
Abstract. A new analytic model is proposed for calculating
the temperature proéle of gas in the transverse section of the
discharge tube of copper bromide lasers emitting at 510.6 and
578.2 nm. The model is described by the quasi-stationary heat
conduction equation with the boundary conditions of the third
and fourth kinds taking into account the alternating volume
electric power along the tube radius. The exact solution of the
problem is obtained. The model was used to calculate the
temperature proéles of the discharge in the case of natural
and forced convection cooling. The obtained results are
compared with previously known temperature distributions.
The improved model proposed in the paper can be used to
analyse existing lasers and develop new lasers.

Keywords: copper bromide laser, temperature model, heat conduc-
tion equation, exact solution.

1. Introduction

Although at present the most popular are semiconductor
lasers, copper and copper compound vapour lasers still énd
a variety of applications. They are the highest-power
radiation sources in the visible spectral region at 510.6
and 578.2 nm, emit highly coherent and low-divergence
beams and also can be used as UV radiation sources
emitting at 248.6, 259.2, 260.0, and 270.3 nm. For these
reasons copper vapour lasers remain the object of
experimental and theoretical studies [1 ë 7]. Experiments
with such lasers and their operating conditions show that
the gas temperature in the active laser medium is one of
their most important operation parameters. Thus, a
detailed study of the gas temperature distribution in the
active-medium cross section is very important both for

existing copper vapour lasers and the development of new
lasers.

So far the gas temperature distribution Tg(r) in the laser
tube cross section in all the analytic models of copper and
copper compound vapour lasers [8 ë 10] was described by
the expression

Tg�r��
�
Tm�1
1 � qv�m� 1�

4l0
�R 2

1 ÿ r 2�
�1=�m�1�

;

(1)

04 r < R1;

where R1 and T1 are the radius and temperature of a quartz
tube; qv [W mÿ3] is the volume electric power released in
the active medium; and l0 and m are constants depending
on the gas type.

Expression (1) is also applied to simulate gas temper-
ature distributions in lasers based on other metal
compounds [11]. It is valid if the power qv is constant in
the entire active-medium volume. However, this assumption
does not correspond to the real distribution of qv in the
laser-tube cross section. It is known that qv strongly changes
along the tube radius, and the maximum power is localised
on the discharge axis. Thus, the use of expression (1) under
condition qv � const is incorrect, and it can be employed
only for qualitative and comparative estimates of the gas
temperature in the laser tube cross section. A more accurate
method is required to perform real calculations of temper-
ature distributions.

In this paper, we studied analytically the temperature
proéle in the cross section of a laser tube when the
distribution of the volume electric power along the tube
radius was speciéed in advance: qv � qv(r). Such an
approach allows us to énd the temperature distribution
in the active medium of a laser more accurately than
expression (1). This study is in fact the continuation and
development of our previous paper [10]. Thus, we érst
brieêy present the main results obtained in [10].

2. Analytic model developed in [10]

We will study a copper bromide vapour laser [12]. Let us
assume that the total electric power consumed by the laser
is 5000 W. Taking losses into account, the power
Q1 � 4080 W is supplied to the active volume of the
laser, and the output power is 120 W. The dimensions of
the laser tube are shown in Fig. 1. The tube is made of
quartz and has an additional heat-insulating cover made of
glass wool, mineral wool or zirconium dioxide wool.
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The temperature proéle was simulated by assuming that
[10]: (i) the temperature proéle of a discharge is determined
in the quasi-stationary operation regime of the laser; (ii) the
gas temperature between excitation pulses changes insig-
niécantly; (iii) all the electric power (4080 W) supplied to the
active volume is transformed in it to the thermal energy, and
power transferred to the tube walls due to discharge
emission and deactivation of excited and charged particles
on the walls is neglected.

By using the additional assumption that qv � const, we
developed in [10] the following analytic model. The gas
temperature Tg in the laser tube cross section was deter-
mined by solving the two-dimensional steady-state heat
conduction equation

div�lgradTg� � qv � 0; (2)

where l is the heat conductivity of gas. Equation (2) was
solved by using mixed boundary conditions of the third and
fourth kinds in a cylindrical conéguration:

T1 � T2 �
ql ln�d2=d1�

2pl1
; T2 � T3 �

ql ln�d3=d2�
2pl2

; (3a)

Q1 � aF3�T3 ÿ T0� � F3ec
��

T3

100

�4
ÿ
�

T0

100

�4 �
; (3b)

where T1, T2, and T3 are temperatures on the tube walls
and heat-insulating cover, respectively (Fig. 1); ql � Q1=la is

the released thermal power per unit length; la � 2 m is the
active length of the laser; l1 and l2 are the heat
conductivities of the quartz tube and heat insulation,
respectively; d1;2;3 are tube diameters (Fig. 1); Q1 � 4080 W
is the total heat release equal to the consumed electric
power (according to the third assumption); a is the
coefécient of heat transfer from the external surface of
the heat-insulating cover to the environment; F3 is the
external surface area of the heat-insulating cover;
c � 5:67 W mÿ2 Kÿ4 is the emission coefécient of the
perfectly black body; T0 � 300 K is the air temperature;
and e is the integrated degree of blackness of the heat-
insulating cover.

The values of parameters used in calculations are
presented in Table 1. Equations (2), (3a), and (3b) were
solved in [10] by using (1) and assuming that qv � const.

3. Determination of the gas temperature taking
the radial distribution of the volume power into
account

3.1 Determination of the radial distribution qv � qv(r�
Because reliable experimental data on the dependence of the
volume power qv on the parameter r are not available, we
will use some qualitative theoretical dependences. From the
relation qv � jE and j � sE, where j is the current density
and s is the conductivity, we obtain qv � sE 2. According
to [13], the distribution of the electric éeld strength E in the
tube cross section is described by the expression E(r) �
E0J0(2:4r=R1), where J0(2:4r=R1) is the Bessel function of
the érst kind of the zeroth order. Then,

qv�r� � Q

�
J0

�
2:4

R1

r

��2
; (4)

where Q is an unknown constant, which should be
determined. The function J0(2:4r=R1) is well known and
tabulated, for example, in [14]. Because manipulations with
the Bessel function in the general case are inconvenient, we
will use the approximate relation �J0(x)�2 � a� bx� cx 2�
dx 3. We will set for convenience x � 2:4r=R1 � br; b �
2:4=R1. Then, by using tabulated data from [14], we énd by
the method of least squares that a � 1:0044, b � ÿ0:01768,
c � ÿ0:5657, and d � 0:1668. This gives

qv�r� � Q�a� bbr� c�br�2 � d�br�3�: (5)

To obtain the constant Q, we will use the equality of
areas under the plots of functions qv � q0 � const and
qv � qv(r) (Fig. 2):

2q0R1 � 2Q

� R1

0

�a� Br� Cr 2 �Dr 3�dr: (6)

Here, we assume for simplicity that

d3

d2

d1

T1 T2 T3

l1

l2

Figure 1. Cross section of a copper bromide laser tube in the active-
medium volume. The internal diameter of the quartz tube is d1 � 60 mm,
the external diameter is d2 � 64 mm, the external diameter of the heat-
insulating cover is d3 � 74 mm.

Table 1. Data used to calculate the temperature proéle [10].

Q1

�
W la

�
m qv

�
W cmÿ3 ql

�
W mÿ1 lg � l0T

m
g

�
W mÿ1 Kÿ1 l1

�
W m Kÿ1 l2

�
W m Kÿ1 e

4080 2 0.7219 2040

l0 � 5:8935� 10ÿ5

(m � 1:091, pNe � 15 Torr,

pH2
� 0:3 Torr)

1.96 (T � 800ÿ 1100K)
0.12 (T � 800ÿ 1100 ¬,

mineral insulation)
0.72
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B � b
2:4

R1

; C � c

�
2:4

R1

�2

; D � d

�
2:4

R1

�3

: (7)

After integration in (6), we obtain

Q � q0

�
a� b

2
2:4� c

3
2:4 2 � d

4
2:43

�ÿ1
: (8)

Now, by substituting the values of constants a, b, c, and d,
we énd

Q � 2:131q0: (9)

For comparison, Fig. 2 shows distributions qv �
q0 � const and qv � qv(r) calculated by (5) and (9) (we
set conditionally q0 � 1). One can see from Fig. 2 and (9)
that the local electric power released at the discharge centre
in the case of distribution (5) is twice that for qv � const.
This suggests that temperature distributions Tg(r) in the
discharge in the cases qv � const and qv � qv(r) are sub-
stantially different.

3.2 Determination of the discharge temperature Tg(r)

The exact solution of equations (2) and (3) with radial
distribution (5) has the form

Tg�r� �
�
Tm�1
1 � �m� 1�Q

l0

�
a

4
�R 2

1 ÿ r 2� � B

9
�R 3

1 ÿ r 3�

� C

16
�R 4

1 ÿ r 4� � D

25
�R 5

1 ÿ r 5�
�� 1=�m�1�

; (10)

where B � b (2:4=R1);C � c (2:4=R1)
2;D � d (2:4=R1)

3. The
solution of (10) is obtained in Appendix.

4. Application of the model for determining
the temperature proéle in the discharge tube
cross section and analysis of results

Similarly to [10], we will seek the temperature distribution
Tg(r) by using analytic model (2), (3) for the cases of
discharge cooling either by natural or forced convection.
For thus purpose, we will use additional data from Table 1
[10].

Expression (10) can be used if the temperature T1 of the
inner wall of the quartz tube is known (Fig. 1). Two cases
are possible:

(i) The temperature T2 of the external wall of the quartz
tube inside the insulating layer is known. This temperature
can be measured in real lasers, for example, by using a
thermocouple, and then T1 can be determined from (3a).

(ii) Temperatures T2 and T3 are unknown. In partic-
ularly, this is the case in the development of new lasers. In
this case, model (2), (3) can be used with boundary
condition (3b), where the environmental temperature is
speciéed usually as T0 � 300 K. By solving nonlinear
equation (3b), we énd T3 and then determine T2 and T1

from (3a).
We considered in [10] the second case. Here, we will

study the same case and compare the results with data
obtained in [10].

To determine T3 from boundary condition (3b), it is
necessary to énd preliminarily the heat-transfer coefécient a.
Consider the cases of cooling due to natural and forced
convection.

4.1 Natural convection

Condition (3b) in [10] in the case of natural convection is
written in the form

ql � 0:46plair

�
gbaird

3
3

T3 ÿ T0

v 2air

�0:25

�T3 ÿ T0�

� pd3ec
��

T3

100

�4
ÿ
�
T0

100

�4 �
; (11)

where g is the gravitational acceleration; b is the volume
thermal expansion coefécient of gas (for air, bair � 3:41�
10ÿ3 Kÿ1); v is the kinematic viscosity (vair � 15:7�
10ÿ6 m2 sÿ1); and l is the heat conductivity (lair �
0:0251 W mÿ1 Kÿ1).

In (11), only the temperature T3 is unknown. It is found
by solving this nonlinear equation, and then T2 and T1 are
calculated from (3a) and Tg(r) is determined from (10).

Figure 3 presents temperature distributions Tg(r) for
qv � q0 � const and qv � qv(r). Temperatures T3, T2 and

qv (rel. units)

0 4 8 12 16 20 24 r
�
mm
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Figure 2. Distribution of the volume power density in the laser tube cross
section: (&) v � q0 � 1, (~) qv � qv�r� [expression (5)].

0 4 8 12 16 20 24 r
�
mm

1000

1200

1400

1600

1800

2000

Tg

�
K

Figure 3. Distribution of the gas temperature in the laser tube cross
section during natural convection. The supplied power is Q1 � 4080 W.
(&) qv � q0 � const, (*) qv � qv�r�.
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T1 calculated at characteristic points and the maximum
temperature T(0) achieved at the tube centre are presented
in Table 2.

One can see from Table 2 that for qv � q0 � const and
qv � qv(r), temperatures T3, T2, and T1 are identical. Their
values are determined by the total electric power released in
the active volume and are independent of its radial
distribution. In the two cases under study, this power is
the same (4080 W). Table 2 and Fig. 3 also show that
temperature T(0) for the distribution qv � qv(r) is higher
by 100 8C than T(0) for qv � const.

4.2 Forced convection

In this case, as shown in [10], boundary condition (3b) can
be written in the form

ql � 0:615plair

�
ud3
vair

�0:466
�T3 ÿ T0�

� pd3ec
��

T3

100

�4
ÿ
�
T0

100

�4 �
; (12)

where u is the velocity of the cooling (forced) air êow.
The temperature T3 can be determined from equation

(12) and then by using (3a) and (10), we can énd the
temperature proéle and in the discharge tube cross section.

Table 3 presents characteristic temperatures T3, T2, and
T1. The distribution Tg(r) is shown in Fig. 4. In both cases,
calculations were performed for the êow rate u � 20 m sÿ1.

As in the case of natural convection, temperatures T3,
T2, and T1 for qv � const and qv � qv(r) are the same,
respectively. Note that in the case of forced convection, T(0)
for the distribution qv � qv(r) is higher by 100 8C than T(0)
for qv � const.

4.3 Analysis of simulation results

Although, according to Fig. 2, the maximum electric power
at the tube centre in the case of qv � qv(r) is twice that in
the case of qv � q0 � const, the corresponding temperatures
T(0) for natural and forced convection differ only by
100 8C. Thus, in both cases the ratio DT(0)=Tqv�r�(0) is
5.1%, on average, and hence, solution (1) can be applied to
analyse the temperature regime of laser sources.

However, the absolute difference of temperatures at the
discharge centre equal to 100 8C cannot be neglected.
Expression (10) better explains and predicts the appearance
of a number of negative effects caused by the overheating of

the laser medium. An increase in the temperature at the tube
centre by 100 8C can lead to the compression of a gas
discharge, the thermal-ionisation instability, the thermo-
chemical degradation of gas and to the additional thermal
population of lower laser levels. Finally, this will lead to a
decrease in the laser radiation power and the impairment of
its mode composition. In some cases, the discharge over-
eating at the tube centre can initiate the quenching of lasing
and the appearance of dark spots at the laser beam centre.
For this reason, despite the complicate form of expression
(10), it can be recommended for applications.

5. Conclusions

The analytic model has been proposed for determining the
gas temperature, which takes into account the nonuniform
distribution of the electric power in the laser-tube cross
section.

Based on the most general theoretical dependences, the
distribution of the volume density of the electric power in
the tube cross section of the type qv � qv(r) is proposed
[expression (5)].

The heat conduction equation is solved for cases of
natural and forced convection and explicit analytic expres-
sions are obtained which describe the gas temperature
distribution Tg(r) under these conditions.

It is shown that the distribution Tg(r) obtained earlier
assuming that qv � const gives the calculation error of Tg(r)
at the tube centre � 5%. The temperature proéles obtained
for qv � const and qv � qv(r) are compared. It is found that
the gas temperature at the tube centre for qv � qv(r) is higher
by 100 8C than that for qv � const. Analysis of the results
has shown that such elevated temperature can considerably
affect the discharge behaviour. A new expression for
determining Tg(r) is proposed.
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Table 2. Temperature at characteristic points (Fig. 1) during natural
convection.

Power
distribution

T3

�
K T2

�
K T1

�
K T�0��K

qv � q0 � const 617 1010 1021 1967
qv � qv�r� 617 1010 1021 2070

Table 3. Temperature at characteristic points (Fig. 1) during forced
convection.

Power
distribution

T3

�
K T2

�
K T1

�
K T�0��K

qv � q0 � const 466 858 881 1903
qv � qv�r� 466 858 881 2009

Tg

�
K
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Figure 4. Distribution of the gas temperature in the laser tube cross
section during forced convection. The supplied power is Q1 � 4080 W.
(&) qv � q0 � const, (*) qv � qv�r�.
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Appendix

Let us solve the heat conduction equation

div�lgradTg� � qv � 0; (A1)

where l is the heat conductivity of gas and qv is the volume
density of released power.

The quartz tube wall temperature and the axial sym-
metry of the temperature distribution in the active medium
are speciéed by the boundary conditions

Tg�R1� � Tw; (A2)

dTg

dr

����
r�0
� 0: (A3)

In cylindrical coordinates in the case of the axial and
longitudinal symmetry, equation (A1) can be written in the
form

1

r

d

dr

�
rl

dTg

dr

�
� qv � 0: (A4)

The heat conductivity is usually represented in the form

l�r� � l0T
m
g ,

where l0 and m are constants depending on the gas type.
Thus, equation (A4) takes the form

1

r

d

dr

�
rl0T

m
g
dTg

dr

�
� qv � 0: (A5)

After the substitution of the variable

U�r� � T m�1
g (A6)

equation (A5) takes the form

d2U

dr 2
� 1

r

dU

dr
� qv�m� 1�

l0
� 0; (A7)

and boundary conditions take the form

U�R1� � T m�1
w ; (A8)

dU

dr
jr�0 � 0. (A9)

For qv � q0 � const, the solution of equation (A7) is

U�r� � Uw �
q0�m� 1�

4l0
�R 2

1 ÿ r 2�:

Taking (A6) and (A8) into account, we obtain known
expression (1) [8 ë 11]

Tg�r� �
�
T m�1
w � q0�m� 1�

4l0
�R 2

1 ÿ r 2�
� 1=�m�1�

:

To solve equation (A7) for qv � qv(r), we introduce a new
variable

t � dU

dr
: (A10)

Equation (A7) can be written in the form

d�rt� �m� 1

l0
qvrdr � 0:

By integrating this equation taking (5) and (7) into account,
we obtain

t� �m� 1�Q
l0

�
a
r

2
� B

r 2

3
� C

r 3

4
�D

r 4

5

�
� C1

r
;

where C1 is the integration constant.
By returning to the variable U according to (A10), we

énd

dU

dr
� �m� 1�Q

l0

�
a
r

2
� B

r 2

3
� C

r 3

4
�D

r 4

5

�
� C1

r
.

Boundary condition (A9) gives C1 � 0 and

dU� �m� 1�Q
l0

�
a
r

2
� B

r 2

3
� C

r 3

4
�D

r 4

5

�
dr � 0:

By integrating this equality, we obtain

U� �m� 1�Q
l0

�
a
r 2

4
� B

r 3

9
� C

r 4

16
�D

r 5

25

�
� C2; (A11)

where C2 is a constant. Then, we determine from boundary
condition (A8) the constant

C2 � Uw �
�m� 1�Q

l0

�
a
R 2

1

4
� B

R 3
1

9
� C

R 4
1

16
�D

R 5
1

25

�
and, by substituting C2 into (A11), we énd

U�r� � Uw �
�m� 1�Q

l0

�
a

4
�R 2

1 ÿ r 2� � B

9
�R 3

1 ÿ r 3�

� C

16
�R 4

1 ÿ r 4� � D

25
�R 5

1 ÿ r 5�
�
:

By using the change of variable (A6), we obtain the
required solution (10)

Tg�r� �
�
Tm�1
1 � �m� 1�Q

l0

�
a

4
�R 2

1 ÿ r 2� � B

9
�R 3

1 ÿ r 3�

� C

16
�R 4

1 ÿ r 4� � D

25
�R 5

1 ÿ r 5�
�� 1=�m�1�

: (10)
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