
Abstract. The transmission of an evanescent light wave
through the subwavelength aperture of a dielectric cylindrical
metal-coated waveguide is studied. The theoretical approach
to the description of the éeld structure in such a nano-
waveguide is developed, which takes into account the
transformation of the initial wave reêected from the output
aperture and proves applicable when dielectric properties of a
real metal are taken into account. The complex reêection
coefécient of a supercritical waveguide mode from the
aperture, the complex light êow and the far-éeld transmission
coefécient are calculated for an aluminium-coated waveguide
at the light wavelength of k � 488 nm. It is established that
the reêection and transmission coefécients of the nano-
waveguide strongly depend on the dielectric constant of its
core and differ signiécantly for transverse-magnetic and
transverse-electric modes. It is demonstrated that the
characteristics of light éelds under study differ essentially
from those of a nanowaveguide with ideally conducting walls
and the subwavelength aperture in a perfectly conducting
screen.

Keywords: evanescent electromagnetic wave, cylindrical nanowave-
guide, subwavelength aperture, real metal.

1. Introduction

In this paper, we present the results of the theoretical study
of the transmission of an evanescent electromagnetic wave
through a subwavelength output aperture of a cylindrical
waveguide, which were obtained with allowance for the real
dielectric properties both in the waveguide core and its
metal coating. In other words, unlike the model problem we
considered in [1], which is based on the ideal metal
approximation, we will focus our main attention on the
effects related to the énite dielectric constant of metal walls
in a waveguide. The aim of this paper is to elucidate the

role in the transmission of diffraction phenomena asso-
ciated with the presence of the nanowaveguide output
aperture and a jump in the dielectric constant at the
nanowaveguide core ë free space interface as well as the
phenomena resulting from the excitation of surface
plasmons in the metal coating.

Recently, the effects related to the inêuence of surface
plasmons on the transformation of optical radiation upon
its transmission through single subwavelength apertures in
thin metal élms or through a periodic system of nanoholes
have been considered theoretically in many papers. These
studies have been stimulated by the experimental discovery
of a number of extraordinary resonance phenomena upon
transmission of light through single subwavelength aper-
tures or a system of periodic nanoholes in metal élms (see
[2 ë 5] and reference therein). Among the theoretical papers
we should mention, in particular, papers [6 ë 10] aimed at
studying the inêuence of dielectric properties of a metal on
the light transmission by single nanoholes in thin and thick
élms of noble metals (Ag, Au) and at producing narrow-
band light beams upon the transmission of light through a
subwavelength aperture in a screen with a periodic corru-
gated structure [11 ë 13]. The process of resonance
transmission of light through a periodic system of holes
in a metal was theoretically considered in papers [14 ë 18]. It
is also necessary to mention papers [19 ë 21], which pointed
out a signiécant role of the plasmon propagation during the
transmission of radiation along metallized tapered walls of
near-éeld optical probes.

Nevertheless, in many practically important cases, the
role of diffraction phenomena during the transmission of
light through the subwavelength aperture of a supercritical
waveguide and the phenomena resulting from the excitation
of surface plasmons in the waveguide metal coating remains
unclear. The eféciency of light transmission in these
problems strongly depends on the aperture diameter and
the dielectric constants of the waveguide metal coating, its
core and environment. In this paper, the elucidation of this
problem is of key interest for us. We do not claim to
consider all possible situations but study in detail a speciéc
example which is of practical importance: the transmission
of an evanescent light wave through a dielectric cylindrical
waveguide coated with a real metal, for which the real part
of the dielectric constant em signiécantly exceeds its imag-
inary part: Re(ÿ em)4 Im em.

We have formulated the general theoretical approach to
this problem, which allows one to involve into consideration
the dielectric constant of the metal walls under conditions of
small dissipation losses resulting from the énite conductivity
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of the metal. The proposed approach is based, to a great
extent, on theoretical results obtained in our paper [1]. We
have performed a comparative analysis of the effect of the
waveguide output hole on the éeld properties for the ideal
and real metals and have calculated the reêection coefécient
from the subwavelength output aperture, which is the main
characteristic determining the éeld properties. We have also
calculated the far-éeld transmission coefécient of light
taking into account speciéc dielectric constants of the walls.

Calculations have been performed for the éelds in
aluminium-coated waveguides (the scheme of the waveguide
is shown in Fig. 1 of paper [1]) at the radiation wavelength
l � 488 nm in cylindrical coordinates r, j, z. As in [1], e is
the dielectric constant of the waveguide core (04r < a,
z < 0, where a is the core radius of the waveguide), em is the
dielectric constant of the metal walls (a4r <1, z < 0) and
e0 is the dielectric constant of the medium outside the
waveguide (z > 0). For Al at l � 488 nm we have em �
ÿ34:5� i8:5: In calculations we take into account only the
real part of em. The example of the transverse-magnetic
mode TM01 is chosen for the main consideration. However,
to demonstrate the strong dependence of the results on the
spatial structure and the type of the waveguide modes, we
have also calculated the transmission coefécients for the
transverse-electric mode TE01.

2. Calculation scheme of the éelds
in an inénite waveguide

First of all, we present expressions for the éelds in an
inénite (not truncated) waveguide with the walls having the
negative dielectric constant. For propagating waves, the
éeld parameters were studied in [22, 23]. Unlike these
papers, we focus our attention on a supercritical waveguide,
i.e. the éelds damping in the axial direction. In the region of
the waveguide core (04r < a), the expressions for the
éelds have the same form as in paper [1], namely:

~Er � CJ1�qr� exp
�
ÿ z

�
q 2 ÿ o 2e

c 2
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c 2

�ÿ1=2
CJ0�qr��

� exp

�
ÿ z

�
q 2 ÿ o 2e

c 2

�1=2 �
, (2)

~Hj � ÿ
ioe
c

�
q 2 ÿ o 2e

c 2

�ÿ1=2
CJ1�qr�

� exp

�
ÿ z

�
q 2 ÿ o 2e

c 2

�1=2 �
, (3)

where J0(x) and J1(x) are the Bessel function of the érst
order and its derivative; C is a constant. However, unlike
expressions (1) ë (3) from paper [1], the transverse wave
numbers q � qn � xn=a and the number xn will be different.

In the region of metal walls (i.e. at a < r <1) the éeld
components of the TM01 mode will be expressed via the
modiéed Bessel functions K0 and K1 :
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Here, the constant A should be determined from the
boundary conditions at r � a and the number w, character-
ising the éeld damping in the transverse direction in the
walls is related to the number x by the expression

x 2 ÿ a 2 o 2e
c 2
� ÿw 2 ÿ a 2 o 2em

c 2
. (7)

Hereafter, x � x1, where x1 are the eigenvalues of the TM01

mode. The continuity condition of the tangential compo-
nent of the electric éeld and the normal component of the
electric inductance at the metal ë dielectric interface yields

J0�x�x � ÿAK0�w�w, J1�x�e � AK1�x�em. (8)

By excluding the constant A from (8), we énd

x
J0�x�
J1�x�

� ÿ e
em

w
K0�w�
K1�w�

. (9)

Note that the system of equations similar to (7), (9) was
obtained in [23] for propagating waves. In the case of
evanescent waves, similar to paper [23], system (7), (9)
allows one to énd numbers x and w for each speciéed value
of o=c.

3. Fields in a free space

Let us present expressions for the eigenwaves in the free
space, which have the same symmetry as the waves in the
waveguide (TM waves, q=qj � 0). The éeld components of
these waves are written in the form

Er � CJ1�Kr� exp
�
ÿ z
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�
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. (12)

Here, unlike the case of the waveguide, where the wave
number took the discrete values, the wave number K can
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take any values in the range from 0 to 1. In expressions
(10) ë (12) at small K (at K 2 < o 2e0=c

2) the quantity
(K 2 ÿ o 2e0=c

2)1=2 is replaced by ÿi(o 2e0=c
2 ÿ K 2)1=2.

These expressions are valid only for the waves, which
decay or propagate in the positive direction of the z axis.
The exchange of z by ÿz yields one more set of intrinsic
solutions for an inénite space, which, however, will be of no
use below when passing to the semi-inénite space. Note that
the presented expressions for the éelds have an identical
form at any values of the transverse coordinate r, unlike
the case of the waveguide éelds, where, at r < a and r > a,
the functional dependence was different.

4. Fields in a truncated waveguide

Studying a truncated waveguide with walls made of a real
metal, we should, in the general case, use the whole set of
eigenmodes of an inénite waveguide, whose parameters are
presented in section 2. However, if as an initial wave we use
the evanescent wave corresponding to the only mode of an
inénite waveguide, we can employ the same method as in
the case of an open waveguide with an ideal metal coating
[1]. Instead of the linear combination of different reêected
modes with unspeciéed coefécients an, we can restrict
ourselves to only one reêected wave and take only it into
account in the expression for the complete éeld, by
introducing the reêection coefécient a1. Expressions for
éeld components (1) ë (3) after this allowance for reêected
waves will take the form
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Exactly as in (1) ë (3), we replace the multiplier in
expressions (4) ë (6), which correspond to the éelds in metal:
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Expressions (16) ë (18) represent the érst approximation to
exact formulae for the éelds in a truncated waveguide,
which is similar to the érst approximation to the solution in
the case of an ideal metal considered earlier in [1]. In this
case, the approximation obviously yields a small error, if
the modulus of the dielectric constant of the walls is
signiécantly larger than unity. A detailed analysis of the
dependence of the error on the dielectric constant requires a
separate investigation.

5. Fields in an open half-space
behind the waveguide

In this section, we will construct the solution in the region
adjacent to the waveguide in the form of an integral over
the set of wave numbers according to expressions (10) ë
(12). Expressions for the éeld components have the form

Er �
�1
0

B�K�J1�Kr� exp�ÿg�K�z�KdK, (19)

Ez �
�1
0

exp�ÿg�K�z� KJ0�Kr�B�K�KdK
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c

�1
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4K 2:

8>>>><>>>>: (22)

The expansion coefécient B(K) is determined from the
continuity condition of the component Er at z � 0, i.e. from
the equation

~Er�r; 0� � Er�r; 0�, (23)

in full agreement with the way it was done in [1]. Because of
a more complex (compared to the case of an ideal metal)
éeld structure at z < 0, we obtain the expression for B(K) of
a more complicated form than that in paper [1]:

B�K� � �1� a1�Ca 2

�
1

ÿ�Ka�2 � x 2
�KaJ0�Ka�J1�x�

ÿ xJ1�Ka�J0�x�� ÿ
1

�Ka�2 � w 2

e
em

J1�x�
K1�w�

��KaJ0�Ka�K1�w� ÿ wJ1�Ka�K0�w��
�
. (24)

Recall that the numbers of x and w entering into expression
(24) are determined from system of equations (7), (9). The
results of speciéc calculations of x and w for the nano-
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waveguide with a glass core (e � 2:25) and an aluminum
coating are presented in Fig. 1 for 488-nm radiation, when
Re em � ÿ34:5. The dielectric constant of the environment
e0 was taken equal to unity.

The choice of the function of type (24) as the expansion
coefécient B(K) a fortiori guarantees the continuity of the
tangential component of the electric éeld Etang. As for the
conjugation of the magnetic éeld components Htang, then,
according to the results of paper [1], instead of the éeld
equality we will require the equality of complex êows.

6. Complex êow inside the waveguide
and in the external space

In paper [1] we introduced and used in calculations complex
êows integrated in the output waveguide aperture ( ~j and j ),
and derived expressions for such êows, where we took into
account the symmetry of the waveguide and the éelds under
study. Here, the deénition of the êow is somewhat
modiéed. We will consider renormalised complex êows ~S
and S differing from the previous ones ( ~j and j ) by the
constant multiplier c=4. The passage to the renormalised
êows somewhat simpliées the énal expressions for the far-
éeld transmission eféciency of radiation and decreases the
number of intermediate expressions required to calculate
the éelds of a truncated waveguide.

Let us introduce the complex êows ~S and S with the help
of expressions

~S �
�1
0

� ~E; ~H ��z rdr, S �
�1
0

�E;H ��z rdr. (25)

By substituting expressions (13), (15), (16), (18) for the
éelds inside the waveguide into the expression for eS, we
have
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�
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where the notations

Ia � J 2
1 �x� ÿ J0�x�J2�x�, I1 � ÿ
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�
(27)

are used and it is taken into account that according to (8),
expression for the constant A has the form

A � e
em

J1�x�
K1�w�

. (28)

We will express now the complex êow through the
characteristics of the external éelds. By substituting
relations (19), (21), (24) into the second expression in
(25) for the êow, and by changing the integration order and
integrating initially over rdr and then over dK, we obtain

S �
�1
0

Er�r; 0�H �j�r; 0�rdr � a 3 ioe0
c
jC j2j1� a1j2I �. (29)

Expression (29) includes integration over dK which will be
denoted by I �. The imaginary and real parts of the integral
I � Re I� iIm I are expressed by

Re I �
�1
aoe 1=2

0
=c

�
x 2 ÿ a 2 o 2e0

c 2

�ÿ1=2
c�x�xdx,

(30)

Im I �
� aoe 1=2

0
=c

0

�
a 2 o 2e0

c 2
ÿ x 2

�ÿ1=2
c�x�xdx,

and the function c(x) in integrand (30) has the form
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Equalities (26) and (29) allow one to represent the
continuity expression of the complex êow ~S � S in the form

�1ÿ a �1 �M � �1� a �1 �I �. (32)

The quantity M in (32) is given by the expression

M �
�
2e0

�
x 2 ÿ a 2 o 2e

c 2

�1=2 �ÿ1ÿ
eIa � jAj2emI1

�
. (33)

Expression (32) together with expressions (27), (28), (30),
(31) and (33) makes it possible to determine the main
characteristic ë the reêection coefécient a1.

Note once again that the condition

~S � S (34)

lays the basis of our approach. In other words, we require
the equality of complex êows inside and outside the
waveguide instead of the equality of magnetic éelds Hj
and ~Hj at each point of the output aperture. Thus, we
construct the solution meeting the weakest condition, than
is required by the rigorous approach, which facilitates the
procedure of the solution construction.

Recall that in the case of rather simple geometry (when
the ratio E=H is independent of the transverse coordinate),
the continuity condition E=H together with the continuity
condition of the tangential component of the electric éeld,
i.e. when Er and ~Er coincide, gives a more complete
formulation of boundary conditions for the éelds at the
interface of two media. In this paper instead of ratio E=H,
we introduce the ratio of the quantity

Wr �
�1
0

E �r �r; 0�Er�r; 0�rdr (35)

to the quantity S �:

2

4

0

6

8

x1, w

0.4 0.6 0.8 1.0 1.2 ka

x1

w

Figure 1. Dependences of the dimensionless parameter w and eigenvalue
x � x1 of the lowest transverse-magnetic mode TM01 on ka (k �
oe 1=20 =c). Calculations are performed in the range of values 0:3967 <
ka < 1:4364 for which this waveguide mode exists and is evanescent.
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Wr

S �
�
�1
0

E �r �r; 0�Er�r; 0�rdr
��1

0

E �r �r; 0�Hj�r; 0�rdr,
(36)

and try to achieve coincidence of the values of this ratio at
z � ÿ0 and z � �0. The introduced characteristic can be
considered as the aperture impedance in the bulk metal
bordering the open space. The use of this characteristic
makes it possible to obtain solutions in the case of a more
complex geometry when the ratio E=H depends on the
transverse coordinates.

The quantity Wr is proportional to the integrated energy
density, which is related to the tangential component of the
electric éeld,

wr �
e0
16p

� 2p

0

dj
�1
0

E �r �r; 0�Er�r; 0�rdr �
e0
8
Wr. (37)

By using expressions (13) and (16) for ~Er, we obtain the
following result for Wr ë renormalised energy density,
integrated in aperture:

Wr � j1� a1j2
a 2

2
jC j2�Ia � jAj2I1�. (38)

The ratios of the complex êow in the waveguide and in the
free space to the integrated energy density have the form

~S
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� iao

c

1ÿ a �1
1� a �1

�
x 2 ÿ a 2 o 2e

c 2

�ÿ1=2 eIa � jAj2emI1
Ia � jAj2I1

, (39)

S

Wr
� a

2io
c

e0I
�

Ia � jAj2I1
. (40)

Expressions (29), (30) and (38) obtained in this section
give more complete information on the electromagnetic
energy density directly at the waveguide output, i.e. in
the near-éeld zone, and on the energy êux in the far-éeld
zone. To compare the case of the real metal with that of the
ideal metal we present limiting expressions, to which
expressions (29), (30) and (38) are transformed at jemj ! 1.

7. Passage to the limit of an ideal metal

Note that expressions from paper [1] corresponding to the
ideal metal are a particular case of expressions presented in
section 6. In fact, if the dielectric constant em in the region
r > a, z < 0 indeénitely increases in modulus, the electric
éeld in the waveguide walls vanishes and the eigenvalues x
becomes equal to the root of the equation J0(x) � 0. In this
case, the contribution to the êow calculated at z � ÿ0 will
be made only by the waveguide core and expression (26)
will assume the form

~S � io
c
jC j2�1� a1��1ÿ a �1 �a 3

�
2

�
x 2 ÿ a 2 o 2e

c 2

�1=2 �ÿ1
eIa,

(41)

the quantity Ia being given by the expression

Ia � J 2
1 �x�. (42)

The integral of the square of the tangential component of
the electric éeld will be expressed by a simple equation

Wr � j1� a1j2
a 2

2
jC j2Ia. (43)

The expressions related to the free space are simpliéed as
well. In calculating the éeld in the region z > 0, the
expression for the coefécient B(K) will contain only the
contribution from the éeld in the waveguide core:

B�K� � �1� a1�Ca 2 1

x 2 ÿ �Ka�2 KaJ0�Ka�J1�x�, (44)

which, taking into account the only reêected wave, exactly
corresponds to expressions (12) and (14) from paper [1]. In
this case, in the integral I [see (30)], the integrand is
simpliéed and the expression for it will assume the form

c�x� �
�
xJ0�x�
x 2 ÿ x 2

�2
J 2
1 �x�, (45)

and the integral I will be expressed via I11 obtained in [1],
i.e. we deal with the equality

I � J 2
1 �x�I11. (46)

In this case, the expression for the êow S takes the form

S � a 3 ioe0
c
jC j2j1� a1j2J 2

1 �x�I �11, (47)

corresponding to the results of paper [1].
Now, using equalities (41), (42), (47) and (43) we obtain

the ratio between Wr and complex êows inside ( ~S) and
outside (S) the waveguide:

~S �

Wr
� a
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c

e
�
q 2
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o 2e
c 2

�ÿ1=2�
1ÿ a1
1� a1

�
. (48)

S �

Wr
� ÿa 2ioe0

c
I11. (49)

Note that expression (48) in the explicit form relates the
êow with the reêection coefécient. Expression (49) equiv-
alent to (48) (due to the êow continuity) makes it possible
to express the real and imaginary parts of the ratio S=Wr
via the integral I11, which is a quantitative parameter of the
scheme considered taking into account its parameters [see
(30)]. These expressions have the form

ReS

Wr
� a

2oe0
c

Im I11, (50)

ImS

Wr
� a

2oe0
c

Re I11. (51)

The érst of these ratios in the region of small values ka
(k � oe 1=20 =c is the wave number) takes a simple form:

ReS

Wr
� 4e 1=20

3x 4
1

�ka�4 � 0:03987e 1=20 �ka�4. (52)

8. Results of calculations of the reêection
coefécient and the complex êow
for a nanowaveguide with aluminium walls

In section 6 we derived expression (32), which can help to
determine the reêection coefécient . The énal expression for
a1 has the form
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a1 �
1ÿ I=M

1� I=M
. (53)

This expression together with (30), (31) and (33) generalises
the results of our previous paper {see expressions (20), (21)
and (26) in [1]} to the case of waveguide walls made of a
real metal.

Based on the above expressions, we calculated the
reêection coefécient from the aperture of the nanowave-
guide with a glass core (e � 2:25) and an aluminium coating
(Re em � ÿ34:5) for 488-nm radiation. The dielectric con-
stant of the environment e0 was assumed equal to unity. For
this waveguide, the results of calculations of the real and
imaginary parts of a1 as a function of ka are presented in
Fig. 2. The same égure presents the results obtained for the
waveguide with the walls made of an ideal metal. The
comparison of the curves shows that the dependence of the
reêection coefécient on ka is qualitatively the same under
the condition that an evanescent mode exists in an alumi-
nium-coated waveguide. This condition has the form
ka > xAl

min and xAl
min � 0:3967 is the point at which w

determined by expressions (7), (9) vanishes, i.e. at a small
radius of the core the walls do not hold the mode any more.

It follows from Fig. 2 that the curves in both cases are
especially close in the interval xAl

min < ka9 1. At
0 < ka < xAl

min, the mode under study disappears in the
aluminium-coated waveguide, which means that in this
region the model of an ideal metal is inapplicable. One
can also see that with increasing ka, the differences for the
waveguides with coatings made of an ideal and real metals
increase. The differences turn the largest in the vicinity of
points xAl

max, where xAl
max � xAl

1 (e0=e)
1=2 � 1:4364 (xAl

1 �
2.1547). Starting from point ka > 1:4364, the evanescent

mode becomes propagating. Recall that in the case of an
ideal metal (when x id

1 � 2:4048) this occurs at x id
max �

xid1 (e0=e)
1=2 � 1:6032. On the whole, the calculation per-

formed allow one to draw the conclusion that for a metal
with a negative dielectric constant that is high with respect
to the absolute value, the ideal metal model is applicable in a
rather broad range of parameters.

The results of calculations of the real and imaginary
parts of the ratio of the complex êow S (25) to the integrated
energy density Wr of the transverse component of the
electric éeld (35) are presented in Fig. 3 for the TM01

mode under study. The comparison of the results obtained
for the waveguides with coatings made of real (aluminium)
and ideal metals shows that they are in good agreement in
the region xAl

min < ka < xAl
max, in which the evanescent mode

in the aluminium-coated waveguide exists.

9. Energy êux and far-éeld transmission
coefécient

The results obtained in section 6 for the complex êow allow
one to calculate the far-éeld transmission coefécient of
radiation and express it through the reêection coefécient of
a decaying wave whose éeld is perturbed due to the
presence of an output hole. The far-éeld transmission
coefécient is the parameter, which is usually used to
estimate the eféciency of the near-éeld probes. This
coefécient characterising the electromagnetic wave was
érst introduced in papers [24, 25], which considered the
transmission of a plane wave through a pin hole in an
ideally conducting screen. It was deéned as a ratio of the
êux appearing behind the pin hole in the screen to the
incident êux (which would take place in the absence of the
perturbing action of the screen and aperture):

T � Re��� EtangH
�
tangrdrdj���

E inc
tang�E inc

tang��rdrdj
. (54)

Here we transformed the expression for the transmission
coefécient from papers [24, 25] by using the fact that in the
plane wave the initial amplitudes of the éelds E inc

tang and
H inc

tang are equal. Then we rewrote this expression in the form
suitable for the supercritical waveguide. Based on expres-
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Figure 2. Real (a) and imaginary (b) parts of the amplitude reêection
coefécient a1 of the evanescent TM01 wave from the subwavelength
waveguide aperture as a function of ka. Solid curves are the results of
calculations for the aluminium-coated waveguide with the fused-silica
core (e � 2:25) at l � 488 nm and e0 � 1; dashed curves ë for the
waveguide with ideally conducting walls.
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Figure 3. Ratio of the real and imaginary parts of the complex êow S
(25) to the integrated energy density Wr of the transverse component of
the electric éeld (35) as a function of ka. Solid curves are the results of
calculations for the aluminium-coated waveguide with the fused-silica
core (e � 2:25) at l � 488 nm and e0 � 1; dashed curves ë for the
waveguide with ideally conducting walls.
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sion (54), we can express the transmission coefécient of a
truncated waveguide via the quantities found in the
previous sections. We derive the required expression taking
into account that the resultant éeld at the waveguide output
(in the approximation under study) differs from the initial
unperturbed éeld by the multiplier (1� a1). It is also
necessary to take into account that the éelds of the TM01

mode are independent of the angular coordinate j. In this
case, we obtain from Eqns (29), (38) and (54) the énal
expression for the T coefécient in the form

T � j1� a1j2
Re��� ErH

�
jrdrdj���

ErE
�
r rdrdj

� ReS

Wr
j1� a1j2. (55)

Based on expression (55) we calculated the far-éeld
transmission coefécient T. The results obtained for the
aluminium-coated waveguide and the waveguide with
ideally conducting walls are shown in Fig. 4. One can
see that the dependences T on ka are close to each other
in the region of existence of the waveguide TM01 mode
under study in the case of the real metal (i.e. at
0:3967 < ka < 1:4364). However, the ideal metal model is
inapplicable in the region of small wave numbers,
0 < ka < 0:3967 (where the waveguide mode disappears)
and in the region 1:4364 < ka < 1:6032 due to the decrease
in the values xmax � �ka�max in the case of the real metal
compared to the case of ideal metal; starting from this value,
the evanescent mode is transformed into the propagating
one (xAl

max � 1:4364 and x id
max � 1:6032). These differences

manifest themselves in comparison of the values of the
transmission coefécient T multiplied by (ka)ÿ4 for the case
of the real and ideal metals (see inset in Fig. 4).

Figure 5 presents the dependence of the coefécient T
multiplied by (ka)ÿ4 on the quantity ka for the waveguide
with an ideal metal coating. Calculations are performed for
the TM01 mode by using expressions (55) and (50). One can
see that the asymptotic behaviour of T=(ka)4 at small ka
agrees with dependence (52) obtained in section 7. To
demonstrate the dependence of the transmission eféciency
on the types of waveguide modes, Fig. 5 shows the results of
calculations for the transverse-electric mode TE01 and the

transmission of light through the subwavelength aperture in
the screen, calculations being obtained within the frame-
work of the theory [24, 25]. The TE01 mode was theoretically
analysed with the help of the method similar to that
reported in this paper as applied to the TM01 mode (the
derived expression in this case will be presented elsewhere).
One can see from Fig. 5 that the transmission coefécient
strongly depends on the type of the initial mode: for the
TM01 mode it is approximately eight times larger that for
the TE01 mode. As for the comparison with the result of the
classical theory [24, 25] (initial plane wave), the transmission
coefécient exceeds its value by 6.02 and 48.93 times for
TM01 and TE01 modes, respectively, in the region ka5 1.

Figure 6 demonstrates that the far-éeld transmission
coefécient of light signiécantly depends on the dielectric
constant e of the waveguide core. According to the results
obtained, the increase in e leads to the increase in the
transmission eféciency at one and the same ka. However,
the range of ka values at which the waveguide mode is
evanescent (ka < xmax), decreases in accordance with the
relation xmax � x(e0=e)

1=2.

10. Conclusions

(i) The ideal-metal-approximation approach [1] to the
description of the transmission of an evanescent wave
through a subwavelength aperture of a cylindrical wave-
guide is generalised to the case of the real metal, whose real
part of the dielectric constant in modulus markedly exceeds
its imaginary part [Re(ÿ em)4 Imem]. Explicit expressions
have been obtained for the reêection coefécient of the
supercritical waveguide mode from the aperture, the
complex light êow at the waveguide output as well as
for the energy êux and the far-éeld transmission coefécient
of the nanowaveguide. Numerical calculations have been
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Figure 4. Far-éeld transmission coefécient T for the aluminium-coated
waveguide (solid curve) and the waveguide with ideally conducting walls
(dashed curve) as a function of ka. The inset shows the dependence of
T=�ka�4 on ka. Calculations have been performed for the TM01 mode in
the waveguide with a fused silica core (e � 2:25) at l � 488 nm and
e0 � 1.
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Figure 5. Far-éeld transmission coefécient T divided by �ka�4 as a
function of ka. Solid curves ( 1, 2 ) are the results of calculations by the
general expressions for the TE01 ( 1 ) and TM01 ( 2 ) modes; dashed curves
( 1, 2 ) are the results of calculations with the help of asymptotic
expressions (ka5 1) for the same modes. Solid curve ( 3 ) is the trans-
mission of a linearly-polarised plane wave through a pin hole in an
ideally conducting screen [25]; dashed curve ( 3 ) described the contribu-
tion of the érst term in the expansion of the solution obtained in [25],
which corresponds to the known result of paper [24].
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performed for the aluminium-coated waveguide and fused
silica core at l � 488 nm.

(ii) The comparison of the results of this paper with
those obtained for the case of the ideal metal allow the
conclusion to be drawn that the behaviour of the complex
reêection coefécient as a function of ka is qualitatively the
same in both cases under the condition the evanescent mode
under study exists in the waveguide (0:3967 < ka < 1:4364).
At ka < 0:39667, the mode under study disappears in the
aluminium-coated waveguide, which means that the ideal-
metal model is inapplicable in this region. The differences in
the results for the waveguides with the real metal and ideal
metal walls increase with ka and become the largest in the
vicinity of the point ka � 1:4364, starting from which the
evanescent mode is transformed into the propagating one.

(iii) Calculations of the far-éeld transmission coefécient
of the nanowaveguide show that it strongly depends on the
dielectric constant of the waveguide core and the type of
waveguide modes. In particular, the transmission coefécient
for transverse-magnetic mode TM01 is an order of magni-
tude higher than that for the transverse-electric mode TE01.
Both coefécients markedly differ from the value yielded by
the classical Bethe theory in the case of the transmission of a
plane linearly-polarised wave through the subwavelength
aperture in an ideally conducting screen.

(iv) We can conclude from our calculations for the
aluminium that despite a substantial inêuence of optical
constants for the real metal on the behaviour of the éelds
inside and outside the waveguide, the model of an ideal
metal has a rather broad range of applications if the
dielectric constant of the waveguide walls is large enough in
modulus. However, one should expect that the inêuence of
resonance plasmon effects during the transmission of light
through the waveguide nanoaperture will be especially
strong for waveguides with walls made of noble metals
(similar to that as it is in the case of nanoholes in the silver
and gold élms).
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Figure 6. Far-éeld transmission coefécient T divided by �ka�4 as a
function of ka. Curves ( 1, 2, 3, 4 ) are the results of calculations for the
TM01 mode in the waveguide with ideally conducting walls at e � 1
(hollow waveguide), 1:52 (SiO2), 2:4

2 (Si3N4), 3:5
2 (Si), respectively.
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