
Abstract. The transmission of an evanescence electro-
magnetic wave through the subwavelength aperture of a
dielectric cylindrical metal-coated waveguide is studied. In the
ideal metal approximation a theoretical approach to the
description of the éeld structure in a nanowaveguide is
developed, which takes into account the transformation of the
initial wave reêected from the output aperture. The complex
reêection coefécient of a supercritical waveguide mode from
the subwavelength aperture is calculated. The dependence of
the éeld structure at the waveguide output on the ratio of its
radius to the optical wavelength and on the dielectric
constants of the waveguide core and the environment is
found. The conditions for the appearance of a plasmon
resonance in the presence of a medium with the negative
dielectric constant in front of the input hole of the waveguide
are found.

Keywords: evanescent electromagnetic wave, cylindrical nanowave-
guide, subwavelength aperture, ideal metal.

1. Introduction

The extensive development of nanooptics is closely related
to the elaboration of efécient methods for producing light
waves with the subwavelength localisation [1, 2]. When
working with the localised éelds, new aspects are revealed
in a number of representations, which seemed to be
established in conventional optics. Thus, in considering
the interaction of optical éelds with nanostructures, such
notions as light reêection, transmission, complex light êow,
impedance acquire a new nuance. It also turns out that the
analysis of these parameters calls for the development of a
special investigation method.

In this paper, we study the speciéc features of localised
éelds by the example of the following model problem: a
semi-inénite cylindrical waveguide with a circle input nano-
hole leading to the open half-space (Fig. 1). Similar

problems associated with the light propagation through
the subwavelength-sized hole have been discussed for many
years in the literature. The strict investigation of this
problem was initiated in paper [3], which considered the
incidence of a plane wave on an inénite thin ideally-
conducting screen with a small pin-hole. A more complete
solution of this problem was presented in [4]. Later, papers
appeared which studied a somewhat different geometry. The
incidence of a light wave from the outside on the end-face of
a cylindrical waveguide and on a conic waveguide was
considered in papers [5] and [6], respectively. The authors of
paper [7] studied the wave transmission through an open
two-dimensional waveguide representing a slit tapering off
at the output to an open space, the transmission of radiation
through a pyramidal waveguide was investigated paper [8],
and the light exit from a conic waveguide into the open
space was examined in paper [9]. The incidence of the wave
on the screen of énite thickness connected with a waveguide
as well as the light propagation through the subwavelength
circular aperture élled with a refractive medium in a metal
élm were considered in papers [10] and [11 ë 15], respec-
tively. In a number of our papers, we studied the éeld
structure and the transmission eféciency of light by nano-
tapered waveguides élled with a dielectric [16 ë 18] or
semiconductor [19 ë 22] medium.

Recall that earlier papers [3, 4], signiécant from the
general theory point of view, were also important in the
applied aspect for the problems related to microwave
resonators. As for later works on the `leakage' of radiation
through a small hole, they were aimed at simulation of
optical probes used in near-éeld microscopy. In this case,
different papers simulated the variants of local illumination
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Figure 1. Schematic of the transverse cross section of a cylindrical
waveguide with a metal coating: 2a is the diameter of the output
aperture; e, em and e

0
are dielectric constants of the waveguide core,

metal walls and environment.



of the object under study (illumination regime) and collec-
tion of the local response appearing upon illumination of
the object by an extended source (collection regime). Differ-
ent ways for realising this or that variant lead to the
investigation of different geometric schemes; signiécantly
different was also the applied mathematic method.

From the theoretical point of view, the most complex
moment in such problems is the analysis of the éeld
behaviour at the interface of the subwavelength localisation
region and the microscopic region. The above papers, except
for [3, 4], either paid no attention to this problem or, if it
was studied as in [7], performed separate numerical calcu-
lations for a waveguide with speciéed parameters and at a
given optical wavelength. Therefore, it was impossible to
evaluate the role and the scale of the effects appearing at the
interface when geometric and dielectric parameters of the
scheme are varied.

Before proceeding to the statement of this paper, recall
the investigations of open waveguides performed by
L.A. Vainshtein [23]. At érst glance, these studies are
very close with respect to the formulation of the optical
probe problems. However, paper [23] deals with propagat-
ing but not evanescent waves in a waveguide. In this
connection, the results of paper [23] cannot be directly
applied to supercritical waveguides, although it is these
waveguides that are of special interest for nanooptics.

Below, we present the approach based on the developed
éeld-conjugation method at the waveguide ë free space inter-
face. The offered method demonstrates the possibility of
introducing a convenient parameter taking into account the
role of the above interface, ë the reêection coefécient of the
initial éeld from the aperture. We will show below that in
fact, it is sufécient to calculate the only one coefécient in
order to describe with good accuracy the main parameters
of the electromagnetic éeld inside and outside the wave-
guide.

2. Field characteristics in an inénite waveguide
and in a free space

Let us present the general expressions determining the
structure of a monochromatic electromagnetic éeld in a
cylindrical circular waveguide. We will omit the time
multiplier exp (ÿ iot) and will use everywhere below
cylindrical coordinates r, j, z. The general expressions
for the transverse-magnetic (TMmn) and transverse-electric
(TEmn) modes of a cylindrical waveguide with ideally
conducting walls can be found elsewhere in monographs
[24, 25]. In the general case, it is convenient to express the
éelds through the electric and magnetic Hertz potentials.
However, in this paper we will consider only transverse-
magnetic TM0n modes with the azimuth wave number
m � 0. In this case, only three éeld components ~Er, ~Ez and
~Hj are nonzero, and we can write compact expressions for
the éelds without using the Hertz potential. The éelds are
expressed through the zero-order Bessel function J0(x) and
its derivative J1(x):

~Er � CJ1�qr� exp
�
ÿ z

�
q 2 ÿ o 2e

c 2

�1=2 �
, (1)

~Ez � q

�
q 2 ÿ o 2e

c 2

�ÿ1=2
CJ0�qr� exp

�
ÿ z

�
q 2 ÿ o 2e

c 2

�1=2 �
, (2)

~Hj � ÿ
ioe
c

�
q 2 ÿ o 2e

c 2

�ÿ1=2
CJ1�qr�

� exp

�
ÿ z

�
q 2 ÿ o 2e

c 2

�1=2 �
. (3)

Here, q � qn � xn=a is the transverse wave number; xn is the
nth root at which the Bessel function J0(x) vanishes
(x1 � 2:4048, x2 � 5:5201, x3 � 8:6537, . . .); a is the wave-
guide core radius; C is the constant; e is the dielectric
constant of the waveguide core. In the free space we will
also consider transverse-magnetic éelds with the angular
structure as that in the waveguide. In this case, the
expressions for the éelds remain the same [expressions
(1) ë (3)], restrictions on the transverse wave numbers
(which can be arbitrary) being only absent.

3. Fields in a semi-inénite cylindrical waveguide
and in an open space

To give a strict description of the éelds in a semi-inénite
waveguide coupled to the open half-space, we should `sew'
together the éelds in the waveguide and in the free space in
the aperture, i.e. to achieve the equality of tangential
components of the electric and magnetic éelds at z � 0. To
do this requires introducing all the transverse-magnetic
waveguide modes (with m � 0, n � 1, 2, 3, . . .) into
consideration, and using the integral over the continuous
set of wave numbers in the free space. In this case, the éeld
components inside the waveguide will be set by the
expressions

~Er � C

�
J1�q1r� exp

�
ÿ z

�
q 2
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c 2
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�
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n�1

anJ1�qnr� exp
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c 2

�1=2 ��
, (4)
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exp
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ÿ
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, (5)
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J1�q1r�

�
q 2
1 ÿ

o 2e
c 2

�ÿ1=2

� exp

�
ÿ z

�
q 2
1ÿ
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anJ1�qnr�
�
q 2
n ÿ

o 2e
c 2

�ÿ1=2

� exp

�
z

�
q 2
n ÿ
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�1=2 ��
, (6)

where an is the transformation coefécient of the initial
mode to the mode with the subscript n. The expressions for
the éelds outside the waveguide have the form of integrals
over the transverse wave numbers K:
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Er �
�1
0

exp

�
iz

�
o 2e0
c 2
ÿ K 2

�1=2 �
J1�Kr�B�K�KdK, (7)

Ez �
�1
0

exp

�
iz

�
o 2e0
c 2
ÿ K 2

�1=2 � KJ0�Kr�B�K�
g�K� KdK, (8)

Hj � ÿi
oe0
c

�1
0

exp

�
iz

�
o 2e0
c 2
ÿ K 2

�1=2 � J1�Kr�B�K�
g�K� KdK .

(9)

Here,

g�K� �
ÿi
�
o 2e0
c 2
ÿ K 2

�1=2
for

o 2e0
c 2

> K 2;

�
K 2 ÿ o 2e0

c 2

�1=2
for

o 2e0
c 2

4K 2;

8>>>><>>>>: (10)

B(K) is the expansion coefécient. Thus, we deal with two
sets of expressions for the éelds: for the inside waveguide
region and for the outside region. These formally different
expressions should be matched so that standard boundary
conditions be fulélled in the input hole plane.

4. Field matching
at the waveguide ë free space interface

For the modes under study, the boundary conditions have
the form

Er�r; 0� � ~Er�r; 0�, Hj�r; 0� � ~Hj�r; 0� �r < a�. (11)

We will assume that an ideally-conducting êange stretching
from r � a to r � 1 is connected to the output hole of the
waveguide and will consider that Er � 0 at the êange
surface.

We will substitute now z � 0 into expressions (4) and (7)
for the components ~Er(r, z) and Er(r, z) and will require the
érst of boundary conditions (11) be fulélled. In this case, we
obtain the expression of the Fourier ëBessel expansion
coefécients of the éelds in the external space:

B�K� � C
X1
n�1
�dn1 � an�bn�K�. (12)

Here, we used the expression

J1�qnr�y�aÿ r� �
�1
0

bn�K�J1�Kr�KdK, (13)

where the coefécients bn are expressed through integrals:

bn�K� �
� a

0

J1�qnr�J1�Kr�rdr � J1�qna�
KaJ0�Ka�
q 2
n ÿ K 2

; (14)

y(aÿ r) is the step Heaviside function [y(aÿ r) � 0 at
a > r and y(aÿ r) � 1 at r4 a]. Taking into account the
selected values of qn, integration in (14) yields the reduced
expression for bn(K). Now we can write expression (9) for
Hj in the form

Hj�r; 0� � ÿi
oe0
c

C

�1
0

1

g�K��

�
X1
n�1
�dn1 � an�bn�K�J1�Kr�KdK. (15)

By substituting (15) into the second boundary condition
from (11), we obtain

e
X1
n�1
�dn1 ÿ an�

�
q 2
n ÿ

o 2e
c 2

�ÿ1=2
J1�qnr�

� e0

�1
0

1

g�K�
X1
n�1
�dn1 � an�bn�K�J1�Kr�KdK. (16)

Then, we multiply both parts of equation (16) by the factor
J1(qpr) and integrate in rdr in the range from 0 to a. Note
that the Bessel function for unequal values of n and p are
orthogonal because they are eigenfunctions of the boundary
problem of the third kind (meet the érst-order Bessel
equation and the boundary condition qc=qr� aÿ1c � 0 at
r � a). Taking into account the orthogonality of the
functions after integration, we obtain

e �dp1 ÿ ap�
�
q 2
p ÿ

o 2e
c 2

�ÿ1=2 � a

0

J 2
1 �qpr�rdr

(17)

� e0
X1
n�1
�dn1 � an�

� a

0

J1�qpr�rdr
�1
0

bn�K�J1�Kr�
K

g�K� dK.

We will change the integration order in the right-hand side
of expression (17) and then, will use relation (14) for
coefécients bn and the expression for the integral in the left-
hand side of (17):� a

0

J 2
1 �qnr�rdr �

a 2

2
J 2
1 �qna�, (18)

which is valid due to the fact that in our case, the condition
J0(qna) � 0 is fulélled. As a result, we obtain the exact
system of equations to determine the coefécients ap at
evanescent modes appearing due to the transformation of
the initial TM01 mode:

e �dp1 ÿ ap�
�
q 2
p a

2 ÿ a 2 o 2e
c 2

�ÿ1=2

� 2e0
X1
n�1
�dn1 � an�

J1�qna�
J1�qpa�

Inp. (19)

The real and imaginary parts of the integral Inp � Re Inp�
i Im Inp in (19) are given by the expressions

Re Inp �
�1
e 1=2
0

oa=c

�xJ0�x��2
�q 2

n a
2 ÿ x 2��q 2

p a
2 ÿ x 2�

� x

�
x 2 ÿ a 2 o 2e0

c 2

�ÿ1=2
dx, (20)

Im Inp �
� e 1=2

0
oa=c

0

�xJ0�x��2
�q 2

n a
2 ÿ x 2��q 2

p a
2 ÿ x 2�

� x

�
a 2 o 2e0

c 2
ÿ x 2

�ÿ1=2
dx. (21)
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Expressions (20) and (21) play a key role in calculation of
reêection and transmission of waves in the waveguide with
a subwavelength-sized output hole. Note that at ka < 1
(k � oe 1=20 =c is the wave number), the absolute values of
the integrals Inp satisfy the relation jInpj5 jInnj at n 6� p. In
addition, the imaginary parts of the integrals Inp are
markedly lower than the real parts (Im Inp 5 Re Inp). At
n � p, we deal with asymptotic expressions

Im Inn �
2

3x 4
n

�ka�3 �ka5 1�, (22)

and the absolute value of the integral Inn can yield an
approximate estimate:

jInnj �
�
2

�
q 2
n a

2 ÿ a 2 o
2e0
c 2

�1=2 �ÿ1
. (23)

The exact values of Re Inn and Im Inn are calculated
numerically, because they are used to obtain the following
results.

5. Construction of a solution

Let us construct the solution of system of equations (19).
To obtain the érst approximation to the solution, we will
use the system of equations in which all the nondiagonal
elements Inp (n 6� p) are replaced by zeros. It follows from
this system that

�1ÿ a1�e
�
q 2
1 a

2 ÿ a 2 o
2e

c 2

�ÿ1=2
� 2e0�1� a1�I11, (24)

ÿape
�
q 2
p a

2 ÿ a 2 o
2e

c 2

�ÿ1=2
� 2e0apIpp. (25)

Thus, in the érst approximation the reêection coefécient a1
has the form

a1 �
1ÿ G

1� G
, G � 2

e0
e
I11

�
q 2
1 a

2 ÿ a 2 o
2e

c 2

�1=2
, (26)

while all other coefécients vanish:

an � 0 (n 6� 1). (27)

We also constructed the second approximation to the
solution of system of equations (19) for the coefécients ap. It
was shown that the coefécient a1 in the second approx-
imation acquires only small corrections. Calculations were
performed in a broad range of ratios of the aperture radius
to the wavelength (04 ka4x1 � 2:4048). We established
that the relative errors in calculations of the real
(Re a �2�1 ÿRe a �1�1 )=Re a �2�1 and imaginary (Im a �2�1 ÿ
Im a �1�1 )=Im a �2�1 parts of the reêection coefécient found
in the érst approximation do not exceed 6% and 5%,
respectively. As for the moduli of the coefécients at highest-
order modes, they prove to be signiécantly lower than the
modulus a1. In this connection, we can assume that
expression (26) obtained in the érst approximation for
the coefécient a1 gives good approximation to the exact
solution of the problem. This approximation will be used

below to study the problem. Note here that according to
general expressions (4) ë (6) in the speciéed approximation,
the time averaged energy densities of the electric
[(w el � (e=16p)jEj2] and magnetic p[wm � (m=16p)jH j2,
m � 1] éeld components at the waveguide output (z � 0)
depending on the transverse coordinate r are determined for
the TM01 mode by the expressions

w el
r �

e
16p
jC j2j1� a1j2J 2

1 �q1r�,
(28)

w el
z �

ejC j2j1ÿ a1j2q 2
1 J

2
0 �q1r�

16p�q 2
1 ÿ o 2e=c 2� ,

wm
j �

�
oe 1=2

c

�2 ejC j2j1ÿ a1j2J 2
1 �q1r�

16p�q 2
1 ÿ o 2e=c 2� . (29)

The dependences w el
r , w el

z and wm
j on the ratio r=a are

presented in Fig. 2.

6. Reêection coefécient

Recall that the coefécient a1 obtained in the previous
section corresponds to the transformation of the initial
evanescent TM01 mode to the reêected mode (having the
same transverse structure and inverted dependence of the
éeld on the coordinate z). In this case, the coefécients of the
transformation to all other modes prove negligibly small.
Thus, it is natural to call the a1 coefécient the reêection
coefécient. Note some of its properties. We will concentrate
our attention on the case, when the dielectric constants e
and e0 are real and positive. It is obvious that at Re a1 � 1
we deal with the antinode of the tangential electric-éeld
component Er at the waveguide output (z � 0) and the

3

2

1

w el
r , w

el
z , w

m
j (rel. units)

0 0.2 0.4 0.6 0.8 r=a

1.0

0.8

0.6

0.4

0

0.2

Figure 2. Energy densities of éeld components w el
r ( 1 ), w el

z ( 2 ), wm
j ( 3 )

at the cylindrical waveguide output (z � 0) as a function of the dimen-
sionless transverse coordinate r=a. Calculations are performed for the
waveguide mode TM01 at oae 1=20 =c � p=5, e � 2:25 and e0 � 1.
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node for the components Ez and Hj [see (4) ë (6)]. On the
contrary, the value Re a1 � ÿ1 would correspond to the
antinode of the components Hj and Ez and the node for
the component Er. The imaginary part Im a1 of the
reêection coefécient is directly associated with the energy
êux in the waveguide, and hence, to the êux in the far-éeld
region (see section 7). Note that a simple asymptotic
expression for the reêection coefécient follows from (22),
(26) at small ka. In particular, for a hollow waveguide, at
e � e0 � 1 and ka5 1, we obtain

Re a1 � 0:0724, Im a1 � ÿ0:0551�ka�3. (30)

The characteristic dependences of the real and imaginary
parts of the reêection coefécient a1 of the evanescent wave
(04 ka4x1) on the quantity ka are shown in Fig. 3 [curve
( 1 )]. One can see that at e � e0 � 1 the real part of the
reêection coefécient weakly depends on ka in the entire
subwavelength region up to ka � 1. Strong changes appear
only at ka � 1:5, when the argument begins approaching the
eigenvalues x1 � q1a of the TM01 mode. Unlike this, the
imaginary part a1 strongly changes with increasing ka
already in the vicinity of the zero argument, achieves a
minimum at ka � 2:2, and then increases and vanishes at
ka � x1.

The considered reêection coefécient of the evanescent
TM01 wave from the subwavelength aperture of a hollow
waveguide will be used in section 8 in discussing the
dependence of the éeld parameters on the dielectric constant
of the waveguide core.

7. Complex êw and an energy êux
in a supercritical open waveguide

Obviously, a supercritical mode in an inénite cylindrical
waveguide does not carry an energy êux. For an evanescent
waveguide mode, complex amplitudes of tangential com-
ponents of the electric and magnetic éelds are shifted in
phase by 908 so that the electromagnetic êow turns to be a
purely imaginary quantity. At the same time, in the case of
a truncated waveguide, the initial mode at its output is
partially transformed into the reêected mode, which
changes the phase relations between the total éeld
components.

We will express the complex electromagnetic êow j at the
output hole through the found reêection coefécient a1. For
the éeld under study (a monochromatic éeld with the
components independent of the angular variable), the
êow via an element of size pa 2 is expressed through a
time-averaged complex Poynting vector P integrated over
the surface (see, for example, [24, 25]):

j � 2p
� a

0

Pzrdr, P � c

8p
E�H �. (31)

Let us use expressions for éelds (4), (6) and, in accordance
with the results of section 5, set in them an � 0 at n 6� 1. By
substituting these expressions into (31) and integrating them
taking (18) into account, we obtain the expression for the
êow. To emphasise the fact that in calculations, éeld
components ~Er and ~Hj inside the waveguide are used, we
will denote below the corresponding complex êow by ~j. The
expression for ~j has the form:

~j � c

4

� a

0

~Er�r; 0� ~H �
j �r; 0�rdr � ioejCj2�1� a1��1ÿ a �1 �

� a 3J 2
1 �x1�

�
8

�
x 2
1 ÿ a 2 o 2e

c 2

�1=2 �ÿ1
. (32)

The energy êux is determined by the real part of complex
êow (32) and the expression for this energy êux has the
form

Re ~j � ÿoe a
3

4
jCj2 J 2

1 �x1�
�
x 2
1 ÿ a 2 o 2e

c 2

�ÿ1=2
Im a1. (33)

Expression (33) shows that in a truncated waveguide, the
energy êux is nonzero only if the imaginary part of the
reêection coefécient is nonzero. Thus, the energy êux in the
waveguide and, hence, the êux to the far-éeld region are
proportional to the imaginary part of the coefécient a1.
Recall that the real part a1 is important for determining the
éeld energy density in the near-éeld region. Thus, the
coefécient a1 is a very informative characteristic of the
problem. It can serve as a basis for studying other types of
nanowaveguides and other waveguide modes as well as for
the further generalisation of the theory to the case of the
walls of a waveguide made of real metal.

8. Dependence of the reêection coefécient
on the dielectric constant and the value ka

We will discuss now the parameters of the amplitude
reêection coefécient as functions of the dielectric constants
of the waveguide core (e) and the environment (e0) as well

Re a1, Im a1

x3 x2 x1

0.8
3

20.6

0.4

1
0.2

0

ÿ0:2

0 0.5 1.0 1.5 2.0 ka

1

23

Figure 3. Real (dashed curves) and imaginary (solid curves) parts of the
amplitude reêection coefécient a1 of the evanescent wave from the
output aperture of the nanowaveguide as a function of the quantity ka
at �e=e0�1=2 � 1 ( 1 ), 1.5 ( 2 ), 2.4 ( 3 ) and e0 � 1. The point numbers xj
( j � 1ÿ 3) correspond to the curve numbers.
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as of the ratio of the aperture diameter to the radiation
wavelength. The results of our calculations of the depend-
ences of a1 on ka at different e are presented in Fig. 3. The
dielectric constant of the free space outside the waveguide
was assumed equal to unity (e0 � 1) and the refractive index
of the waveguide core nw� e 1=2 was 1, 1.5 and 2.4. The
latter two values of nw correspond to the refractive indices
of the optical ébre (or crystalline quartz) and silicon nitride.
Therefore, the performed calculations are related to the
applied problems on the near-éeld optical probes.

The curves presented in Fig. 3 show that the depend-
ences of the real and imaginary parts of the reêection
coefécient on ka for different e have a qualitative resem-
blance. However, the speciéed values of Re a1 and Im a1
signiécantly differ from those obtained for e � 1. In other
words, the ratio e=e0 strongly affects Re a1 and Im a1. It
follows from the comparison of the curves that the quantity
Re a1 at the given ka strongly increases with increasing the
ratio e=e0. For example, in the region of small ka the real
part of the amplitude reêection coefécient of the optical
ébre and the silicon nitride exceeds that of the hollow
waveguide by 6.1 and 10.2 times, respectively. Note also that
the position of points on the ka axis at which Re a1 achieves
the unity and Im a1 vanishes is determined by the quantities
x � ka � x1(e0=e)

1=2, where x1 � 2:4048. At the given x, the
evanescent mode undergoes a transformation to the prop-
agating one. Figure 3 shows the points (x1, x2 and x3) for
three values of the dielectric constant e.

One can see from Fig. 3 that at large e=e0, the real part
of the reêection coefécient becomes close to unity. At the
waveguide output, this differently affects the energy density,
which is caused by the different éeld components. For the
TM01 mode under study, the energy density w el

r [see (28)]
associated with the transverse electric-éeld component Er
and proportional to j1� a1j2 can increase by approximately
four times compared to its value in the unperturbed
waveguide. At the same time, the energy densities of the
magnetic éeld Hj and longitudinal electric-éeld components
Ez, which are proportional to j1ÿ a1j2 [see (28) and (29)],
tend to zero at a1 ! 1. These peculiarities in the behaviour
of different éeld components of the energy density are
shown in Fig. 4. This égure presents the calculation results
of the dependences of j1� a1j2 and j1ÿ a1j2 on ka for a
hollow waveguide (nw � 1) and the silicon nitride core
(nw � 2:4) as well as for waveguides made of silicon, which
is a highly refractive semiconductor material (nw � 3:5). It
follows from the calculations that the main (at ka5 1)
contribution to the integral energy density (Wr �
2p
� a
0 w el

r rdr) is affected by both the reêection from the
output aperture and by the decrease in the decay in the
supercritical waveguide at a large dielectric constant of its
core [19 ë 21]. Figure 4 shows the points x1 ÿ x4 at which the
evanescent mode is transformed into a propagating mode
for four e.

Note that our approach remains valid for negative
values of the dielectric constant of the environment
(e0 < 0). In this case, we observe an interesting feature in
the behaviour of the reêection coefécient. From the physical
point of view, the negative value of e0=e corresponds to the
metal medium at the waveguide output for the positive
dielectric constant of the waveguide core (e > 0). According
to general expression (26), when G � ÿ1, a singularity
appears in the behaviour of a1. This phenomenon is
demonstrated in Fig. 5, which presents the calculation
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Figure 4. ka dependences of the factor j1� a1j2 determining the ratio of
the square of modulus of the transverse electric-éeld component jErj2
(perturbed by the reêection from the subwavelength aperture of the
truncated waveguide) to the corresponding value jE �0�r j2 in a waveguide
of inénite length (a) and of the factor j1ÿ a1j2 determining the inêuence
of the subwavelength aperture on the square of modulus of the
longitudinal electric-éeld component and the transverse magnetic-éeld
component (jEz=E

�0�
z j2, jHj=H

�0�
j j2 / j1ÿ a1j2) (b) at �e=e0�1=2 � 1 ( 1 ),

1.5 ( 2 ), 2.4 ( 3 ) and e0 � 1. The point numbers xj ( j � 1ÿ 4) correspond
to the curve numbers.
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Figure 5. Dependence of the square of modulus of the transverse electric-
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ted waveguide (jEr=E
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r j2 / j1� a1j2) on the ratio of the electric

constants of the environment to the waveguide core, e0=e, calculated at
the éxed parameter oae 1=2=c � p=5.
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results of the real part of the reêection coefécient a1 as a
function of the ratio e0=e. The calculations were performed
for the éxed positive dielectric constant e of the waveguide
core and for the given ratio aoe 1=2=c � p=5. Recall that the
real part of the coefécient a1 is not related to the energy êux.
The increase in Re a1 means an increase in the energy
density of the transverse electric-éeld component Er in the
near-éeld region at the waveguide output. The imaginary
part of a1 is equal to zero at e0=e < 0. Thus, in the case
under study the energy êux and the transmission coefécient
of light in the far-éeld region are equal to zero because both
these quantities are proportional to Im a1.

One can see from Fig. 5 that the singularity in the
behaviour of Re a1 appears at e0=e � ÿ1:274. This singu-
larity leads to a drastic increase in the amplitude (and,
hence, in the energy density) of the transverse electric-éeld
component Er / (1� a1) as e0=E is approached to the
speciéed resonance value. In a waveguide with a glass-
optical core (nw � 1:5), the resonance appears at the
dielectric constant of the external medium e0 � ÿ2:866.
Taking into account the speciéc type of the dependences
of dielectric constants in Ag and Au on the wavelength in
vacuum [26], we obtain that the resonance increase in the
éeld for Ag and Au occurs at l � 370 and 505 nm,
respectively.

Note that in our example the real part of the reêection
coefécient Re a1 tends to inénity because we consider a
dissipationless medium at the waveguide output. When the
imaginary part of the dielectric constant in metal is taken
into account, we will simply obtain a drastic (resonance)
increase in the éeld amplitude instead of the singularity.
This effect is similar to other effects of the plasmon
resonance (appearing at the metal ë dielectric medium inter-
face), which in recent years have been actively discussed in
many papers on nanooptics (see review [27]). The detailed
analysis of the effects of the resonance reêection of
evanescent waves from a metal substrate at the nano-
waveguide output will be studied elsewhere.

9. Application of the boundary condition
for the complex êow to waveguide problems

The formulated problem was studied by using Maxwell's
equations and exact boundary conditions for the éelds.
When deriving system of equations (19) we did not use any
approximations. After system (19) was derived, we con-
structed its solution in the érst and second approximations
and showed that these solutions differ insigniécantly. On
this basis we selected equality (26) as a working expression.
Recall that this result directly followed from equality (24)
representing an initial equation in the érst approximation.
We will show how this equality can be interpreted. By
multiplying both parts of (24) by the factor ÿioCC �(1�
a �1 )J

2
1 (q1a)a

3=8 we pass to the complex-conjugate quanti-
ties. It turns out that the left-hand side of the equality is
exactly equal to the product of the factor c=4 by the integral� a

0

~Er�r; 0� ~H �
j �r; 0�rdr,

and the right-hand side ë the product of c=4 by the integral� a

0

Er�r; 0�H �
j �r; 0�rdr.

These products coincide with the expressions for the
complex light êow integrated in the aperture [see deénition
(31)]. In this case, the left-hand side includes the integrated
êow expressed through the éelds related to the waveguide
and the right-hand side ë through the éelds in the external
space (the êows are denoted by ~j and j ). Thus equation (24)
represents the equality of integral complex êows calculated
at z � ÿ0 and z � �0:

~j � j. (34)

It is obvious that if the continuity condition is fulélled for
tangential components of the electric and magnetic éelds at
the boundary z � 0, equality (34) is fulélled as well.
However, the continuity of the tangential component of
the magnetic éeld at all the points of the output aperture
does not follow from the tangential component of the
electric éeld and condition (34), i.e. condition (34) is weaker
than the exact boundary condition for the magnetic éeld.
The equivalence of relations (24) and (34) means that if in
the case under study we replaced, at the beginning, the
exact boundary condition for the tangential magnetic-éeld
component by approximate condition (34), we arrived at
the same result given by the solution of the exact system of
equations in the érst approximation. This allows us to draw
a conclusion that in many more complicated waveguide
problems (other types of waveguide modes, an open
waveguide of the variable cross section, the case of nonideal
metal on the walls) we can use the equality condition for the
integral complex êows at the interface instead of the
continuity condition of the tangential magnetic-éeld com-
ponent at each point. This approach promises signiécant
simpliécation of the procedure of the solution construction
for the above problems.

10. Conclusions

Let us formulate the results of the paper:
(i) we have developed a theoretical approach to the

investigation of a spatial structure of evanescent éelds in the
truncated waveguide and the surrounding open space. We
have shown that in the supercritical waveguide the wave-
guide mode is transformed mainly to the mode with the
transverse structure and inverted dependence on the longi-
tudinal coordinate.

(ii) We have introduced the reêection coefécient for the
initial evanescent wave. We have obtained the dependence
on the waveguide radius, the wavelength and dielectric
constant of the waveguide and the free space. It has
been shown that the reêection coefécient is a small quantity,
if the dielectric constant is continuous at the waveguide ë
free space interface. The jump of the dielectric constant
strongly increases the amplitude of the reêected wave and
the éeld near the output hole of the waveguide.

(iii) The increase in the ratio e=e0 of the dielectric
constants in the waveguide core (e) and environment (e0)
results in a signiécant increase in the real part of the
reêection coefécient a1 and the increase in the éeld energy
density in the near-éeld region. The quantity a1 approaches
unity at large e=e0, which ensures a four-fold increase in the
energy density of the transverse electric-éeld component
w el
r / j1� a1j2 compared to the case of the unperturbed

waveguide of inénite length. This indicates the additional
advantage in the use of near-éeld optical probes with a large
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dielectric constant of the core, i.e. the effect acts as the
decrease in the decay length of evanescent waves in a
supercritical tapered waveguide [19 ë 22].

(iv) It is shown that in the case of a medium with a
negative dielectric constant at the waveguide output, the
reêected wave amplitude resonantly increases at certain
frequencies. This is a consequence of excitation of surface
plasmons and can serve as an effective instrument for
measuring metal properties of the object under study, which
is placed at the probe output.

(v) The main calculations have been performed for
transverse-magnetic modes. However, the theory allows
generalisation to the case of transverse-electric modes
and to the case of tapered waveguides, which are of special
interest for the near-éeld microscopy. The important
moment consists in the possibility of generalisation of
the proposed approach to the case of nanowaveguides
with a real metal coating, which is the subject of our
next paper.
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