
Abstract. The motion of a charged particle in the external
speciéed éeld of a plane electromagnetic wave of large
amplitude, when the relativistic consideration is required, is
analysed in detail. The cases of different initial conditions for
the motion of the charged particle and different polarisations
of the wave are studied. It is shown that the expression for the
kinetic energy of an electron oscillating in the transverse éeld
of the wave, proposed in [1], is valid only in the nonrelativistic
limit.

Keywords: plane electromagnetic wave, acceleration of charged
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1. Introduction

The problem of acceleration of charged particles upon the
interaction of ultrashort laser pulses with plasma has been
recently extensively studied, both experimentally and
theoretically (see, for example, reviews [2, 3]).

The process of energy accumulation by electrons on the
frontal surface of a target in the electromagnetic éeld of an
incident laser pulse plays a key role in the acceleration of
target ions. The authors of paper [1] proposed to estimate
the temperature of rapid electrons on the frontal surface of a
target by using the expression for the kinetic energy of an
electron oscillating in the transverse éeld of the incident
light wave:
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where me is the electron mass; c is the speed of light; E0 is
the amplitude of the electric éeld of the incident electro-
magnetic wave; o is its circular frequency; I is the incident
wave intensity (in W cmÿ2); and l is the wavelength (in
mm).

In fact the authors of [1] have not presented the
derivation of expression (1). It seems that they substituted
into the known formula for the electron energy
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s

the expression for the amplitude of the momentum p �
eE=o of an electron oscillating in the éeld of a plane
monochromatic electromagnetic wave in the nonrelativistic
case. The subsequent papers (see, for example, [4 ë 8]),
where expression (1) is used for theoretical estimates and
analysis of experimental results, also do not contain the
derivation of this expression.

The aim of our paper is to derive consistently the
expression for the energy of a particle averaged over its
oscillation period in the éeld of a plane monochromatic
wave. We will show that expression (1) is valid only in the
nonrelativistic limit.

2. Motion of a particle in a plane
monochromatic electromagnetic wave

The equation of motion of a particle with mass m and
charge q in an electromagnetic éeld has the form (see, for
example, [9], paragraph 17)

dp

dt
� q

�
E� 1

c
V�H

�
, (2)

where the particle momentum p and velocity V are related
by the equality ([9], paragraph 9)

p � mV����������������������
1ÿ V 2=c 2

q . (3)

The change in the particle energy

e � mc 2����������������������
1ÿ V 2=c 2

q �
���������������������������
m 2c 4 � c 2p 2

q
(4)

is determined by the equation

de
dt
� qEV. (5)

It follows from (3) and (4) that the energy, momentum, and
velocity of the particle are related by the equalities
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p � eV
c 2

, V � c 2p

e
. (6)

For a plane monochromatic wave, we have

Ex � Hy � bx cosF, Ey � ÿHx � �by sinF,
(7)

Ez � Hz � 0, F � otÿ kz� a � ot� a,

where k � o=c; a is a constant phase ([9], paragraph 48);
the z axis is directed along the wave propagation direction,
while the x and y axes coincide with the bx and by axes of
the polarisation ellipse of the wave and bx 5 by 5 0. The
upper (lower) sign in the expression for Ey corresponds to
the right (left) polarisation.

The solution of equations (2) and (5) with E and H from
(7) has the form

px � wx �
qbx
o

sinF, py � wy �
qby

o
cosF ,

(8)

pz � gg; e � cg�1� g�,
where wx, wy, and g are constants (g5 0 because e5mc 2);
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From (8) and (9) we obtain the parametric representa-
tion (the parameter F) of the particle velocity:
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.

Constants wx, wy, and g are determined by the initial
phase F0 � ÿkz0 � a of the wave and the initial velocity V0

of the particle. From (11), (4) and (8), we énd

wx � ÿ
qbx
o

sinF0 �
mVx0����������������������

1ÿ V 2
0 =c

2
q ,
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o
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g � mc
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1ÿ V 2

0 =c
2

q .

From (11) we determine the coordinates of the particle as
functions of the parameter F:

x � x0 �
wx
gk
�Fÿ F0� ÿ
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gok
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h
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y
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Let us show that the motion of the particle is the
superposition of motion with a constant velocity V and
oscillatory motion with frequency ~o � 2p= ~T (different from
the éeld frequency o):

x�t� � ~x� ~Vxt� x�t�, y�t� � ~y� ~Vyt� Z�t�,
(14)

z�t� � ~z� ~Vzt� z�t�,
where x, ~y, ~z are constants and

x
ÿ
t� ~T

� � x�t�, Z
ÿ
t� ~T

� � Z�t�, z
ÿ
t� ~T

� � z�t� (15)

are periodic functions with the same period.
We seek the solution of the equation for the coordinate z

in (13) in form (14). By substituting z(t) from (14) into (13)
and selecting constants ~z and ~Vz in the form

~z � z0 �
�

q
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�
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1
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ch
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we obtain the equation for z(t):

�1� h�z�t� � ÿ q

g 2ok

�
�
wxbx cosF� wyby sinF�

q
ÿ
b 2
x ÿ b 2

y

�
8o

sin 2F
�
. (17)

Because the right-hand side of Eqn (17) is a periodic
function, the function z(t) is also periodic. Let us énd its
period. It is obvious from (17) that the period ~T is
determined by the equality F(t� ~T ) � F(t)� 2p, from
which it follows, taking (7), (14), and (15) into account, that

~T � 2p
o

1

1ÿ ~Vz=c
� 2p

o
�1� h�. (18)

One can see that the oscillation period of the particle differs
from that of the éeld.

We will seek now the solution of the érst equation in (13)
in the form x(t) from (14). By representing constants ~x and
~Vx in the form

On the motion of a charged particle in a plane monochromatic wave 69



~x � x0 �
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g
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cosF0,
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we énd that

x�t� � ÿ wx
g

z�t� ÿ qbx
gok

cosF. (20)

Similarly, we obtain for y(t) in (14):

~y � y0 �
wy
g
�z0 ÿ ~z� � qby

gok
sinF0,

(21)

~Vy �
wy
g

c

1� h
, Z�t� � ÿ wy

g
z�t� � qby

gok
sinF.

3. Motion of a particle averaged
over the oscillation period

In this section we will perform the averaging of the
coordinate r(t), velocity V(t), momentum p(t), and energy
e(t) of a particle over its oscillation period ~T � 2p=~o in the
wave éeld.

For the coordinate x in (13), we have

�x�t� � 1

~T

� ~t

t

x�t 0�dt 0 �
�
x0 ÿ

wx
gk

F0 �
qbx
gok
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�
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� ~t

t

F�t 0�dt 0 ÿ qbx

gok ~T

� ~t

t

cosF�t 0�dt 0, (22)

where

~t � t� ~T (23)

and [see (7), (14) and (24)]

F�t� � otÿ k
�
~z� ~Vzt� z�t��� a

� ~otÿ k~z� aÿ kz�t�. (24)

By using (23) and (24), we obtain the expression� ~t

t

F�t 0�dt 0 � �aÿ k~z� ~ot� ~Tÿ k

� ~t

t

z�t 0�dt 0 (25)

for the érst integral in the right-hand side of (22).
The integral in the right-hand side of (25) is independent

of t,

q
qt

� ~t

t

z�t 0�dt 0 � q
qt

� t� ~T

t

z�t 0�dt 0 � z
ÿ
t� ~T

�ÿ z�t� � 0, (26)

because z(t) is a periodic function with a period ~T. This
integral is the zero Fourier component of the function z(t)
multiplied by ~T, or� ~t

t

z�t 0�dt 0 � ~T�z, (27)

where �z is the average value of the function z(t) in the time

interval equal to the period ~T. Taking (27) into account,
expression (25) can be transformed to� ~t

t

F�t 0�dt 0 � �aÿ k
ÿ
~z� �z

��
~T� 2pt. (28)

Other quantities are obtained by calculating the integral

I�t� �
� ~t

t

f�t 0�dt 0 (29)

with the corresponding function f (t 0). Let us introduce a
new integration variable

F 0 � F�t 0 �, dt 0 � dF 0

o
1

1ÿ Vz�t 0 �=c
� 1� g

o
dF 0 (30)

[we used (11) in the latter equality]. Then,

I�t� � 1

o

� F�~t �

F�t�
f�F 0��1� g�F 0��dF 0, (31)

where, taking (23), (24), and (26) into account,

F�~t� � F
ÿ
t� ~T

� � ~otÿ k~z� aÿ kz
ÿ
t� ~T

�� 2p, (32)

i.e. F(~t ) � F(t)� 2p. The calculation of integral (29) with
the function z(t) gives �z � 0.

By returning to the integral in (22) and using (29), (31),
(9) and (32), we have� ~t

t

cosF�t 0 �dt 0 � 1

o

� F�~t �

F�t�
cosF 0�1� g�F 0��dF 0

� � pqwyby
g 2o 2

. (33)

By substituting into (22) the values of integrals from (28)
with �z � 0 and (33), we obtain énally

�x�t� � ~x� ~Vx�t� ~T=2� � cq 2wybxby
2g 3o 3�1� h� , (34)

where ~x and ~Vx are deéned by expressions (19).
In the same way, we énd

�y�t� � ~y� ~Vy�t� ~T=2� � �Z, (35)

where ~y and ~Vy are deéned by expressions in (21), and the
average value of the periodic function Z(t) is described by
the function

�Z � � cq 2wxbxby
2g 3o 3�1� h� . (36)

Finally, taking into account that �z � 0, the expression
for �z(t) takes the form

�z�t� � ~z� ~Vz�t� ~T=2�9 , (37)

where ~z and ~Vz are deéned by expressions (16).
Consider now the particle velocity (11). By using (29),

(31), and (9), we énd that
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�Vx � ~Vx , �Vy � ~Vy , �Vz � ~Vz , (38)

i.e., as expected, the particle velocity averaged over the
period coincides with ~V, which can be found from
expressions (19), (21) and (16).

For the particle momentum p (8), we obtain similarly the
expressions

�px � wx

�
1� q 2b 2

x

2g 2o 2�1� h�
�
, �py � wy

�
1� q 2b 2

y

2g 2o 2�1� h�
�
,

�pz �
g
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�
h� h 2 � 1

2

�
q

g 2o
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� ��wxbx�2 � �wyby�2�� 1
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�
q
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�4ÿ
b 2
x ÿ b 2

y
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.

This gives the energy e [see (8)]

�e � cg
1� h

�
�1� h�2 � 1

2

�
q

g 2o

�2

���wxbx�2 � �wyby�2�� 1

32

�
q

go

�4ÿ
b 2
x ÿ b 2

y

�2�
, (40)

where bx and by are the éeld amplitudes [see (7)] and
parameters g, wx, and wy are deéned in (12).

It is clear that �e depends on the wave intensity, its
polarisation, initial phase, and the initial velocity of the
particle.

4. Cases of the circular and linear polarisations
of a wave for a particle initially at rest

Consider the case when a particle is initially at rest
(V0 � 0). Then, according to (12),

g � mc, wx � ÿ
qbx
o

sinF0 , wy � �
qby

o
cosF0 . (41)

For a wave with the circular polarisation, we have bx �
by � b=

���
2
p

. In this case,

g � mc, wx � ÿ
qb sinF0

o
���
2
p , wy � �

qb cosF0

o
���
2
p ,

(42)

�wxbx�2 � �wyby�2 �
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qb 2

2o

�2
and, according to (10),

h � 1

2

�
qb

mco

�2
� 1

2

�
2q 2

pm 2c 5
Il 2

�
� m

2
, (43)

where I � cb 2=(8p) is the wave intensity and l � 2pc=o is
the wavelength.

The oscillation period (18) of a particle in this case is

~T � T�1� h� � T

�
1� m

2

�
. (44)

By substituting (42) and (43) into (40), we obtain the
average energy for a particle initially at rest in the circularly
polarised wave:

�eÿmc 2 � 1

2
mc 2m

�
1� m

4� 2m

�
. (45)

One can see from (44) and (45) that the oscillation period of
a particle and its average energy are independent of the
initial phase of the wave.

In the case of linear polarisation, bx � b, by � 0 [for a
particle initially at rest, see (41)]; in this case,

g � mc, wx � ÿ
qb sinF0

o
, wy � 0,

(46)

�wxbx�2 � �wyby�2 �
�
qb 2

o

�2
sin 2 F0

and, according to (10),

h � 1

4

�
qb

mco

�2ÿ
1� 2 sin 2 F0

� � m
4

ÿ
1� 2 sin 2 F0

�
. (47)

The oscillation period of a particle is

~T � T

�
1� m

4

ÿ
1� 2 sin 2 F0

��
. (48)

By substituting (46) and (47) into (40), we obtain the
dependence of the average energy for a particle initially at
rest in the linearly polarised wave:

�eÿmc 2 � 1

4
mc 2m

�
1� 2 sin 2 F0

� m�1=8� 2 sin 2 F0�
1� �1=4�mÿ1� 2 sin 2 F0

� �. (49)

The maximum average energy is obtained for the phase
F0 � p=2 or 3p=2, when the éeld at the point where a
particle is located initially is zero. In this case, we have

�eÿmc 2 � 3

4
mc 2m

�
1� 17m

24� 18m

�
. (50)

The minimum average energy corresponds to the phase
F0 � 0 or p and is determined by the expression

�eÿmc 2 � 1

4
mc 2m

�
1� m

8� 2m

�
. (51)

Finally, the energy of a charged particle averaged over
the initial phase F0 in the éeld of a plane monochromatic
linearly polarised wave has the form

h�ei ÿmc 2 � 1

4
mc 2m

�
6ÿ 32� 7m

2
��������������
4� 3m

p �����������
4� m

p �
. (52)

Figure 1 presents the dependences of the average kinetic
electron energy on the intensity of a plane monochromatic
linearly (52) and circularly (45) polarised electromagnetic
wave and the energy calculated by expression (1). One can
see that expression (1) gives considerably lower average
electron energies in the electromagnetic éeld. For Il 2 >
4:5� 1018 W mm2 cmÿ2, these values are more than twice
lower than the values calculated by expression (45) and
more than 2.5 times lower than the values calculated from
expression (52). The average energies prove to be com-
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parable only in the nonrelativistic limit, when their differ-
ence does not exceed 10% for Il 2 < 2� 1017 W mm2 cmÿ2.

5. Conclusions

We have analysed in detail the motion of a charged particle
in the external éeld of a plane electromagnetic wave. The
motion of the particle has been studied for different initial
conditions and different polarisations of the wave.

It has been shown that the motion of the particle is the
superposition of motion at a constant velocity and oscil-
latory motion at a frequency different from the éeld
frequency. As the éeld intensity is increased, the frequency
of the oscillatory motion of the particle tends to zero
according to (18). The velocity, momentum, and energy
of the particle averaged over its oscillation period have been
calculated. A comparison of the expressions obtained in the
paper for the average energy of a charged particle in the éeld
of linearly and circularly polarised plane monochromatic
waves with expression (1) shows that the latter is valid only
in the nonrelativistic limit.
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