
Abstract. The complex reêection coefécient of a p-polarised
wave incident on a metal with electrons nonuniformly heated
over the depth is found under the conditions of a high-
frequency skin effect. The derived expressions for the
absorption coefécient and the phase shift of a reêected
wave are applicable in the case of an arbitrary ratio of the
penetration depth of radiation to the spatial scale of the
inhomogeneity of small contributions to the dielectric
constant, which are caused by electron collisions. It is shown
that the use of Fresnel formulae is not always possible and
can lead to signiécant errors if the temperature of hot
electrons changes at the skin-layer scale.

Keywords: p-polarised wave, absorption coefécient, phase shift,
Fresnel formulae, electron ë electron collisions.

1. Introduction

When high-power femtosecond laser pulses interact with
metals, electrons are eféciently heated in the skin layer (see,
for example, [1 ë 11]). In the case of a rather fast heating, a
nonequilibrium state appears in which the electron temper-
ature signiécantly exceeds that of the lattice and drastically
changes at the skin-layer scale [5, 8]. Because of this, the
electron ë electron collision frequency, that is proportional
to the square of the temperature, proves to be relatively
large and nonuniform over the skin-layer thickness, which
leads to the corresponding nonuniformity of the dielectric
constant of a metal. Under these conditions, it is necessary
to describe the optical properties of a substantially
inhomogeneous metal.

The theory of the optical properties of inhomogeneous
media is now being actively developed (see, for example,
[12 ë 15]). A productive approach to the description of
optical properties of strongly inhomogeneous media appli-
cable in the case of a small ratio of the scale of the medium
inhomogeneity to the radiation wavelength was used in [16 ë
19]. Because the skin-layer thickness is usually small
compared to the wavelength, the approach of papers

[16 ë 19] can be also employed to describe the optical
properties of metals with nonuniformly heated electrons.
At the same time, in the case of a high-frequency skin effect,
when the emission frequency exceeds the electron collision
frequency and the ratio of the Fermi velocity to the
radiation frequency is small compared to the penetration
depth of radiation into the medium, another description
model proposed in [20] is possible. It is based on the
consideration, with the help of the perturbation theory,
of small nonuniform terms in the expression for the
dielectric constant of a metal, which are proportional to
the electron collision frequency. In this case, the ratio of the
inhomogeneity scale of small terms to the radiation wave-
length, unlike that used in [16 ë 19], is not assumed small,
which makes it possible to construct the theory of optical
properties permitting the passage to the known results of the
optics of homogeneous metals. Paper [20] describes the
consequences of the new approach for the case of reêection
of an s-polarised wave from a nonuniformly heated metal.
On the other hand, much attention in the experiments is
paid to studying the reêection of p-polarised waves (see, for
example, [3, 7, 9 ë 11]). This interest is related to the
possibility of investigating a number of physical phenomena
appearing only during the interaction of p-polarised waves
with metals. Taking into account the existing situation, in
this paper we generalise the approach [20] to the case of
interaction of a p-polarised wave with a metal whose
electrons are nonuniformly heated by a femtosecond laser
pulse. We study below the reêection of a probe p-polarised
wave from a nonuniformly heated metal and its absorption
in the metal. The expressions for the absorption coefécient
and the phase shift of the reêected wave are derived with an
accuracy to corrections quadratic in the small ratio of the
electron collision frequency to the probe wave frequency.
These expressions are applicable in the case of arbitrary
spatial proéles of the electron temperature. When the
temperature changes at a distance exceeding the skin-layer
thickness, these expressions yield known Fresnel formulae
for metals with relatively small electron collision frequen-
cies. If the temperatures changes drastically, which takes
place in the case of an insigniécant heat removal, both the
absorption coefécient and the relative change in the phase
shift upon reêection prove to be signiécantly lower than the
values yielded by the Fresnel formulae.

2. Model description of a metal

The speciéc features of penetration of an electromagnetic
éeld into a metal signiécantly depend on the type of the
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constitutive equation determining the relation of the current
density with the electric éeld strength. Under the conditions
of a high-frequency skin effect discussed below, the distance
propagated by the electron during the period of a change in
the éeld is small compared to the skin-layer thickness. This
allows one to neglect the spatial dispersion in the
constitutive equation. In addition, in the high-frequency
skin effect the characteristic frequency n of electron
collisions is small compared to the éeld frequency o,
which makes it possible to use the small parameter v=o5 1.
At the same time, we assume that the frequency o is smaller
than the frequency corresponding to the band-gap width
and the inêuence of interband transitions can be neglected.
Under these conditions, we describe the response of the
metal by using the known expression for a dielectric
constant e(z) nonuniform along the z axis

e�z� � e0 ÿ
o2

p

o�o� in�z�� ' e1 � ie2�z� � de1�z�; (1)

where e0 is the contribution of coupled electrons and lattice
ions to the dielectric constant; op is the plasma frequency;

e1 � e0 ÿ
o 2

p

o 2
; e2�z� �

n�z�
o3

o 2
p ; de1�z� �

n 2�z�
o4

o2
p: (2)

The imaginary part e0 is assumed small compared to e2(z).
The electron collision frequency n � n(z) is made up from
the frequency of electron ë phonon collisions nep and the
frequency of electron ë electron collisions nee(z) occurring
with the umklappe processes of a quasi-momentum:

n�z� � nep � nee�z�. (3)

Under the action of rather high-power femtosecond
pulses, electrons are eféciently heated, while the lattice
remains cold during the time smaller than the time of
the energy transfer from electrons to the lattice, which is
several picoseconds for typical metals. To describe this
nonequilibrium state, we will use the two-temperature model
of a metal. Due to the electron heating, the frequency of
electron ë electron collisions nee(z) increases with their tem-
perature Te � Te(z), and the frequency of electronëphonon
collisions vep, which is proportional to the lattice temper-
ature Tl , remains virtually constant. At kTe 5 eF (k is the
Boltzmann constant, eF is the Fermi energy), the relation of
the frequency nee(z) with the temperature has the from [21]:

nee�z� � a�kTe�z��2=�heF; (4)

where �h is Plank's constant; a is the numerical coefécient,
whose quantity depends on the type of the metal band
structure. For typical metals whose electron temperature
already exceeds several thousand Kelvin degrees, the
conditions are fulélled, when nee(z) > nep. According to
(4), the inhomogeneity scale nee(z) depends on the
distribution of the electron temperature Te(z) and can be
of the order of the skin-layer thickness. In particular, under
the conditions of a high-frequency skin effect, the evolution
of the electron temperature in the metal is described by the
expression [8]

C
qTe

qt
� 4

c
I�t�n�z� exp

�
ÿ 2z

d

�
� qq

qz
; (5)

where C � p2Nk2Te=2eF is the heat capacity of electrons
with the density N; I(t) is the density, slowly varying during
the time 2p=o, of the radiation êux heating the electrons; d
is the skin-layer thickness at the frequency of the heating
laser beam; c is the speed of light; q is the density of the
thermal êux of electrons. Expression (5) does not take into
account the energy transfer from electrons to the lattice and
is applicable at times shorter than several picoseconds.
Relations (1) ë (5) form the basis for the description of the
optical properties of a metal heated by a femtosecond laser
pulse.

3. Basic relations

Consider the interaction of the probe p-polarised wave with
the metal, which occupies the half-space z5 0 and is heated
by the femtosecond pulse (Fig. 1). The magnetic éeld of the
incident wave is represented in the form

1
2
BL exp�ÿiot� ikr� � c:c:; z4 0; (6)

where BL � �0;BL; 0�; o � kc; o is the frequency; k is the
wave number; k � k�sin y; 0; cos y�; y is the angle between
the vector k and the direction of the z axis. The magnetic
éeld BL of the incident wave is orthogonal to the plane of
incidence. The electric éeld of the p-polarised wave lies in
the plane of incidence and has the components along the x
and z axes: EL � EL( cos y; 0;ÿ sin y), where EL � BL. The
magnetic éeld of the reêected wave is described by the
relation

1
2
Br exp�ÿiot� ikx sin yÿ ikz cos y� � c:c:; z4 0. (7)

where Br � rpBL; rp is the complex reêection coefécient. In
this case, we have Er � ÿrpEL( cos y; 0; sin y) for the electric
éeld of the reêected wave. We will seek for the éeld in the
metal in the form

E�r; t� � 1
2E�z� exp�ÿiot� ikx sin y� � c:c:; z5 0; (8)

B�r; t� � 1
2
B�z� exp�ÿiot� ikx sin y� � c:c:; z5 0; (9)
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Figure 1. Reêection of a p-polarised wave from the metal surface heated
by a femtosecond pulse.
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where

E(z) � (B 0(z)=ike(z); 0;ÿB(z) sin y=e(z));B(z) �(0;B(z); 0).
The electric and magnetic éelds are continuous on the

metal surface (z � 0). Taking into account relations (6) ë (9),
we will write the conditions for the éeld continuity in the
form

EL cos y�1ÿ rp� �
1

ike�z�B
0�z�jz�0 � Ex�z�jz�0; (10)

EL�1� rp� � B�z�jz�0 � By�z�jz�0: (11)

Then, using the surface impedance of the p-polarised wave

Zp � �Ex�z�=By�z��jz�0 � �B 0�z�=ike�z�B�z��jz�0; (12)

we obtain

rp �
cos yÿ Zp

cos y� Zp

� jrpjeifp ; (13)

where jrpj is the absolute quantity of the reêection
coefécient; fp is the phase shift of the reêected wave.
The absorption coefécient of the p-polarised wave is

Ap � 1ÿ jrpj2: (14)

In accordance with Maxwell's equations, the magnetic éeld
B(z) in the metal satisées the expression

d

dz

�
1

e�z�
dB�z�
dz

�
� k 2

�
1ÿ sin2 y

e�z�
�
B�z� � 0; z5 0: (15)

The boundary condition for the éeld B(z) on the metal
surface follows from (10), (11) and has the form�

1

ike�z�B
0�z� � B�z� cos y

�����
z�0
� 2EL cos y: (16)

Another boundary condition follows from the requirement
that the magnetic éeld vanishes at z!1, B(z!1) � 0.
The solution of equation (15) satisfying boundary condition
(16) on the metal surface and the condition of the éeld
absence at z!1 unambiguously describes the éeld
distribution in the metal.

4. Field in a metal

Taking into account the approximate form of the dielectric
constant (1), (2), we have the expression from (15)

B 00�z� ÿ e 0�z�
e�z� B

0�z� �
�
ÿ 1

d 2
� ik 2e2�z�

� k 2de1�z�
�
B�z� � 0; z5 0; (17)

where d � ÿk �������������������������
ÿe1 � sin2 y

p �ÿ1
is the characteristic pene-

tration depth of radiation. The éeld B(z) described by
expression (17) satisées boundary condition (16) and the
requirement to the absence of the éeld in the metal depth.
We will seek for the solution of (17) in the form

B�z� � Ba�z� exp�ic�z��; (18)

where Ba(z) and c(z) are real functions determining the
amplitude and the phase of the magnetic éeld. To construct
the approximate solution of expression (17), we will use the
small parameter n(z)=o5 1. We will seek for the functions
Ba(z) and c(z) in the form of a series in powers
�n(z)=o�n 5 1 (n � 1; 2; . . . ):

Ba�z� �
X1
n�0

Bn�z�; c�z� �
X1
n�0

cn�z�; (19)

where Bn � Bn(z) and cn � cn(z) have the order of
smallness �n(z)=o�n. In the zero order over the small
parameter, taking into account relations e2(z) � je1jn(z)=o
and de1(z) � e2(z)n(z)=o, (15) and (16) yield the expressions

B 000 ÿ
1

d 2
B0 ÿ B0�c 00�2 � 0; (20)

2B 00c
0
0 � B0c

00
0 � 0 (21)

and the boundary conditions:

B 00 cosc0 ÿ �B0c
0
0 � e1kB0 cos y� sinc0 � 0; (22)

B 00 sinc0 � �B0c
0
0 � e1kB0 cos y� cosc0 � 2ELke1 cos y; (23)

B0�z!1� � 0; B 00�z!1� � 0;
(24)

B0�z!1�c 00�z!1� � 0:

In expression (24) two last relations follow from the
condition that the electric éeld vanishes. By multiplying
equation (21) by B0 6� 0; we have B 2

0c
0
0 � const. In

accordance with the boundary conditions at z!1 (24),
B 2
0c
0
0 � 0. Because at énite z the magnetic éeld differs from

zero (B0 6� 0), we have

c 00 � 0 (25)

for all z5 0. Using relation (25) from expression (20) and
boundary condition at z � 0 (22), (23), we énd

B0�z� � B0�0� exp
�
ÿ z

d

�

� ÿ 2ELkde1 cos y

�1� �e1kd cos y�2�1=2
exp

�
ÿ z

d

�
; (26)

tanc0 � ÿ
1

e1kd cos y
> 0: (27)

In the linear approximation in n(z)=o from (17), we have
expressions for B1 and c1:

B 001 ÿ
1

d 2
B1 � 0; (28)

c 001 ÿ
2

d
c 01 � ÿg�z� � ÿk 2e2�z� ÿ

e 02�z�
de1

: (29)

The boundary conditions for the functions B1 and c1

directly follow from relations B(z!1) � 0, E(z!1) � 0
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and (16). In analogy with the derivation of expressions for
B0 and c0, we will write in the explicit form the solution of
the equation for the functions B1 and c1 (see [22]).
However, in considering the reêection of the probe wave,
we will need only explicit expressions for derivatives of the
functions cn (n � 0; 1; 2; :::), the explicit form of the
dependence of the functions B0 and B1 on the coordinate,
and expression (35) presented below. Taking this remark
into account, we will present below only the relations
required to calculate the complex reêection coefécient.
Taking into account the boundary condition B0(z!1)
�c 01(z! 1) � 0, we énd from (29)

c 01�z� � exp

�
2z

d

��1
z

g�z 0� exp
�
ÿ 2z 0

d

�
dz: (30)

The solution of equation (28) satisfying the boundary
conditions B1(z!1) � 0 and B 01(z!1) � 0, has the
form

B1�z� � B1�0� exp
�
ÿ z

d

�
: (31)

The quantities B1(0) and the function c1(0) not used below
are presented in paper [22]. In the second order of the
perturbation theory, from (17) for functions B2 and c2 we
have the expressions

B 002 ÿ
1

d 2
B2 � B0b�z�; (32)

2B 00c
0
2 � B0c

00
2 � 0; (33)

where

b�z� � �c 01�2 ÿ k 2de1�z� �
1

e 21 d
�e1de 01�z�

� e 02�z�e2�z�� ÿ c01
e 02�z�
e1

: (34)

Taking into account the conditions B2(z!1) � 0 and
B 02(z! 1) � 0, we obtain from (32)

d

dz

�
B2�z�
B0�z�

�
� ÿ exp

�
2z

d

��1
z

b�z 0� exp
�
ÿ 2z 0

d

�
dz 0; (35)

where the function b(z) is described by expression (34).
Equation (33) is similar to equation (21) studied above.
Taking into account this similarity and using the boundary
condition B0(z!1)c 02(z!1) � 0; we obtain

c 02�z� � 0; c2�z� � c2�0�: (36)

The function B2(z) and constants B2(0), c2(0) are presented
in paper [22].

5. Absorption coefécient and phase shift

According to (12), (13), and (18), the complex reêection
coefécient rp is expressed by the derivatives of the functions
c(z) and lnBa(z) at z � 0:

rp �
k�e1 � de1� cos yÿ c0�z� � ifke2 cos y� �lnBa�z��0g
k�e1 � de1� cos y� c0�z� � ifke2 cos yÿ �lnBa�z��0g

����
z�0
;

(37)

where the notations e2 � e2(0), de1 � de1(0) are used. In
accordance with deénitions (13), (14), we énd the
absorption coefécient Ap and the phase-shift tangent fp:

Ap �
4k cos y��e1 � de1�c 0�z� ÿ e2B

0
a�z�=B 0a�z��

�k�e1 � de1� cos y� c0�z��2 � �ke2 cos yÿ B 0a�z�=Ba�z��2
����
z�0
;

(38)

tanfp �

2k cos y��e1 � de1�B 0a�z�=Ba�z� � c 0�z�e2�
k 2�e1 � de1�2 cos2 y� k 2e 22 cos2 yÿ �c0�z��2 ÿ �B 0a�z�=Ba�z��2

����
z�0
:

(39)

To calculate the absorption coefécient of the p-polarised
wave and the phase of the reêected wave, we will use the
approximate relation for the derivative of the logarithm of
the magnetic éeld

d

dz
lnBa�z� ' ÿ

1

d
� d

dz

�
B2�z�
B0�z�

�
(40)

and the above expressions for the corrections to the éeld
amplitude and phase in the metal (25), (26), (30), (31), (35),
(36). Then, we énd from (38), (39)

Ap �
4kd cos y

1� �kde1 cos y�2
�
e1d
�1
0
g�z� exp

�
ÿ 2z

d

�
dz� e2

�
; (41)

tanfp �
2kde1 cos y

1ÿ �kde1 cos y�2
�
1ÿ 1� �kde1 cos y�2

1ÿ �kde1 cos y�2

�d
�1
0

b�z� exp
�
ÿ 2z

d

�
dzÿ d

e2
e1

�1
0

g�z� exp
�
ÿ 2z

d

�
dz

� 1� �kde1 cos y�2
1ÿ �kde1 cos y�2

de1
e1
� �kde2 cos y�2
1ÿ �kde1 cos y�2

ÿ d 2

1ÿ �kde1 cos y�2
��1

0

g�z� exp

�
ÿ 2z

d

�
dz

�2�
: (42)

Expression (41) is written with an accuracy to the terms
linear in n(z)=o. Expressions (41), (42) generalise the Fresnel
formulae to the case when the dielectric constant of the
metal contains a small inhomogeneous part [see relations
(1), (2)]. If the change in e2(z) and de1(z) can be neglected,
expressions (41), (42) yield Fresnel relations written with an
accuracy to terms quadratic in n=o5 1.

6. Effect of electron heating on absorption
and reêection

Let us use above relations (41), (42) to describe the effect of
the electron heating on the properties of the reêection of the
p-polarised wave from the metal. We assume that before
the action of the heating pulse the electrons have a uniform
temperature T0. Small collision terms e2(T0) and de1(T0), in
the dielectric constant corresponding to this temperature
are also independent of the coordinate. When e2(T0) and
de1(T0) are constant, we obtain Fresnel relations from (41),
(42)
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ApF �
4kd cos y

1� �kde1 cos y�2
�
1� 1

2
k 2d 2e1

�
e2�T0�; (43)

tanfpF �
2kde1 cos y

1ÿ �kde1 cos y�2
�
1ÿ 1

2e1
k 2d 2�e2�T0��2

ÿ 1

8

3� �kde1 cos y�2
1ÿ �kde1 cos y�2

k 4d 4�e2�T0��2 �
�kd cos y�2

1ÿ �kde1 cos y�2

� �e2�T0��2 �
1� �kde1 cos y�2
1ÿ �kde1 cos y�2

�
�
1� 1

2
k 2d 2e1

�
de1�T0�

e1

�
: (44)

As usual, the absorption coefécient achieves a maximum at
(kde1 cos y)

2 � 1. At y � p=2, we have ApF � 0 and at
y � 0, ApF has a local minimum. The phase shift fpF is a
monotonic function of y, increasing from the minimal value
at y � 0 to the maximal value fpF � p at y � p=2 (see
details in [23]).

Consider the inêuence of the electron heating on Ap and
tanfp. In the case of fast electron heating in the skin layer,
the derivative of the thermal êux in (5) can be neglected. In
this case, we énd from (3) ë (5)

n�z; t�
n�T0�

� exp

�
a exp

�
ÿ 2z

d

��
; (45)

where the parameter a is proportional to the integral of the
radiation êux density heating the electrons:

a � a�t� � 16a

p 2N�hc

� t

t0

dt 0I�t 0�; (46)

t0 is the onset time of the electron heating at which their
temperature is T0. Relation (45) allows one to write small
terms e2(z) and de1(z) (2) in the from

e2�z� � e2�T0� exp
�
a exp

�
ÿ 2z

d

��
; (47)

de1�z� � de1�T0� exp
�
2a exp

�
ÿ 2z

d

��
: (48)

By using dependences (47), (48) for the absorption
coefécient (41) and the phase-shift tangent of the reêected
wave (42), we énd

Ap �
4kd cos y

1� �kde1 cos y�2
e2�T0�

�
�
1� 1

2
k 2d 2e1

�
1

a
�ea ÿ 1�5ApF; (49)

tanfp � tanfpF � 2kdde1�T0� cos y
1� �kde1 cos y�2
1ÿ �kde1 cos y�2

�
�
G�2a� � G�0� ÿ G�0� 1

a
�e 2a ÿ 1�

�
� �e2�T0��2

e1

� 2kd cos y

1ÿ �kde1 cos y�2
�
G�a� ÿ G�0� ÿ G 2�a� ÿ G 2�0�

1ÿ �kde1 cos y�2

� 1� �kde1 cos y�2
1ÿ �kde1 cos y�2

�
1

2
G 2�0� ÿ 1

2a

� a

0

dx�G 2�x�

ÿ 2xG�x�ex ÿ 2xe 2x�
��
; (50)

where

G�a� � 1

a

�
ea�aÿ 1� � 1ÿ 1

2
k 2d 2e1�ea ÿ 1�

�
: (51)

Relations (49) ë (51) are written under assumption that the
difference in the penetration depths of heating (d) and
probe (d ) waves can be neglected. The latter is possible
under conditions of a high-frequency skin effect at ÿe1 4 1.

According to (49), the absorption coefécient rapidly and
almost exponentially increases with increasing the parameter
a. By measuring Ap we can énd a. Because the electron
density N is known and the form of the dependence I(t) is
given by the shape of the heating pulse, knowing a (46) we
can determine the unknown parameter a or the effective
frequency of electron ë electron collisions. The quantity a
can be also found by measuring the phase difference
fp ÿ fpF [see (50)] upon reêection of the probe pulse
from the metals with hot and cold electrons. Figure 2
shows the scheme of the corresponding experiment. One
can see that the probe pulse is divided into two, each of
them passing equal distances. One of the pulses is reêected
from the hot metal, while the other ë from the cold. As a
result, during the interference the pulses have the phases
differing by the quantity fpÿ fpF. Thus, having determined
fpÿ fpF from the interference pattern, we can énd a and
then a. The dependence of the function fpÿ fpF on a is
presented in Fig. 3. The solid curve is plotted at y � p=3 for
the metal with n(T0) � 1014 sÿ1 and op � 1:4� 1016 sÿ1. The
fundamental frequency o of the probe pulse is taken equal
to 1:8� 1015 sÿ1, which gives kd � (ÿ e1 � sin2 y)ÿ1=2 � 0:1.
For comparison Fig. 3 shows a dashed curve plotted by
using Fresnel formula in which the values of small param-
eters in the dielectric constant on the metal surface
e2(z � 0; t) and de1(z � 0; t) increase with increasing a in
accordance with relations (47), (48). One can see from the
comparison of the two curves in Fig. 3 that the Fresnel

Region of

the heated metal

fp ÿ fpF

Cold metal

Pump

Probe

radiation

Figure 2. Possible scheme of the experiment on measuring the phase
difference fp ÿ fpF appearing due to the heating of electrons by the
pump.

Reêection and absorption of a p-polarised wave by a metal 843



formulae overestimate the phase difference the more, the
more nonuniform the electron heating. Fresnel formulae
also overestimate the value of the absorption coefécient.
Indeed, if we replace in (43) e2(T0) by the term e2(z � 0; t)
described by relation (47), the absorption coefécient will be
larger than that yielded by expression (49), which takes into
account the nonuniform heating of electrons in the skin
layer.

The dependences of type (47), (48) are valid until the
heat removal from the skin layer is neglected. At large times,
the heat removal results in smoothing the temperature
proéle near the metal surface (see details in [8]). The electron
temperature changing with time at the skin-layer scales
changes weakly. At large times we can assume that at z � 0,
dielectric constant (1), (2) depends on the electron temper-
ature Te(z � 0; t) and radiation reêection and absorption are
described by Fresnel formulae (43), (44) in which
e2�Te(z � 0; t)� and de1�Te(z � 0; t)� are used instead of
e2(T0) and de1(T0), respectively.

7. Conclusions

It follows from the above that the investigation of the
reêection of the probe p-polarised wave from the surface of
the metal with hot electrons can be an effective tool for
determining the frequencies of electron ë electron collisions.
In this case, the analysis of the experimental dependences of
the absorption coefécient and the phase shift of the
reêected wave should be based on relations (41), (42),
which take into account the possible signiécant change in
the collision terms in the dielectric constant at the skin-layer
scale.
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Figure 3. Dependence of the phase difference fp ÿ fpF on the degree of
electron heating a upon reêection of the p-polarised wave from cold and
hot metals. The solid curve is plotted at y � p=3 and the dashed curve is
plotted by using Fresnel formulae for fp depending on e2(z � 0) (47) and
de1(z � 0) (48).
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