
Abstract. The asymptotic method and the method of coupled
waves used to study an integrated-optical multilayer three-
dimensional waveguide satisfying the conditions of a con-
tinuously variable effective refractive index are considered.
Three-dimensional éelds of smoothly deforming modes of a
four-layer integrated-optical waveguide are described analyti-
cally. Explicit dependences of the contributions of the érst
order of smallness to the electric and magnetic éeld
amplitudes of quasi-waveguide modes are obtained. The
canonical type of quasi-wave equations describing the
structure of quasi-TE and quasi-TM modes in a smoothly
irregular four-layer integrated-optical three-dimensional
waveguide is presented for the asymptotic method. By using
the perturbation theory, shifts of complex propagation
constants are obtained in an explicit form for these modes.
The elaborated theory can be used to analyse structures from
dielectric, magnetic and metamaterials in a rather broad
wavelength range of electromagnetic waves.

Keywords: integrated optics, waveguide mode, smooth three-dimen-
sional irregularities, asymptotic method, quasi-wave equations,
generalised Luneburg lens, coupled waves.

1. Introduction

Guided modes propagating along the regular segment of an
integrated-optical waveguide are independent: they do not
exchange energy with each other and the medium
surrounding the waveguide [1, 2]. In the waveguide section
with smooth refractive index irregularities of layers or their
thicknesses, the guided mode experiences perturbation. This
weakly-perturbed mode can be considered as a quasi-
waveguide mode, which is characterised by the fact that in
the transverse cross section of the waveguide, the wave is
standing and the number of nodes (zeros) of the electric
éeld strength during the waveguide propagation of the
mode remains invariable. Quasi-waveguide modes can
exchange energy with each other and the surrounding

medium [2 ë 18]. Because this energy is a small part of the
energy transferred by separate modes, approximate meth-
ods can be used to study smoothly irregular waveguides
(see, for example, [3 ë 10]).

For the efécient energy transfer through different
coupling elements (lenses, couplers, prisms, multiplexors),
it is necessary to take into account the vector character of
the éelds at all the stages in solving the electrodynamic
problem of propagation of a plane monochromatic light
wave in a planar multilayer integrated-optical structure. The
coupling eféciency, as is known, strongly depends on the
éeld matching in front of and behind the coupling element
[2, 7 ë 13, 16 ë 18].

The analysis of the processes [2 ë 17, 19 ë 21] shows that
the modes of a smoothly irregular waveguide segment are
weakly hybrid quasi-TE and quasi-TM modes
[9, 13, 16, 17, 21]. The retention of terms proportional to
the dielectric constant gradient in boundary conditions and
in the solution of quasi-wave equations allows one to take
into account the vector character of the monochromatic
electromagnetic éeld propagation along the smoothly irreg-
ular segments of the multilayer multimode integrated-
optical waveguide [2, 8 ë 10, 13, 16, 17, 21]. Note that the
vector scattering of the waveguide mode in a statistically
irregular waveguide was considered in detail in papers [8 ë
10, 13, 21] including in the presence of noise [15].

In Section 2 of the present paper, we discuss the
peculiarities of propagation of monochromatic electromag-
netic waves in smoothly irregular four-layer integrated-
optical three-dimensional waveguide. We found that the
boundary conditions `couple' two modes of this waveguide
with different polarisations into one hybrid mode. The
physical reason for this discrepancy between TE and TM
modes in a regular planar waveguide is the polarisation
dependence of the plane wave reêectivity [2, 9]. In the
smoothly irregular section of the three-dimensional wave-
guide at the oblique incidence of the waves (at the interface
of the media forming the waveguide), polarisations are
mixed and the linearly polarised mode becomes a hybrid
one. Thus, our consideration is based on the method of
short-wave asymptotics [4, 6], in which the solution of U is
represented in the form of some asymptotic series: U �P

m um=k
m
0 , where the terms of the series are proportional to

kÿm0 � (2p=l0)
ÿm; l0 is the wavelength of monochromatic

light in vacuum; k0 is the modulus of the wave vector k0. In
the visible wavelength range, l0 ! 0 (k0 !1), which
allows one to use the solution in the form of a énite
asymptotic series known as the adiabatic approximation
[4, 6, 16, 17, 22].
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We show in Section 3 that the allowance for the
adiabaticity of the quasi-waveguide mode in the smoothly
irregular four-layer three-dimensional waveguide leads to
quasi-wave equations, which are solved asymptotically in
the zero and érst approximations. In both cases, we present
the structure of the mode éeld components. The canonical
type of quasi-wave equations is presented for the asymptotic
method.

The quasi-TM and quasi-TE modes in the smoothly
irregular four layer integrated-optical three-dimensional
waveguide are analysed in Section 4. By using the pertur-
bation theory we obtained in the explicit form the shifts of
complex propagation constants (spectral numbers) for
weakly coupled quasi-TE and quasi-TM modes. We found
that these shifts are imaginary and different for different
modes. Note that the development of the vector three-
dimensional theory of waveguide propagation and scatter-
ing of light is one of the urgent topics in optoelectronics
[8 ë 10, 12 ë 21]. Indeed, the use of the scalar two-dimen-
sional wave equation [1 ë 5, 9, 16] upon passage to the
submicrone and, all the more, to the nanometer range of
linear dimensions restricts the possibilities in solving the
problem of analysis and synthesis of elements in integrated-
optical devices [17].

The aim of this study is solve the electrodynamic three-
dimensional problem formulated in this paper and to
analyse the quasi-wave equations and analytic expressions
obtained for the éelds of deforming modes of a four-layer
smoothly irregular integrated-optical three-dimensional
waveguide both in the zero and érst approximations of
the asymptotic method.

2. Formulation of the problem. General analysis
of the problem

We studied smoothly irregular integrated-optical three-
dimensional structures containing regular (waveguide) and
irregular (of the type of the generalised waveguide
Luneburg lens) segments (Fig. 1). Coupling devices widely
used for connecting different elements of the integrated-
optical processor as well as, for example, such elements of
integrated-optical schemes as prisms and élm-based lenses
refer to smooth `irregularities' [5, 11, 17, 18]. The latter
include, in particular, a thin-élm waveguide generalised
Luneburg lens [5, 17]. The requirement to the calculation
accuracy of the parameters of a similar waveguide lens on
passing to the nanometer range strongly increases due to
the presence of restrictions caused by diffraction effects
[2, 5, 17], which strongly affect the spectrum analyser reso-
lution.

Similar problems exist in coupling different elements of
one integrated-optical scheme. In particular, in an inte-
grated-optical high-frequency spectrum analyser there exists
the problem of coupling of a laser beam with a waveguide
and in optical data transmission systems it is necessary to
couple optical ébres with radiation sources and with signal
detectors.

To transmit eféciently energy through three-dimensional
smoothly irregular elements of a multilayer integrated-
optical scheme, the vector character of the éelds at all
the stages in solving the electrodynamic problem of the light
wave propagation should be taken into account
[2, 8 ë 10, 16, 17].

Maxwell's equations for an unabsorbed inhomogeneous

medium in the SI system in the absence of sources can be
written in the form:

rot ~H � e
q ~E

qt
; rot ~E � ÿm q

~H

qt
; (1)

where e � ere0 is the dielectric constant of the medium; m �
mrm0 is the magnetic permeability of the medium; er; mr are
the relative dielectric constant and magnetic permeability,
respectively; e0 and m0 are the electric and magnetic
constants, respectively; o

�����
me
p

= nk0; n is the refractive
index of the medium (layer); k0 � 2p=l0 � o=c is the
modulus of the wave vector k0; l0 is the wavelength of
monochromatic light in vacuum; c is the speed of light in
vacuum; o � 2pf ; f is the electromagnetic éeld frequency;
E; H are the vectors of electric and magnetic éeld strengths;
the tilde above the éeld vectors refers to their complex
character.

In a regular four-layer waveguide, the thickness of the
second waveguide layer h(y; z) � const; and the éelds of
eigenmodes propagating along the z axis have the form [1,
16]:

~E�x; y; z; t� � A exp�iot� exp�ÿikxx� exp�ÿikzz�;
(2)

~H�x; y; z; t� � B exp�iot� exp�ÿikxx� exp�ÿikzz�:
In this case, for TE modes A � (0;Ay; 0)

t and B �
(Bx; 0;Bz)

t, and for TM modes A � (Ax; 0;Az)
t and

B � (0;By; 0)
t, where (�; �; �)t is the column transposed to

the line (�; �; �). Between the mode components, the
following relations are fulélled [1, 16]: for TE modes
Bx � (ÿb=m�Ay, Bz � (i=k0m)dAy=dx; for TM modes
Ax � (b=e)By, Az � (ÿi=k0e)dBy=dx, where b � kz=k0 is
the coefécient of the phase deceleration of the mode
(effective refractive index of the waveguide).

In a smoothly irregular four-layer three-dimensional
waveguide (see Fig. 1), the thickness of the second wave-
guide layer is not constant, h( y; z) 6� const, so that
qh=qy 6�0; qh=qz 6�0. It is assumed in this case that
jqh=qyj; jqh=qzj5 1.

In the regular segment of the four-dimensional wave-
guide, a TE or TM mode (2) propagates along the z axis.

2y
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Figure 1. Cross section of the considered three-dimensional integrated-
optics structure produced by the surrounding medium (cover layer is air)
with the refractive index nc ( 1 ), the érst waveguide layer (the regular
segment of the structure) with the refractive index nf ( 2 ), the substrate
with the refractive index ns ( 3 ) and by the thin-élm waveguide Luneburg
lens (the irregular segment of the structure) with the refractive index nL
(second waveguide layer) ( 4 ); h( y; z) is the thickness of the layer forming
the Luneburg lens; R is the radius of the lens aperture; d is the thickness
of the regular segment of the waveguide integrated-optics structure. The
propagation direction of the TE0 mode is shown by the thick arrow.
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The waveguide layer ë air interface xÿ h( y; z) � const in the
regular segment is horizontal and at any point (h( y; z); y; z)t

the plane tangent to it coincides with the yz plane. The
tangent boundary conditions Hzjhÿ0 � Hzjh�0, Eyjhÿ0 �
Eyjh�0 and Ezjhÿ0 � Ezjh�0, Hyjhÿ0 � Hyjh�0 are fulélled
separately for both modes.

At the surface interface x � h( y; z) of the three-dimen-
sional irregular segment of the waveguide, the tangent plane
at the point (h( y; z); y; z)t in the general case does not
coincide with the horizontal plane yz. In this case, the
tangent boundary conditions Etjhÿ0 � Etjh�0, Htjhÿ0 �
Htjh�0 in the general case are not fulélled separately for
TE and TM modes. Thus, it is the boundary conditions that
combine two initially independent waveguide modes into
one weakly coupled hybrid mode. The coupling is weak due
to the estimate jqh=qyj; jqh=qzj5 1.

In paper [5] for a thin-élm waveguide Luneburg lens,
which is an example of smoothly irregular integrated
waveguide structures under study, Southwell obtained
dispersion relations in the approximation when `inclined'
tangent boundary conditions were replaced by their pro-
jections to the horizontal plane, i.e. the solution obtained in
[5] was two-dimensional. The account for the conditions
jqh=qyj 6� 0; jqh=qzj 6� 0 introduces into Southwell's rela-
tions a small correction with respect to the parameter d,
where d � max jHy; zbj�k0b 2�ÿ1 (this is a two-dimensional
analogue of the quantity jHe=ej).

This approach explains the appearance of hybrid modes
with six éeld components in the waveguide with smooth
irregularities (see Sections 3, 4) and not with three as is the
case of TE and TM modes [1 ë 13]. For hybrid modes, the
conditions qE=qy � 0, qH=qy � 0 [1, 2, 9] are not fulélled,
i.e. there exist variations of éelds in the direction of the y
axis.

3. Quasi-wave equations for adiabatic modes
of a smoothly irregular four-layer
three-dimensional waveguide

3.1 Asymptotic method for solving quasi-wave equations

In the analysis of the propagation of polarised mono-
chromatic electromagnetic éeld in the multilayer integrated-
optical three-dimensional waveguide with smoothly varying
layer thicknesses, we used the combination of the short-
wave asymptotic method [22] and the modiéed averaging
method [23] (see Appendix 1). As a result, we obtain three
separate problems:

(i) the nonlinear equation coupling the phase j( y; z) and
its partial derivatives qj=qy and qj=qz with the proéle of
the waveguide layer thickness h( y; z) and its partial deriv-
atives qh=qy and qh=qz generalising the dispersion relation
for the regular waveguide;

(ii) ordinary differential equations of the second order
for the amplitudes E(x) and H(x) with small (�d) right-hand
sides specifying the interaction between them;

(iii) integral equations of type A1.4, where integration in
expressions for the electromagnetic éeld ~E(x; y; z); ~H(x; y; z)
is performed along the rays, which are the solution of the
system of ordinary differential equations

d

ds

�
b
dy

ds

�
� qb

qy
;

d

ds

�
b
dz

ds

�
� qb

qz
:

Our method for solving the formulated electrodynamic
problem has éve advantages:

(i) the solution obtained satisées Maxwell's equations;
(ii) there is no need to solve the search problem of the

orthogonal basis;
(iii) at each point of the horizontal plane ( y; z) the

vertical distribution of the electromagnetic éeld is calculated
separately independently of the variables ( y; z); however, the
solutions at two neighbouring points are related parametri-
cally through b( y; z);

(iv) the dispersion relations are solved separately from
other factors of the required solution of Maxwell's equa-
tions;

(v) the obtained solution b( y; z) of the dispersion
relations makes it possible to calculate separately the
rays and wave fronts in the horizontal plane, after which
the phase delay j( y; z) can be determined by integration
along the rays.

Note that in this case both the Fourier method of
separation of variables used for regular waveguides [1, 2]
and the method of expansion in the total system of guided
and radiation modes of a regular two-dimensional wave-
guide [2, 7 ë 13] are inapplicable because the propagation
constant is here complex and there exists the problem of
orthogonality of the corresponding modes [9, 13, 15, 19].

Thus, we will seek for the solutions of Maxwell's
equations (1) in the form:

~E�x; y; z; t� � E�x; y; z� exp�iot�

� exp

�
ÿ ik0

� y;z

y0;z0

b�y 0; z 0�ds�y 0; z 0�
�
�b�y; z��ÿ1=2;

(3)

~H�x; y; z; t� � H�x; y; z� exp�iot�

� exp

�
ÿ ik0

� y;z

y0;z0

b�y 0; z 0�ds�y 0; z 0�
�
�b�y; z��ÿ1=2;

where ds � (dy 2 � dz 2)1=2 is the element of the ray length.
The method for solving three independent problems is

iterative with respect to the smallness parameter d and
consists of the following stages*:

(i) The solution of the wave equation in the zero
approximation for Ey(x; y; z) and Hy(x; y; z) for TE and
TM modes, respectively, in the homogeneous subregions
[see below (7)];

(ii) the substitution of the solutions into the boundary
conditions (of the zero order of smallness in d) to obtain
dispersion relations for the zero-order TE and TM modes ë
algebraic transcendental equations for b;

(iii) the solution of the ray equation in the zero
approximation;

(iv) the integration of phases along the rays and
obtaining of full solutions (in the zero approximation
with respect to d).

After this, it is necessary to repeat all the stages for the
corresponding equations in the érst approximation with
respect to d. Equations of dispersion relations for TE and
TM modes in this cycle are nonlinear érst-order differential

*A detailed analysis of these problems is beyond the scope of this paper
and will be presented elsewhere.
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equations in partial derivatives. Quasi-wave equations for
Ey(x; y; z) and Hy(x; y; z) in the érst approximation prove to
be coupled. All this considerably hampers the calculations
of electromagnetic éelds in the érst approximation.

In this paper we pay the main attention to the analysis of
the dependence of the electromagnetic éeld components on
the argument x. Let us write vector Maxwell equations with
respect to the components and construct certain linear
combinations from differential expressions from them
(see Appendix 2). Relations (A2.8) ë (A2.11) obtained in
Appendix 2 we reduce by the common multiplier, which
is not identically equal to zero. As a result we obtain
expressions for the éeld components Ex(x; y; z);Ey(x; y; z)
and Hy(x; y; z);Hx(x; y; z):

Hy � wÿ2z

��
q
qz

�
ÿib qs

qy

�
ÿ b 2 qs

qz
qs
qy

�
Hz ÿ ieo

dEz

dx

�
;

Hx � wÿ2z

��
ÿib qs

qz

�
dHz

dx
� ieob

qs
qy

Ez

�
;

(4)

Ey � wÿ2z

��
q
qz

�
ÿib qs

qy

�
ÿ b 2 qs

qz
qs
qy

�
Ez � imo

dHz

dx

�
;

Ex � wÿ2z

��
ÿib qs

qz

�
dEz

dx
ÿ imob

qs
qy

Hz

�
:

For the components Ez(x; y; z);Hz(x; y; z) we obtain the
quasi-wave equations:

d 2Ez

dx 2
� w 2

z Ez � ÿ
�
pypy �

qpy
qy
ÿ pyw

2
z

qwÿ2z

qy

�
Ez

ÿ i

oe

�
qpy
qz
ÿ qpz

qy
� pzw

ÿ2
z

qw 2
z

qy

�
dHz

dx
; (5)

d 2Hz

dx 2
� w 2

z Hz � ÿ
�
pypy �

qpy
qy
ÿ pyw

2
z

qwÿ2z

qy

�
Hz

� i

om

�
qpy
qz
ÿ qpz

qy
� pzw

ÿ2
z

qw 2
z

qy

�
dEz

dx
: (6)

With the help of notations w 2
z � k 2

0 em� pzpz � qpz=qz,
py � ÿik0b qs=qyÿ (2b)ÿ1qb=qy, pz � ÿik0b qs=qzÿ (2b)ÿ1

� qb=qz, used in (4) ë (6), the derivatives with respect to
éeld strengths Ei are expressed in the form: qEi=qy � pyEi,
q 2Ei=qy

2 � (pypy � qpy=qy)Ei, qEi=qz � pzEi, q 2Ei=qz
2 �

(pzpz � qpz=qz)Ei. The derivatives with respect to éeld
strengths Hi have similar forms.

In each of the regions Ij ( j = 1, 2, 3, 4) with the
constants e and m,

I1 � f�x; y; z� : x 2 �h�y; z�;�1�; y; z 2 �ÿ1;�1�g;

I2 � f�x; y; z� : x 2 �ÿd; 0�; y; z 2 �ÿ1;�1�g;
(7)

I3 � f�x; y; z� : x 2 �ÿ1;ÿd �; y; z 2 �ÿ1;�1�g;

I4 � f�x; y; z� : x 2 �0; h�y; z��; y; z 2 �ÿ1;�1�g;
equations for the x dependence of longitudinal components
Ez(x; y; z), Hz(x; y; z) have the form:

d 2Ez

dx 2
� w 2

j Ez �
i

oej

�
qpz
qy
ÿ qpy

qz

�
dHz

dx
; (8)

d 2Hz

dx 2
� w 2

j Hz �
i

omj

�
qpy
qz
ÿ qpz

qy

�
dEz

dx
: (9)

Here, w 2
j � w 2jIj are the values of w 2 in the region Ij [see (7)];

w 2 � w 2
z � pypy � qpy=qy. Let us substitute w

2 in the form of
the sum of terms of the zero, érst and second order of
smallness with respect to d:

w 2 � �w 2��0� � �w 2��1� � �w 2��2�;

where

�w 2��0� � k 2
0 �emÿ b 2�;

�w 2��1� � ik0

�
qs
qy

qb
qz
� qs
qz

qb
qy

�

ÿ ik0

�
q
qy

�
b
qs
qy

�
� q
qz

�
b
qs
qz

��
; (10)

�w 2��2� �
��

qb
qy

�2
�
�
qb
qz

�2 �
�4b�ÿ1

ÿ
�
q
qy

�
qb
qy
�2b�ÿ1

�
� q
qz

�
qb
qz
�2b�ÿ1

��
:

Expressions in braces in the right-hand side of
Eqns (8), (9) can be also presented as a sum of terms of
the érst and second order of smallness with respect to d:

qpy
qz
ÿ qpz

qy
� p �1� � p �2�;

where

p �1� � ik0

�
q
qy

�
b
qs
qz

�
ÿ q
qz

�
b
qs
qy

��
;

(11)

p �2� � q
qy

�
qb
qz

�
2b
�
� q
qz

�
qb
qy

�
2b
�
:

We will solve equations (8), (9) asymptotically [24] by
representing the éelds in the form of asymptotic (with
respect to d) series:

Ez�x� �
X1
m�0

Em
z �x� dm; Hz�x� �

X1
m�0

Hm
z �x� dm; (12)

where m, as a rule, is bounded above: m51.

3.2 Zero approximation of quasi-wave equations

In each of the homogeneous regions I1 ÿ I4 in (7),
expressions (8), (9) take in the zero approximation (with
respect to the order of smallness d) a simpler form of wave
equations
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d 2E �0�z

dx 2
� k 2

0 �ejmj ÿ b 2�E �0�z � 0; (13)

d 2H �0�z

dx 2
� k 2

0 �ejmj ÿ b 2�H �0�z � 0; (14)

where e1m1 � n 2
c ; e2m2 � n 2

f ; e3m3 � n 2
s ; e4m4 � n 2

L: Thus,

w 2
s � k 2

0 �n 2
s ÿ b 2� � ÿg 2s < 0; w 2

f � k 2
0 �n 2

f ÿ b 2� > 0;

w 2
L � k 2

0 �n 2
L ÿ b 2� > 0; w 2

c � k 2
0 �n 2

c ÿ b 2� � ÿg 2c < 0:

For the quantities Ex;Ey;Hy;Hx expressions

E �0�x � 1

�w 2
z ��0�

�
ÿ ib

qs
qz

dE �0�z

dx
ÿ iomb

qs
qy

H �0�z

�
;

(15)

H �0�y � 1

�w 2
z ��0�

�
ÿ b 2 qs

qy
qs
qz

H �0�z ÿ ioe
dE �0�z

dx

�
;

H �0�x � 1

�w 2
z ��0�

�
ÿ ib

qs
qz

dH �0�z

dx
� ioeb

qs
qy

E �0�z

�
;

(16)

E �0�y � 1

�w 2
z ��0�

�
ÿ b 2 qs

qy
qs
qz

E �0�z � iom
dH �0�z

dx

�
are valid in the zero approximation.

The solutions of Eqns (13), (14) for the components Ez,
Hz (taking into account the boundary conditions
jHzj; jEzj <1 in the region I3 at x! ÿ1 and the boundary
conditions jHzj; jEzj <1 in the region I1 at x!1) take
the form:

E �0�s �x� � As exp�gsx�; x 2 �ÿ1;ÿd �;

E �0�f �x� � A�f exp�iwfx� � Aÿf exp�ÿiwfx�; x 2 �ÿd; 0�;
(17)

E �0�L �x� � A�L exp�iwLx� � AÿL exp�ÿiwLx�; x 2 �0; h�;

E �0�c �x� � Ac exp�ÿgcx�; x 2 �h;1�;

H �0�s �x� � Bs exp�gsx�; x 2 �ÿ1;ÿd �;

H �0�f �x� � B�f exp�iwfx� � Bÿf exp�ÿiwfx�; x 2 �ÿd; 0�;
(18)

H �0�L �x� � B�L exp�iwLx� � BÿL exp�ÿiwLx�; x 2 �0; h�;

H �0�c �x� � Bc exp�ÿgcx�; x 2 �h;1�:

Thus, according to (2), the TE mode has the following
structure of the electromagnetic éeld components: E �0�z � 0,
H �0�y � 0, E �0�x � 0, H �0�z 6� 0, H �0�x 6� 0, E �0�y 6� 0; the explicit
expressions for them are given by relations (16), (18). For
the TM mode, H �0�z � 0, H �0�x � 0 E �0�y � 0, E �0�z 6� 0,
H �0�y 6� 0, E �0�x 6� 0 [according to (2)]; explicit expressions
for these components are given by relations (15), (17).

3.3 First approximation of quasi-wave equations

For the contributions of the érst order of smallness with
respect to d to amplitudes (12), we obtain, according to the

rules of the asymptotic method, a system of equations with
a small parameter in the right-hand side:

d 2E �1�z

dx 2
� k 2

0 �emÿ b 2�E �1�z � f1E
�0�
z �

f2
e
dH �0�z

dx
; (19)

d 2H �1�z

dx 2
� k 2

0 �emÿ b 2�H �1�z � ÿ f1H
�0�
z ÿ

f2
m
dE �0�z

dx
; (20)

where

f1 � ik0b
�
q 2s

qy 2
� q 2s

qz 2

�
; f2 �

k0
o

�
qb
qy

qs
qz
� qb

qz
qs
qy

�
:

By substituting expressions for the éeld amplitudes from
(17), (18) into expressions (19), (20), we obtain

d 2E �1�z

dx 2
� w 2

j E
�1�
z � f1�A�j exp�iwjx� � Aÿj exp�ÿiwjx��

� iwj
f2
e
�B�j exp�iwjx� ÿ Bÿj exp�ÿiwjx��; (21)

d 2H �1�z

dx 2
� w 2

j H
�1�
z � ÿf1�B�j exp�iwjx� � Bÿj exp�ÿiwjx��

ÿ i wj
f2
m
�A�j exp�iwjx� ÿ Aÿj exp�ÿiwjx��: (22)

After grouping similar terms, the system takes the form
canonical for the asymptotic method:

d 2E �1�z

dx 2
� w 2

j E
�1�
z � C�j1 exp�iwjx� � Cÿj1 exp�ÿiwjx�; (23)

d 2H �1�z

dx 2
� w 2

j H
�1�
z � D�j1 exp�iwjx� �Dÿj1 exp�ÿiwjx�: (24)

Because the left-hand and right-hand sides of equations
(23), (24) are periodic with one `frequency' wj, the solutions
of these equations reêect the appearance of resonance
phenomena in the system under study. Because of the
érst order of smallness f1 and f2 following from (10),
(11), both (19), (20) and equations from them are weakly
coupled.

The solution of equations (23), (24) has the form

E �1�z �x� � x�C�j1 exp�iwjx� ÿ Cÿj1 exp�ÿiwjx ���2iwj�ÿ1; (25)

H �1�z �x� � x�D�j1 exp�iwjx� ÿDÿj1 exp�ÿiwjx���2iwj�ÿ1: (26)

The multiplier x in the resonance terms does not violate the
solution regularity because its linear growth is suppressed at
x! �1 by the exponentially decreasing multiplier (see
details in [24]).

The comparison of expressions (23) ë (26) yields the
equalities

C�j1 � A�j f1 � B�j �iwj f2=e�; Cÿj1 � Aÿj f1 ÿ Bÿj �iwj f2=e�
(27)

D�j1 � ÿB �j f1 ÿ A�j �iwj f2=m�; Dÿj1 � ÿBÿj f1 � Aÿj �iwj f2=m�:
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From (25) ë (27) we obtain according to (12) the explicit
dependence of contributions of the érst order of smallness in
d to the amplitudes of electric and magnetic éelds:

E �1�z �x� � ÿ
xf1
2w 2

j

dE �0�z �x�
dx

� x f2
2e

H �0�z �x�; (28)

H �1�z �x� �
xf1
2w 2

j

dH �0�z �x�
dx

ÿ x f2
2m

E �0�z �x�: (29)

Note also that the coefécients C�j1 and D�j1 at the
oscillating multipliers exp (�iwjx) in the érst (with respect
to the smallness parameter d) approximation of solutions
E �1�z (x);H �1�z (x) depend on the coefécients A�j ; B

�
j and b in

the zero approximation.
The solutions for the electric and magnetic éeld ampli-

tudes in the érst approximation have the asymptotics

Ez�x� � E �0�z �x� � E �1�z �x� � E �0�z �x�

� x

2

�
f2
e
H �0�z �x� ÿ

f1
w 2
j

dE �0�z �x�
dx

�
�O�d 2�; (30)

Hz�x� � H �0�z �x� �H �1�z �x� � H �0�z �x�

ÿ x

2

�
f2
m
E �0�z �x� ÿ

f1
w 2
j

dH �0�z �x�
dx

�
�O�d 2� (31)

uniformly along the entire x axis at arbitrary (y; z) 2 yz (see
details in [24]).

4. Quasi-TE and quasi-TM modes of a smoothly
irregular four-layer integrated-optical
three-dimensional waveguide

We analysed above the solutions in the zero and érst
approximations of Eqns (5), (6) for an arbitrary polarised
mode propagating from the three-layer regular two-dimen-
sional waveguide into the four-layer irregular three-
dimensional waveguide.

In this section we will consider successively two partic-
ular cases: propagation of the TE or TM mode from the
regular three-layer integrated-optical two-dimensional
waveguide (the left part in Fig. 1 up to the dashed vertical
line) into the four-layer smoothly irregular integrated-
optical three-dimensional waveguide (the right part in the
égure). We will pay the main attention to the trans-
formation of the vertical éeld distribution of these modes
in the four-layer waveguide.

The boundary conditions at the three boundaries of the
integrated-optical waveguide structure under study (see
Fig. 1) produce a homogeneous system of twelve linear
algebraic equations for twelve undetermined amplitude
coefécients As;Bs;A

�
f , B�f ;A

�
L ;B

�
L ;Ac;Bc [17]. This system

has a nontrivial solution, if it is degenerate, i.e. if the
determinant of the matrix corresponding to it is zero.

We consider érst the TE mode [see the érst expression in
(2)]. The coefécient of the phase deceleration b satisées the
dispersion relations for six amplitudes Bj of the longitudinal
component of the éeld strength Hz. The admissible values b
are given by the roots bH

1 ; b
H
2 ; . . . of the dispersion relations

(they are also the roots of the dispersion relations in the
generally accepted trigonometric notation [2, 16]).

In the irregular segment of the three-dimensional wave-
guide, the cofactors Hz(x; y; z) and Ez(x; y; z) entering the
longitudinal components of the éelds ~H and ~E of type (3)
satisfy equations (8), (9). These equations include functions
f1 and f2 depending in the case of the TE mode on bH

m

(m � 1; 2; . . .) beyond the boundary of the irregularity
region. Upon passage of the TE mode in the irregularity
regions it deforms and begins to satisfy the dispersion
relations, which include all twelve amplitudes Aj; Bj [17].
We will denote the solution of the zero approximation of
these dispersion relations coinciding with one of the roots
bH
m at the boundary of the irregularity region by bH

m � y; z�.
This solution can be found numerically.

By denoting f1(b
H
m ( y; z)) by f H1 and f2(b

H
m ( y; z)) by f H2 ,

we will write equations (8), (9) in the form:

d 2Ez

dx 2
� w 2

j �bH
m �Ez � f H1 Ez �

f H2
e
dHz

dx
;

d 2Hz

dx 2
� w 2

j �bH
m �Hz � ÿf H1 Hz ÿ

f H2
m

dEz

dx
:

The solutions of these equations in the érst approx-
imation are given by expressions (30), (31) in which the
dependences of the functions f1, f2 and wj on the coefécient
bH
m ( y; z) are speciéed.
Thus, upon the passage of the TE mode to the

irregularity region and upon the further propagation of
the deforming mode in the irregular three-dimensional
waveguide, the amplitudes Hz(x; y; z), Ey(x; y; z) and
Hx(x; y; z) parametrically depend via bH

m ( y; z) on the argu-
ments ( y; z). Simultaneously, the amplitudes Ez(x; y; z),
Hy(x; y; z) and Ex(x; y; z) stop being equal to zero and
also parametrically depend via bH

m ( y; z) on the variables
( y; z). In the zero approximation, the right-hand side of
quasi-wave equation (8) is equal to zero for the TM mode in
the regions with the constant dielectric constant and
magnetic permeability and the solution of equation (8)
for the component E �0�z 6� 0 has the form of (17). Due to
(15), the components E �0�x and H �0�y are also nonzero for the
TM mode. Similarly, the right-hand side of quasi-wave
equation (9) is equal to zero for the TE mode in the zero
approximation, and the solution of equation (9) for the
component H �0�z 6� 0 has the form of (18). Due to (16), the
components H �0�x and E �0�y are also nonzero for the TE
mode. Thus, in the zero approximation propagating modes
retain the initial linear polarisation and in the érst approx-
imation the propagating waveguide mode is depolarised, i.e.
it changes the initial polarisation.

In the case of the TM mode [see the second expression in
(2)], the consideration, similar to that for the TE mode,
allows us to write equations (8), (9) in the form:

d 2Ez

dx 2
� w 2

j �bE
m �Ez � f E1 Ez �

f E2
e
dHz

dx
;

d 2Hz

dx 2
� w 2

j �bE
m �Hz � ÿf E1 Hz ÿ

f E2
m
dEz

dx
:

Here, as in the zero approximation (8), (9), propagating
modes retain the initial polarisation and in the érst
approximation they are depolarised.

The author of paper [21] studied `the eigenwaves of the
mean éeld' in a statistically irregular waveguide. The
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solutions obtained in [21] have the structure similar to that
of quasi-TE and quasi-TM waves. The expressions for the
shifts of spectral (eigenwave) numbers were obtained in [21]
by the method of the perturbation theory in the form of the
formal expression via the multiple integral. We obtained
similar results in the explicit form. The distributions of
complex propagation constants, distortions in their spec-
trum, the structure of the corresponding modes should be
analysed on the complex plane [2, 7 ë 10, 13, 15, 19].

When the structure of the modes under study is taken
into account, equations (8), (9) for the quasi-TM mode take
the form:

d 2Ez

dx 2
� w 2

j �bE
m�y; z��Ez � f1�bE

m�y; z��Ez;

(32)

d 2Hz

dx 2
� w 2

j �bE
m�y; z��Hz �

f2
m
�bE

m�y; z��
dEz

dx
:

One can see from érst equation (32) that for the quasi-
TM mode, the eigenvalue, equal to w 2

j in the zero approx-
imation, is

�w 2
j ��1� � w 2

j �bE
m�y; z�� ÿ f1�bE

m�y; z�� (33)

in the érst approximation.
Similarly, equations (8), (9) for the quasi-TE mode

assume the from

d 2Hz

dx 2
� w 2

j �bH
m �y; z��Hz � ÿf1�bH

m �y; z��Hz;

(34)

d 2Ez

dx 2
� w 2

j �bH
m �y; z��Ez � ÿ

f2
e
�bH

m �y; z��
dHz

dx
:

Thus, for the quasi-TE mode the eigenvalue in the érst
approximation is

�w 2
j ��1� � w 2

j �bH
m �y; z�� � f1�bH

m �y; z��: (35)

Note that due to (33) and (35) additions of the érst order
to eigenvalues (w 2

j )
�0�(bE;H

m ) are purely imaginary and differ
for different quasi-waveguide modes.

When the adiabatic waveguide mode propagates along
the irregular segment of the multilayer integrated-optical
three-dimensional waveguide, the following characteristic
features take place.

The phase distribution of the electromagnetic éeld is
described by the fast-oscillating multiplier. The polarisation
of the electromagnetic éeld is described by the evolution of
multipliers E(x; y; z);H(x; y; z) during the propagation of
`centres of the transverse energy distribution' along the ray
tubes. In this case, in the region with qh=qy 6� 0 and
qh=qz 6� 0 the initially linearly polarised TE and TM modes
experience depolarisation.

The simultaneous solution, for example, of equations
(32) and (34) will make it possible to analyse the peculiarities
of the energy exchange between quasi-TE and quasi-TM
modes. One of the diféculties in this analysis is related to the
numerical solution of the dispersion relation obtained with
the help of the system consisting of twelve linear algebraic
equations [17].

5. Conclusions

In this paper, we have studied a multilayer integrated-
optical three-dimensional waveguide with the help of the
asymptotic method and the method of coupled waves.
Analytic expressions for the deforming modes of the four-
layer smoothly irregular integrated-optical three-dimen-
sional waveguide have been derived in the zero and érst
approximations of the perturbation theory. Quasi-wave
equations describing the transformation of the vertical
structure of quasi-TE and quasi-TM modes have been
presented. We have obtained in the explicit form the shifts
of wave number eigenvalues.

The theory developed takes into account the vector
character of éelds, i.e. makes it possible to describe
adequately, unlike the scalar consideration, the real
smoothly irregular waveguide structures. The solution
obtained can be used for the analysis of similar three-
dimensional integrated structures from dielectric, magnetic
and metamaterials, including materials consisting of N
layers, in a rather broad wavelength range of electro-
magnetic waves.

The results of this paper can lay the basis for developing
the algorithms of the approximate numerical solution of
synthesis problems of smoothly irregular integrated-optical
multilayer waveguide three-dimensional structures, for
example, the speciéed amplitude-phase transformation of
electromagnetic radiation. The solution of this problem,
despite its urgency and practical signiécance, has been
restricted till recently by the absence of the analytic solution
of the corresponding electrodynamic problem obtained by
the authors of this paper.

Acknowledgements. L.A. Sevast'yanov thanks the Russian
Foundation for Basic Research for partial support (Grant
Nos 07-01-00738, 08-01-00800).

Appendix 1

When using the method of short-wavelength asymptotics,
the solution of the wave equation for the electric éeld
strength taking into account the gradient of the dielectric
constant

H 2E� k 2
0 n

2�r�E � ÿ2H�E;H�ln n�r���; (A1.1)

which follows from Maxwell's equations [22] is represented
in the form of the énite asymptotic series called the
adiabatic approximation:

E�r� � E�r0�
����������
n�r0�

p��������
n�r�p exp

�
ÿik0

� r

r0

n�r 0�dl
�
: (A1.2)

In the ray approximation, radiation coupled into a
regular optical waveguide propagates along the z axis in
the form of plane waves moving in a zigzag manner and
experiencing total internal reêection at the waveguide
boundaries [2, 12]. In the case of total internal reêection,
as is known, the wave phase experiences a drastic jump upon
each reêection from the waveguide boundaries. In addition,
the waveguide as a guiding structure has different character-
istic spatial scales Lj: along the x axis the scale Lx is of the
order of the wavelength l (in the visible range, Lx � 1 mm),
along the y, z axes the scales Ly;Lz 4Lx. As a result, the
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phase of the electromagnetic wave changes much faster
along the x axis than along the y, z axes. This allows one to
consider the variable x to be `fast' and variables y, z ë
`slow', which is the basis for the applicability of the
averaging method.

According to the averaging method [23], we érst énd the
averaged two-dimensional solution:

�E�y; z� �
�E�y0; z0�b�y0; z0��������������

b�y; z�p
� exp

�
ÿik0

� y;z

y0;z0

b�y 0; z 0�ds
�
; (A1.3)

where ds � (dy 2 � dz 2)1=2 is the element of the ray length;

j�y; z� � k0

� y;z

y0;z0

b�y 0; z 0�ds�y 0; z 0�

is the wave phase of the averaged two-dimensional equation
H 2
y;z

�E( y; z)� k 2
0 b

2( y; z) �E( y; z) � 0 for the unaveraged wave
equation corresponding to unaveraged wave equation
(A1.1). The integral in the exponential is taken along the
ray propagating through the points ( y0; z0) and ( y; z).

After this, unlike the conventional averaging method
[23], we seek for the solution of the unaveraged problem in
the form

~E�x; y; z� � E�x; y; z� exp�ÿik0
�
b�y; z�ds��������������

b�y; z�p ;

(A1.4)

~H�x; y; z� � H�x; y; z� exp�ÿik0
�
b�y; z�ds��������������

b�y; z�p
and substitute it in Maxwell's equations (1) and boundary
conditions taking into account the non-horizontal tangent
planes at the points of the interface between media.

Appendix 2

We will write Maxwell's equations (1) in the coordinate
form:

qHz

qy
ÿ qHy

qz
� e

c

qEx

qt
; (A2.1)

qHx

qz
ÿ qHz

qx
� e

c

qEy

qt
; (A2.2)

qHy

qx
ÿ qHx

qy
� e

c

qEz

qt
; (A2.3)

qEz

qy
ÿ qEy

qz
� ÿ m

c

qHx

qt
; (A2.4)

qEx

qz
ÿ qEz

qx
� ÿ m

c

qHy

qt
; (A2.5)

qEy

qx
ÿ qEx

qy
� ÿ m

c

qHz

qt
: (A2.6)

According to (3) each of the electromagnetic éeld
components has the form

c�x; y; z; t� � j�x; y; z� exp�iot�

� exp

�
ÿik0

� y;z

y0;z0

b�y 0; z 0�ds�y 0; z 0�
�
�b�y; z��ÿ1=2;

and partial derivatives of c ë

qc
qx
� exp

�
ÿik0

� y;z

y0;z0

b�y 0; z 0�ds�y 0; z 0�
�
exp�iot��������������
b�y; z�p qj

qx
;

qc
qy
� pyc;

qc
qz
� pzc;

qc
qt
� ioc:

Thus, relation

q 2c
qz 2
ÿ em
c 2

q 2c
qt 2
�
�
k 2
0 em� p 2

z �
qpz
qz

�
c (A2.7)

is valid for each electromagnetic éeld component of type
(3).

We obtain from Maxwell's equations (A2.1) ë (A2.6)
expressions of type (A2.7) for the components
Hy;Hx;Ey;Ex. Namely, applying the operator q=qz to
relation (A2.1) and the operator (e=c)(q=qt) to relation
(A2.5) and then summing these relations, we obtain a
new expression:

q 2Hy

qz 2
ÿ em

c

q 2Hy

qt 2
�
�
k 2
0 em� p 2

z �
qpz
qz

�
Hy

� q
qz

�
qHz

qy

�
ÿ e
c

q
qt

�
qEz

qx

�
: (A2.8)

Similarly, applying the operator (m=c)(q=qt) to relation
(A2.1) and the operator q=qz to relation (A2.5), the operator
q=qz to relation (A2.2) and the operator (e=c)(q=qt) to
relation (A2.4) as well as operator (m=c)(q=qt) to relation
(A2.2) and the operator q=qz to relation (A2.4) and then
summing the found relations in turn, we obtain, respec-
tively,�
k 2
0 em� p 2

z �
qpz
qz

�
Ex �

q
qz

�
qEz

qx

�
ÿ m

c

q
qt

�
qHz

qy

�
; (A2.9)

�
k 2
0 em� p 2

z �
qpz
qz

�
Hx �

q
qz

�
qHz

qx

�
� e
c

q
qt

�
qEz

qy

�
; (A2.10)

�
k 2
0 em� p 2

z �
qpz
qz

�
Ey�

q
qz

�
qEz

qy

�
� m

c

q
qt

�
qHz

qx

�
: (A2.11)

Thus, we have obtained for the components Hy, Hx;
Ey;Ex algebraic expressions from the components Hz;Ez

and their derivatives.
Now we obtain from Maxwell's equations

(A2.1) ë (A2.6) second-order equations for the longitudinal
components Hz;Ez of the electric éeld. To do this, we
substitute expressions for Hy;Hx from relations (A2.8) and
(A2.10) and expressions for Ey;Ex from relations (A2.9) and
(A2.11) into the left-hand sides of equations (A2.3) and
(A2.6), respectively.
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