
Abstract. By using a simpliéed system of Maxwell ë Bloch
equations (with the adiabatically excluded polarisation of the
medium), we studied the processes proceeding in the cross
section of a light wave propagating in a wide-aperture laser
emitting at the frequency detuned from the transition-line
centre. It is shown that in the model under study the passage
to the chaotic regime during a change in the wave
propagation velocity across the aperture occurs via the
doubling bifurcations of an ergodic two-dimensional torus.
The spectrum of Lyapunov exponents is found and it is
established that at bifurcation points a structurally unstable
three-dimensional torus is produced, which gives rise to a
stable doubled ergodic torus.

Keywords: wide-aperture lasers, torus doubling bifurcation, ergodic
torus, Lyapunov characteristic exponent, chaos.

1. Introduction

At present processes proceeding in the cross section of a
light wave propagating in wide-aperture lasers and passive
optical systems are being extensively studied. It has been
shown in [1] that as the Fresnel number in a wide-aperture
Nd :YAG laser is increased, the stationary transverse
intensity patterns change to periodic, quasi-periodic and
chaotic patterns. Similar results have been obtained in
paper [2] for an electric-discharge single-longitudinal mode
CO2 laser. In a wide-aperture laser (for Fresnel numbers
above 30), the intensity that is almost constant over the
beam cross section becomes periodically modulated in space
and weakly modulated in time with the frequency
� 150 kHz depending on the mode-frequency detuning
from the transition-line centre. As the Fresnel number,
frequency detuning or the pump power are increased, the
dependences of the intensity on the transverse coordinate
and time become strongly irregular and the spatial and
temporal correlations are completely lost. It was shown for

the érst time in [3] that these effects can be qualitatively
explained by using a simple system of Maxwell ë Bloch
equations with a detuning from the frequency of a
longitudinal mode describing the production of travelling
periodic waves due to the Andronov ëHopf bifurcation.

The authors of paper [4] found the conditions under
which it is possible to exclude adiabatically the medium
polarisation from Maxwel ëBloch equations. The study of
such simpliéed equations also showed that in the case of
negative frequency detuning, the periodic intensity modu-
lations of waves travelling across the aperture may arise; the
growth increments, the frequency and the velocity of these
waves were found analytically [5 ë 7].

In this paper, we used a self-similar system of equations
[5] to study the change in the optical éeld structure in the
beam cross section from the periodic to chaotic during the
variation of the wave propagation velocity across the
aperture and showed that the passage to chaos proceeds
via a cascade of torus doubling bifurcations.

2. Basic equations. Linear stability analysis

Consider the initial system of equations, as in [5]:
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The system of equations (1) describes the spatiotemporal
dynamics of laser radiation assuming that the medium
polarisation instantly follows changes in the optical éeld.
This model is often called in the literature the standard
adiabatic exclusion of polarisation. It is also assumed that
lasing occurs at one longitudinal mode of the Fabry ë Perot
cavity. Here, E is a slowly varying éeld amplitude in a wide-
aperture laser in a one-dimensional (planar) approximation,
which is normalised to the saturation éeld amplitude Es in
the active medium; N � g=gt; g; gt are the gains in the active
medium at the central frequency of the laser transition and
losses averaged over the cavity length, respectively; the
dimensionless time t and coordinate x are related with

A.A. Krents S.P. Korolev Samara State Aerospace University,
Mockovskoe sh. 34, 443086 Samara, Russia; e-mail: krenz86@mail.ru;
N.E. Molevich Samara Branch, P.N. Lebedev Physics Institute, Russian
Academy of Sciences, ul. Novo-Sadovaya 221, 443011 Samara, Russia;
e-mail: molevich@éan.smr.ru

Received 7 August 2008; revision received 15 October 2008
Kvantovaya Elektronika 39 (8) 751 ë 756 (2009)
Translated by I.A. Ulitkin

PACSnumbers:42.65.Sf; 42.60.Da
DOI:10.1070/QE2009v039n08ABEH013960

Cascade of torus doubling bifurcations in a detuned laser

A.A. Krents, N.E. Molevich

760/721 ë KAI ë 20/x-09 ë SVERKA ë 6 ÒÑÎÑÔ ÍÑÏÒ. å 1
Quantum Electronics 39 (8) 751 ë 756 (2009) ß2009 Kvantovaya Elektronika and Turpion Ltd



dimensional quantities td and xd as t � td=Ti; x � xd
�(2k=Tic)

1=2; k is the wave number; c is the speed of
light; Ti is the population relaxation time of the active-
medium levels; n � cTigt is the coefécient determining the
ratio of the relaxation time of the active-medium pop-
ulation to the photon lifetime in the cavity; Dcav �
(oÿ ocav)=cgt is the laser frequency detuning o from the
mode frequency of an empty cavity ocav normalised to the
linewidth in the cavity; D0 � (o0 ÿ o)Tp is the laser
frequency detuning from the central frequency o0 of the
gain line of the active medium normalised to the half-width
of the gain line; Tp is the relaxation time of polarisation;
J � jE j 2; Nun � gun=gt; and gun is the unsaturated gain at
the frequency o0.

Applicability conditions (1) were discussed in papers
[8 ë 10] and are as follows. First, the éeld amplitude weakly
changes during the round-trip transit in the cavity; second, a
rather large number of transverse modes or one longitudinal
cavity mode or several longitudinal modes whose transverse
structures differ insigniécantly fall into the homogeneous
gain line. This is fulélled under the condition Do=o
5N ÿ1=2F , where Do=o is the relative width of the laser
emission spectrum and NF is the Fresnel number.

The system of equations (1) has two homogeneous
equilibrium states. The érst of them corresponds to the
absence of lasing (E � 0, N � Nun) and the second (E � Est,
N � Nst � 1� D2

0, Dcav � D0=2) ë to stationary lasing with
the intensity Jst � jEstj2 � Nunÿ 1ÿ D2

0.
We will seek for the self-similar solution of the system of

equations (1) in the form of intensity waves travelling with a
constant velocity. For this purpose, we will use the self-
similar change of variables x � tÿ bx, where bÿ1 is the
velocity of the wave propagating across the cavity axis. The
model neglects the cavity aperture éniteness.

The linear analysis performed in [5] showed that if the
frequency detuning is D0 < 0, then at
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the regime of uniform stationary lasing proves to be
unstable. At b � bcr, the Andronov ëHopf bifurcation
takes place, which produces a family of periodic small-
amplitude intensity waves parametrised with the help of b.
The intensity modulation frequency at the bifurcation point
is

obif �
�N 2

un � D2
0nIst�1=2

jD0j
:

Figure 1 shows the dependence of the instability incre-
ment G in the stationary state on b for the laser system
parameters Nun � 5, v � 4:4, D0 � ÿ1 taken from [5]. One
can see from the égure that the increment is maximal for
b � bmax. It can be expected that without the external action
(for example, the tilt of the mirror), the waves with the
maximum growth increment will dominate on the aperture.
The value of bmax is determined by the laser system
parameters and can signiécantly exceed the bifurcation
value bcr. Below, we study in detail the change in the
nonlinear dynamics of laser radiation with increasing the
parameter e � (bÿ bcr)=bcr.

3. Dynamics of a laser system at b > bcr

We study the nonlinear stage in the development of
perturbations of the uniform stationary lasing regime at
D0 < 0 by the numerical simulation of the system of
equations (1) written in the self-similar form (by using the
change of variables x � tÿ bx). For this purpose, the
complex éeld is represented in the form E � E 0 � iE 00.
Thus, we obtain the dynamic system with the dimension-
ality n � 5 and initial conditions corresponding to small
deviations E and N from their stationary values.

The parameters of the laser medium corresponded to
those indicated in the previous section. As a result, we
obtained that at e < 0, the uniform stationary lasing regime
is stable and the established periodic solutions appear only
at e > 0. A further increase in the parameter e leads to
doubling bifurcations of radiation intensity oscillation
period, which was érst pointed out in [5].

Figure 2 presents the phase portraits in the plane
(J; dJ=dt), the shape of intensity oscillations, and the
intensity spectrum. Apart from the fundamental frequency,
the spectrum exhibits its harmonics ë 2o, 3o, etc. Sub-
harmonics of the frequency o and its linear combinations
appear in the sequence of period doubling bifurcations. We
found that upon passing through the critical value of the
parameter e � 0:078, the spectrum becomes continuous.

Figure 3 demonstrates the phase parametric diagram
illustrating the passage to chaos via the period doubling
cascade. In this égure, the governing parameter is plotted on
the abscissa and the possible values of the intensity maxima
ë on the ordinate. One can see from this diagram and from
the structure of the phase portrait (see Fig. 2a) that the 2 l

periods (l > 1) are not produced simultaneously for different
`intensity branches'.

So far we discussed the dynamics of the radiation
intensity deéned as J � E 0 2 � E 00 2. Another scenario of a
passage to chaos is observed when the dynamics of the éeld
components (E 0;E 00) is considered.

Figure 4 shows the projections of the trajectories in the
space (E 0;E 00;N ), the Poincare cross section by the plane
N � Nst (we took into account only the points at which the
difference NÿNst changes its sign from plus to minus), and
the oscillation spectrum E 0. At small values of the governing
parameter e, any small deviations from the equilibrium
position are drawn to the attractor, which is a two-dimen-
sional ergodic torus. One can see from Fig. 4 that when the
governing parameter e increases, torus doubling bifurcations
leading énally to a chaotic oscillation regime are observed.
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Figure 1. Intensity growth increment G as a function of b.
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Figure 2. Sequence of period doubling bifurcations upon variation in the parameter e: phase plane (a), shape of intensity oscillations (b), the intensity
spectrum (c); C is the spectrum power, Cmax is the maximum power, f is the linear frequency.
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After the érst bifurcation at e � 0:056 and the appearance of
the second (internal) torus, next bifurcations proceed, érst
of all, with internal tori. Apart from the process at the
frequency o, which experiences period doubling bifurca-
tions, the spectrum exhibits a signal at the second frequency
O, which does not experience doubling bifurcations, and a
harmonic o� 2O associated with the cubic nonlinearity of
system (1) (Fig. 3c).

The form of oscillations of the éeld component E 0(x)
and éeld phase j(x) � arctan�E 00(x)=E 0(x)� at e � 0:05 is
presented in Fig. 5. One can see that the frequency ratio
changes approximately as o=O � 1=e. In turn, it means that
the torus is ergodic except those values of the governing
parameter at which the frequency ratio o=O becomes a
rational number.

From the point of view of nonlinear dynamics of the
system under study, of special interest is the spectrum of
Lyapunov characteristic exponents (LCEs) especially at the
points of period doubling bifurcations because it allows one
to understand the bifurcation mechanism. Figure 6 shows
the dependences of éve LCEs (l1 ÿ l5) on the parameter e.
Two exponents (l1 ÿ l5) are independent of e and equal to
zero, which corresponds to a two-dimensional torus. At
bifurcation points (points A, B, C, D, E), three exponents
turn out to be zero. The signature of the LCE spectrum at
bifurcation points B, C, D changes as

0; 0;ÿ;ÿ;ÿ ! 0; 0; 0;ÿ;ÿ ! 0; 0;ÿ;ÿ;ÿ;

which corresponds to the production of a structurally
unstable three-dimensional torus at the bifurcation point,
which then produces a stable doubled ergodic torus [11].

The signature of the LCE spectrum in the case of
bifurcation at the point E changes as

0; 0;ÿ;ÿ;ÿ ! 0; 0; 0;ÿ;ÿ ! �; 0; 0;ÿ;ÿ;

i.e. the principle Lyapunov exponent becomes positive,
which indicates the passage to chaotic oscillations.

It is easy to calculate the éeld divergence of phase
velocities of our system averaged over the trajectory:
hdivF i � ÿ1ÿ Jst=(1� D2

0) � ÿ2:5 (the system parameters
are mentioned above). On the other hand,
hdivF i �P li � ÿ2:5, where li is the corresponding Lya-
punov exponent. This identity is conérmed by the results of
numerical calculation of the LCE spectrum with an error no
worse than 1.5%.

4. Conclusions

It is known that the torus doubling bifurcation is possible
only in systems with the dimensionality n5 4, which are
less studied than the systems with a lower dimensionality.
As mentioned in [11], despite the fact that doubling of a
two-dimensional torus was discovered many years ago
[12 ë 14], the details of this bifurcation have not been
elucidated so far and the search for simple autonomous
models, which will make it possible to realise the regimes of
a stable two-dimensional torus, torus doubling bifurcation,
and passage to chaos, is urgent. The authors of paper [11]
found the conditions for torus doubling bifurcations in the
modiéed model of the inertial Anishchenko ëAstakhov
generator. The authors of paper [15] proposed for the érst
time an autonomous point model describing the torus
doubling bifurcation in a two-mode laser with a saturable
élter.

We have shown in this paper that realisation of the
scenario of passage to chaos via torus doubling bifurcation
is also possible in a simple self-similar system of equations
describing the dynamics of a single-mode detuned laser in
the case of adiabatic exclusion of the medium polarisation.
The governing parameter here is actually the inverse velocity
bmax of the wave, which implicitly depends on the laser
system parameter (érst of all on n;Nun;D0). The numerical
study of distribution model (1) (not in the self-similar form)
performed in our previous paper [6] also demonstrated the
passage from regular optical patterns with waves travelling
in the transverse direction (with the velocity depending on
n;Nun;D0) to chaotic patterns when the mentioned param-
eters of the laser system were varied.

The scenario of the passage to chaos was not studied in
[6]. In this connection, of interest for further investigations is
the veriécation of the existence of the scenario of the
passage to chaos via the torus doubling bifurcation in
more complex models including both distribution model
(1) and a complete system of Maxwell ë Bloch equations
(taking into account the éniteness of the relaxation time of
the medium polarisation).
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Figure 3. Phase parametric diagram (a) and its fragment on an enlarged
scale (b).
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Figure 5. Oscillations of the éeld component E 0(x) (a) and the éeld phase
j(x) (b).
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