�
��XN

j�1
ln

�
lj

�
4l 2

3
ÿ z 2

�
dz

�
lg

�
, (31)

where the integration is performed over the jth grain. The
comparison with the numerical simulations showed that the
contribution of these terms in the approximation under
study is insigniécant.

5. An arbitrary cylinder (numerical simulation)

For intermediate cases, when the described approximations
and the approximations of the rod element [7] do not work,
we used the program code [16, 17], which makes it possible
to calculate the temperature and deformation of a
cylindrical optical element with an arbitrary ratio of R
and l. We used the following algorithm to énd the average
phase distortion and its phase. A random set of single-
crystal grains with random lengths lj and Euler angles a, b,
g was found on the path of the beam with the polar
coordinates r and j. In this case, the number of the grains
on the beam path was also a random quantity with the
mathematical expectation equal to N. Then, the Jones
matrix Mj was calculated for each grain by using
expressions (7) and (8). The deformation eij inside one
grain was assumed constant. From Eqn (9) we found the
resultant matrix Mtot, which together with expression (11)
was used to determine the phase incursion Ctot. The
average value of the phase and the phase dispersion were
found with the help of the Monte-Carlo method.

6. Analysis of the results

The presence of both numerical and analytic solutions
allows us, on the one hand, to verify reciprocally the
obtained results and, on the other hand, to énd the éelds of
applicability of thin disc approximations used in the
analytic solution (see section 3) and disc approximations
in the case of a weak heat exchange with the environment
(see section 4).

For the heat conduction equation the thin disc approx-
imation is well fulélled when inequality (17) is fulélled. For
example, in a YAG disc element of thickness 2l � 4 mm at
aconv � 1000 W mÿ2 Kÿ1 (this heat exchange corresponds to

cooling by water [18, 19]), the difference from the numerical
solution does not exceed 10% if the radius rh of the heating
Gaussian beam is greater than 4 cm. When aconv is decreased
down to 100 W mÿ2 Kÿ1, which is achieved, for example, by
the air blow-off [18, 19], the thin-disc approximation works
well at rh > 13 cm.

The applicability of the weak heat exchange approx-
imation requires condition (32) to be fulélled. For example,
for a YAG element at R0 � 2 cm and convective heat
exchange with air (aconv � 20 W mÿ2 Kÿ1), it is necessary to
have the length l in the range from 0.5 mm to 10 cm. When
the sample radius R0 decreases, restrictions on the length l
become weaker.

In the deformation equation, the plane stressed state
corresponds to our case when R > 5l. The same can be said
about the adequacy of the addition to deformation (30),
which takes into account the dependence on the coordinate
z. Note that according to [12], to realise the plane stressed
state, the temperature dependence in the sample on the
coordinate z should be weak.

Consider, for example, the YAG ceramics in two cases.
In the érst case, R0 � 10 mm, 2l � 4 mm, rh � 4 mm,
Ph � 100 W and aconv � 100 W mÿ2 Kÿ1; in the second
case, R0 � 50 mm, 2l � 4mm, rh � 20 mm, Ph � 100W and
aconv � 1000 W mÿ2 Kÿ1. Figure 2 presents the temperature
averaged over the coordinate z. Because for further calcu-
lations only temperature gradients are important, we plotted
the dependences T(r)ÿ T(0).

One can see from this égure that in the érst case
(Fig. 2a), solution (27) obtained in the weak heat exchange
approximation is very close to the numerical solution. The
solution obtained for the strong heat release through the
optical surfaces, on the contrary, yields a large error, i.e. it is
inapplicable for these parameters. In the second case
(Fig. 2b), quite the contrary situation is observed, i.e. the
more suitable is the approximation of cooling through
optical surfaces within which solution (18) was obtained.

Consider the dependences for the deformation tensor
components (Fig. 3). For comparison, they are plotted by
subtracting the maximum value. Initially, the curves pre-
sented in one égure were at different heights, which
corresponds to different homogeneous thermal expansion
without stresses. The account for this expansion does not
affect the énal result.

As the temperature, the deformations in the érst case are
described more accurately in the weak heat exchange
approximation and in the second case ë in the approx-
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Figure 2. Temperature T averaged over the coordinate z and obtained within the framework of different approximations for the érst (a) and second (b)
cases of the heat exchange as a function of r.
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imation of cooling through optical surfaces. Note that this
assumption is valid also for linear combinations of the
deformation tensor components.

Figures 4 and 5 present the dependences for the average
value (Fig. 4) and root-mean-square deviation (Fig. 5) of the
thermal phase distortion of radiation propagated through
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Figure 3. Components of the deformation tensor e averaged over the coordinate z and obtained numerically (solid curves) and analytically in the weak
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the ceramic element. Apart from the dependence of the
refractive index on the temperature and photoelastic effect,
the geometric deformation of end surfaces also contributes
to the j-averaged mathematical expectation of the phase
distortion. The contribution to the phase dispersion is made
only by the photoelastic effect.

As was noted above, the contribution Cpol in the left-
hand side of expression (11) to the average value and
dispersion of the phase distortion cannot be considered
analytically, that is why we found it numerically. In this
case, both the average value of the phase distortion and its
dispersion acquired the dependence on the angular coor-
dinate j.

For comparison, Fig. 5 shows not only the curves for the
root-mean-square deviation obtained numerically and ana-
lytically within the framework of approximations under
study but also the curves corresponding to the vertical and
horizontal cross sections when Cpol is taken into account.
As was above, the weak heat exchange approximation is
more suitable in the érst case, while the approximation of a
thin disc cooled though the optical surface is more suitable
in the second case.

One can see from Fig. 5 that the account for Cpol in
expression (11) for the YAG ceramics introduces additional
dispersion depending both on the radius and the polar
angle, and comparable with the dispersion Cph. Never-
theless, the characteristic quantity of the small-scale phase
modulation can be obtained from analytic expression (19)
and (31).

7. Conclusions

In this paper, we have obtained the analytic expressions for
the phase distortion in disc ceramic elements taking into
account the random small-scale inhomogeneity associated
with the arbitrary orientation of single-crystal grains in
ceramics. We have derived the expressions for the average
value and dispersion of the phase distortion.

In particular, we have solved analytically the heat
conduction equation in two different approximations and
found the conditions for their applicability. These solutions
allow one to calculate analytically the deformation and
obtain expressions for the average phase distortion and its
dispersion. These expressions and the domain of their
applicability have been numerically veriéed. Together

with the expressions obtained before for the rod elements
they allow one to describe analytically the average value and
dispersion of thermal distortions of the radiation phase in a
large range of the parameters both for ceramic and single-
crystal optical elements made of cylindrical cubic crystals.
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Figure 5. Root-mean-square phase distortions (RMS) from the average value as a function of the coordinate r, obtained numerically (solid curve) and
analytically in the approximations of the weak heat exchange (dashed curve) (a) and thin disc cooled through optical surfaces (dotted curve) (b) for the
érst (a) and second (b) cases. The dot-and-dash curves show vertical and horizontal cross sections of the RMS surface obtained taking Cpol into
account.

308 I.L. Snetkov, A.A. Soloviev, E.A. Khazanov


