
Abstract. The parametric interaction of light waves in a
nonlinear photonic crystal (NPC) with the random violation
of the quasi-phase-matching condition is considered. A model
with correlated êuctuations of the width of adjacent domains
is used which corresponds to NPCs fabricated, for example,
by the repolarisation method. Both a numerical calculation
algorithm and analytic stochastic approach taking into
account the inêuence of êuctuations of the domain width
are presented. The behaviour of the average intensity and
dispersion of intensity êuctuations of parametrically interact-
ing waves, including the strong energy exchange regime, is
studied by the example of a LiNbO3 NPC. The obtained
results can be used to estimate the required accuracy of
manufacturing the nonlinear structure of the crystal.

Keywords: parametric ampliécation, quasi-phase matched interac-
tions, nonlinear photonic crystal, domain width êuctuations.

1. Introduction. Formulation of the problem

The érst proposals [1 ë 3] and realisations [4, 5] of para-
metric processes in optics in the early 1960s (see also review
[6]) were based on phase matched wave interactions in
homogeneous nonlinear-optical crystals. At the same time,
a considerable extension of applications of parametric
processes in a number of optical sources such as, for
example, tunable coherent radiation sources, lasers emitting
ultrashort pulses, sources of nonclassical light and
entangled quantum states of light necessitated the intro-
duction of crystals with the spatially modulated nonlinear
susceptibility into the assortment of nonlinear optics. These
are crystals with a regular domain structure [which are also
called periodically poled nonlinear crystals or nonlinear
photonic crystals (NPCs)] and crystals with a chirped
nonlinear structure. In such inhomogeneous nonlinear-
optical media, the efécient energy exchange between
interacting waves occurs if the quasi-phase-matching
conditions are fulélled. In this case, the phase mismatch
between them is compensated by the wave vector of the
reciprocal nonlinear lattice [7 ë 9].

At present, KTP and LiNbO3 NPCs have found wide
applications. Let us emphasise the role of S.A. Akhmanov in
the investigations of quasi-phase matched interactions in
nonlinear optics. The érst experiments on the laser radiation
frequency doubling in a polydomain LiNbO3 crystal were
performed at the Laboratory of Nonlinear Optics at the
Moscow State University in 1966 [10]. On the initiative of
S.A. Akhmanov, one of the authors of the present paper, his
postgraduate at that time, investigated theoretically this
process [11]. S.A. Akhmanov supported the studies of quasi-
phase matched optical interactions in the 1980s as well (see,
for example, [12, 13]). Beginning from the mid-1990s,
researchers at the Laboratory of Quantum and Nonlinear
Optics at the MSU are engaged in theoretical and exper-
imental studies of multiwave quasi-phase matched
interactions in passive and active crystals with the quadratic
optical nonlinearity (see reviews [14, 15]), which are aimed
at the development of compact multifrequency lasers and
creation of multimode entangled quantum states.

Quasi-phase matched wave interactions provide the
universal method for solving the problem of realisation
of three-frequency nonlinear-optical processes. For a partic-
ular nonlinear process, they in fact eliminate the necessity
for searching nonlinear-optical crystals with certain dis-
persion properties or choosing the geometry of interacting
waves. Moreover, coupled multiwave interactions can be
performed in aperiodic NPCs, which allows one to realise
parametric ampliécation upon low-frequency pumping [16]
and generate higher optical harmonics in quadratically
nonlinear crystals [17].

Periodic NPCs can be fabricated by several methods,
among which the most popular are the growth method [18]
and methods of chemical diffusion and repolarisation [19].
The latter two methods can be used to create the domain
structure of a crystal to an arbitrary template, which is
especially important for formation of chirped and aperiodic
nonlinear structures. However, random deviations can
appear during their production, the statistic of these
deviations depending on the production method [20]. In
the case of manufacturing NPCs by the repolarisation
method, a mask used as a template can be fabricated
with a high accuracy. But due to somewhat different
conditions under which domains are grown (internal
mechanical stresses, the crystal thickness, surface defects,
etc.), their boundaries can be displaced with respect to the
`ideal' structure. This displacement depends on the proper-
ties of the crystal region containing a given domain and is
independent of the displacements of other boundaries of
adjacent domains. Such random deviations of domain walls
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in a NPC cause correlated êuctuations of the thickness of
adjacent domains. It is clear that if the periodic structure of
the NPC is calculated to compensate for the phase mismatch
in the nonlinear process, êuctuations of the domain walls
will cause a random violation of the phase-matching
condition.

The considered model of a random deviation of the NPC
structure from a periodic one was used to analyse the
proceeding of two coupled nonlinear-optical processes [21].
By describing analytically the interaction of light waves in
crystals with a random nonlinear structure, which is
manifested in a random spatial modulation of the coupling
coefécient of the waves, it is necessary to assume that
êuctuations of the `wave number' of the reciprocal nonlinear
lattice are delta-correlated in order to obtain equations for
the average intensities of the interacting waves [21]. The
calculation of the dispersion of intensity êuctuations for the
interacting waves is a rather complicated problem even in
the undepleted-pump éeld approximation. In the case of a
strong energy exchange between the waves, when the pump
depletion takes place, to obtain closed equations for the
average intensities of interacting waves, it is necessary to use
the assumption about their statistics [22]. It should be also
taken into account that the behaviour of average values in
the analysis of stochastic nonlinear processes can be
substantially different from the behaviour of an individual
realisation. Thus, the nonlinear interaction of light waves in
a NPC with random parameters of the nonlinear structure
can be correctly analysed only by using the numerical
simulation of the interaction process.

The aim of this paper is to develop a numerical
algorithm taking into account êuctuations of domain
boundaries, which can be used to analyse nonlinear-optical
processes in periodic and aperiodic NPCs and chirped
nonlinear crystals. As an example, we consider traditional
three-frequency parametric process. The average intensities
and dispersions of the intensity êuctuations of the interact-
ing waves are calculated. The average wave intensities are
also calculated by the analytic method developed in paper
[21]. The analytic results are compared with numerical
calculations. The results obtained in the present paper allow
us to determine the requirements to the accuracy of
manufacturing a periodic nonlinear crystal lattice for the
efécient realisation of the optical parametric process.

2. Simulation of domain-boundary êuctuations

The modulation of the sign of the nonlinear coupling
coefécient for waves in a periodic NPC can be written in
the case under study in the form

g�z� � sign

�
sin

2pz
L

�
, (1)

where sign x is the signature [ g(x) � 1 for x > 0, g(x) � ÿ1
for x < 0, and g(x) � 0 for x � 0]; z is the coordinate along
the wave propagation direction; and L is the modulation
period of the nonlinear lattice.

Our approach is based on the numerical simulation of
the three-frequency nonlinear-optical process [see equation
(5)] and involves the following operations:

(i) The search for coordinates of the zeroes of the
speciéed function g(x) characterising the dependence of
the nonlinear susceptibility sign [for example, determined by

expression (1)] and corresponding to the exact quasi-phase
matching condition. The search algorithm can be applied
both to periodic and aperiodic functions g(z), making this
method applicable for structures of any type.

(ii) The construction of a new function g �r�(z), which
differs from the `exact' function g(z). In this case, the
coordinate z

�r�
j of the jth zero of the function g �r�(z) is a

random Gaussian quantity with the average value equal to
the coordinate zj of a zero of the function g(z) (Fig. 1).

(iii) The numerical solution of the system of truncated
equations [(5) in our case] describing the spatial dynamics of
the amplitudes of interacting waves for the particular
realisation g �r�(z).

(iv) The obtainment of a new realisation of the function
g �r�(z), i.e. a random change of the coordinates of its zeroes.

Then, operations 2 ë 4 are repeated, and after the
accumulation of an ensemble of realisations, the average
values and dispersions of the intensity êuctuations of the
interacting waves are calculated for this ensemble.

To perform operation 2, it is necessary to énd all the
zeroes of the rapidly oscillating function g(z) within the
crystal length L. Then, the function g(z) can be represented
in the interval �0,L� by the polynomial

P�z� � �zÿ z0� � . . .� �zÿ zm��zÿ zm�1� � . . .� �zÿ zn�,
(2)

so that

g�z� � sign�P�z��, (3)

where zj are the zeroes of g(z) (zj 2 �0,L�, j � 1, n).
The search for the zeroes of g(z) is performed numeri-

cally with the aim of extending the possibilities of the
method and the class of nonlinear structures. We discarded
the pairs of zeroes separated by a distance smaller than the
minimal width lmin of a domain that can be obtained in
experiments. In the case of the repolarisation method, the
minimal domain width, for example, for a LiNbO3 crystal is
about 1.5 mm [19]. At the same time, the function g(z) was
constructed by using the number of points that was
sufécient to provide their great amount falling within the
minimal possible domain width, which excluded the `omis-
sion' of the zeroes of g(z). A function reconstructed from (3)
in such a way in the interval �0,L� coincides with the ideal
function g(z), except for domains that cannot be created. As
a result, the factors (zÿ zm)(zÿ zm�1), for which
jzm ÿ zm�1j < lmin, come out from polynomial (2).

z 0j g �r��z�

zj g�z�

0

1

ÿ1

Figure 1. Periodic function g�z� (dashed straight line) and the `real'
dependence g�r��z� (solid straight line) of the sign of the nonlinear
coefécient.
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The `real' function g �r�(z) was simulated by introducing a
random addition dzj to zj:

g �r��z� � signf�zÿ �z0 � dz0�� � . . .� �zÿ �zn � dzn��g

� sign
�ÿ
zÿ z

�r�
0

�� . . .� ÿzÿ z �r�n

��
. (4)

The displacement of the domain boundary with respect
to the `ideal' position can be caused by numerous random
factors, and therefore it is reasonable to assume that the
distribution of random values of dzj is Gaussian and the
dispersion hdzji2 is the same for all j, i.e. h(dzj�2i � (Dz)2 and
hdzji � 0. The root-mean-square value of Dz depends on the
quality of the nonlinear structure of the crystal.

Note that the algorithm described above nowhere uses
the particular form of the function g(z), pointing out only
that this is a `sign function'. All the steps and calculations
described above can be performed for any function g(z) and,
correspondingly, for any multi-wave process. This universal
nature is fundamentally important for studying complicated
coupled processes, which is the main goal of the method
being developed. However, the application of this method is
illustrated in this paper by the example of the traditional
quasi-phase matched parametric process, which makes it
possible to compare the obtained results with the results of
paper [21], where the nonlinear optical process was analysed
analytically in the parametric approximation.

3. Three-frequency parametric interaction:
a numerical experiment

Consider a three-frequency optical parametric process
op � o1 � o2, where op is the frequency of the intense
pump wave and o1;2 are the frequencies of the signal and
idler ampliéed waves.

The quasi-phase-matching condition for this process in a
NPC upon collinear interaction has the form Dk � kpÿ
k1 ÿ k2 � 2p=L. Consider, for example, the e ë ee interaction
in a LiNbO3 NPC for lp � 1:064 mm and l1 � 2 mm. Then,
l2 � 2:274 mm, and the period of changing the sign of the
nonlinear susceptibility is L � 20:6 mm when the pump
wave propagates perpendicular to the optical axis (calcu-
lations are performed by using data [23]). This geometry
provides the maximum possible effective nonlinear coupling
coefécient for the process under study.

The truncated equations for the three-frequency process
considered here (neglecting loses and effects related to
higher-order nonlinearities) have the form

dAp

dz
� ig �r��z�bpA1A2 exp�iDkz�,

dA1

dz
� ig �r��z�b1ApA

�
2 exp�ÿiDkz�, (5)

dA2

dz
� ig �r��z�b2ApA

�
1 exp�ÿiDkz�,

where Aj are the complex amplitudes of the interacting
waves and bj are the nonlinear coupling coefécients [24].

The examples of the solution of this system of equations
for the same initial conditions are presented in Fig. 2 for
different root-mean-square deviations Dz of the position of
domain walls. Note that the chosen value Dz ' 3 mm

deénitely exceeds the fabrication accuracy of NPCs by
the repolarisation method. In other words, the realisation
of the dynamics presented in Fig. 2 corresponds to the
dynamics of a process in a poor-quality crystal. For the
convenience of comparison, the enlarged parts of the
dependences are also presented in insets in Fig. 2. One
can see that the intensity dynamics for the `real' structure
has a more `irregular' character, which is related to the
violation of phase matching between the waves caused by
the violation in the periodicity of the nonlinear structure.
Note that, despite considerable deviations from the ideal
nonlinear structure, the process proceeds eféciently but is
prolonged in space, which is equivalent to the nonlinear
interaction length. However, the maximum intensities of the
waves with frequencies o1 and o2 for both realisations
coincide. Therefore, the inêuence of errors in the manu-
facturing of a nonlinear structure is manifested in the energy
exchange rate, but not in the possible eféciency. From the
point of view of realisation of a nonlinear process, it should
be taken into account that losses of the interacting waves in
long crystals are greater and the fabrication of NPCs of
length of a few centimetres is a complicated problem.

Therefore, by realising parametric ampliécation, it is
important to take into account the possible errors in the
structure parameters. Thus, to increase the conversion
eféciency, it is necessary to select the length of a crystal
(for the speciéed pump power) providing the maximum
eféciency. To estimate this length, it is necessary to know
the dispersion of êuctuations of the position of domain
walls.

Figure 3 presents the results of numerical experiment on
the inêuence of Dz on the energy exchange between the
waves during parametric ampliécation in cross sections at
different crystal lengths. Each point is the result of calcu-
lation of the system dynamics for 10 realisations of the `real'
function g �r�(z) (4) for éxed Dz; the average values and root-
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Figure 2. Spatial dynamics of the intensities of interacting waves with
frequencies op, o1, and o2 in the parametric process for different Dz.
The curves are constructed for the nonlinear length Lnl � 0:1 cm; I0 is
the input pump intensity.
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mean-square êuctuations of the intensities of the pump,
signal, and idler waves at frequencies o1;2 are shown. As
pointed out above, the quality of the nonlinear structure
affects the rate of energy exchange between the waves.
Figure 3 shows that the larger the error dispersion in the
fabricated structure, the lower the conversion eféciency over
the given length of the crystal.

Figure 4 presents the results of numerical experiments
on determining the dependence of intensity êuctuations DIj
of the interacting waves on Dz. One can see that the value of
DIj is smaller for smaller interaction lengths L. At the same
time, the value of DIj decreases as the value of Dz is further
increased (above 4 mm in our case), which is explained, in
our opinion, by a decrease in the energy exchange at the
corresponding crystal length for such Dz.

4. Undepleted-pump éeld approximation:
the stochastic approach

Analytic results in the study of parametric interaction of
waves in a NPC with randomly varying domain width can
be obtained by using the undepleted-pump éeld approx-
imation [equation for the amplitude Ap is omitted in system
(5) and we assume that Ap � const in all other equations].
The system of equations (5) was studied in this parametric
approximation for the nonlinear coupling coefécient of the
waves simulated by a random telegraph signal [25]. The
model of the nonlinear coefécient considered here, corre-
sponding to the correlated êuctuations of the thicknesses of
adjacent domains, was used in [21] for studying parametric
ampliécation upon low-frequency pumping, which involves
traditional three-frequency parametric ampliécation proc-
esses upon high-frequency pumping and frequency up-
conversion. The results obtained in the absence of the latter
process are related to the process studied here. However,
this particular case was not discussed in [21]. Therefore, we
will present below these analytic results, by presenting
preliminarily some intermediate calculations.

Let us write the closed system of equations for the signal
and idler wave intensities in the undepleted-pump éeld.
According to (5), we have

dI1
dz
� ig �r��z�g1B exp�ÿiDkz� � c:c,

dI2
dz
� ig �r��z�g2B exp�ÿiDkz� � c:c, (6)

dB

dz
� ÿig �r��z��g1I2 � g2I1� exp�iDkz�,

where B � A �1A
�
2 and gj � bjAp.

Let us apply the method of secondary simpliécation [13]
to the system of equations (6) by integrating equations (6)
over the modulation period of g �r�(z) assuming that the
intensities of the interacting waves change insigniécantly at
this spatial scale. Thus, we replace the function g �r�(z),
containing the coordinate of the jth wall of a domain, by the
quantity x(zj):

x�zj� �
1

L

� zj �L=2

zj ÿL=2
g �r��x� exp�ÿiDkx�dx, (7)

where zj is determined by the condition g(zj) � 0.
For the periodic nonlinear structure in the érst quasi-

phase matching order, x(zj) � 2=p. In the presence of
êuctuations in the position of the domain walls, the value
of x(zj) changes randomly from domain to domain and has
the average value [21]

hx�zj�i � ie, e � 2C�qm�
�1� 2m�p , (8)

where (1� 2m) is the quasi-phase matching order; C (qm) is
the characteristic function of random quantities dzj;
C (qm) � hexp (ÿ iqmdzj)i; and qm � 2(1� 2m)p=L

Let us introduce the deviation from the average value
m(z) � x(z)ÿ hx(z)i. Then, equations (6) will take the form
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Figure 3. Dependences of the average intensities of the pump (a), signal
and idler (b) waves on Dz for different crystal lengths L for Lnl � 0:1 cm;
I0 is the input pump intensity.
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Figure 4. Relative levels of the intensity êuctuations of interacting waves
as functions of Dz for different crystal lengths L; j � p, 1, 2; I regj is the
intensity of the jth wave for the ideal NPC.
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dI1
dz
� ÿ2eg1B� 2g1Im�m�z�B�z��,

dI2
dz
� ÿ2eg2B� 2g2Im�m�z�B�z��, (9)

dB

dz
� ÿ�e� im ��z���g1I2 � g2I1�.

The averaging of equations (9) reduces the problem to
determining the correlators hm(z)B(z)i, hm(z)I1(z)i, and
hm(z)I2(z)i. Our calculations showed that the correlation
length of a random process m(z) is equal to the average
period of the nonlinear lattice. Because a NPC contains
many domains, while the êuctuations of domain widths in a
good quality crystal are small, the correlation function of
the process m(z) can be replaced by the delta function:

m�z1�m ��z2� � Rm�z1; z2� � Kd�z2 ÿ z1�. (10)

According to results [21], the coefécient K � 8(Dz)2=L.
The delta correlation of the process m(z) allows us to use

stochastic methods and to apply in this case the Furutzu ë
Novikov formula [26]:

Fm�z� �
� �

dF
dm �

�
Rm�z�dz � K

�
dF
dm �

�
, (11)

where F � F(m(z), m�(z)) is the functional and dF=dm � is the
variational derivative.

As a result, we obtain the system of equations

d�I1
g1dz

� d�I2
g2dz

� ÿ2e �B� 2K�g1�I2 � g2�I1�,
(12)

d �B

dz
� 2g1g2K �Bÿ e�g1�I2 � g2�I1�

for the average quantities. By solving equations (12) with
the boundary conditions I1(z � 0) � I10, I2(z � 0) � 0, we
obtain the average intensities

�I1 � �1� G�z��I10, �I2 � �g2=g1�G�z�I10, (13)

where

G�z� � 1

2
exp�3az�

�
coshGz� a

g
sinhGz

�
ÿ 1

2
. (14)

Here, a � Kg1g2 � 8g1g2(Dz)
2=L; G � (4e 2g1g2 � a 2)1=2; and

the parameter e is deéned in (8).
Consider the proceeding of the process in the érst quasi-

phase matching order q0 � 2p=L (m � 0). In the absence of
êuctuations in the NPC, a � 0 and C(q0) � 1, e � 2=p, and
we obtain from (13) the well-known result

G reg�z� � 1

2

�
cosh

�
4

p
���������
g1g2
p

z

�
ÿ 1

�
.

For Gaussian êuctuations of the domain thickness, we
have C(q0) � exp�ÿ2(pDz=L)2�. Analysis showed that
decrease in the intensity of interacting waves in a NPC
with a randomly violated periodicity is caused by the

decrease of the parameter e depending on C(q0) (8). This
is illustrated in Fig. 5, where the results of analytic
calculations and numerical simulation are presented. One
can see that the results obtained by these two methods are
consistent.

Figure 6 shows how the gain of the signal wave
decreases with increasing êuctuations of the domain width
and the interaction length. By specifying the crystal length
and the level of the gain decrease, we can determine the
requirements to the accuracy of crystal fabrication.

5. Conclusions

We have studied the inêuence of êuctuations of the domain
width on the parametric interaction of waves in a periodic
NPC. The model with correlated êuctuations of the widths
of adjacent domains was used, which describes adequately
the case of NPCs fabricated by the repolarisation method.
The nonlinear process was analysed by the stochastic
method both in the undepleted-pump éeld approximation
and by integrating numerically the system of nonlinear
equations in the general case, including the nonlinear
regime of the interaction of waves. Analysis of the
behaviour of the average intensities of the waves has
shown that a random deviation of a nonlinear lattice from a
periodic lattice does not change the type of energy exchange
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Figure 5. Average intensity of the idler wave normalised to the intensity
obtained in the ideal periodic NPC as a function of Dz=�0:5L�.
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Figure 6. Signal-wave gain Z � I1�z�=I reg1 �z� in the real NPC normalised
to the gain in the ideal crystal as a function of the interaction length z
and êuctuations of the domain width Dz; Lnl � gÿ11 .
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between the interacting waves, by reducing only the
effective interaction length. The intensity êuctuations of
the waves were also investigated by using numerical
simulations.

The results of the numerical experiment for the average
intensities of the waves conérm the validity of the analytic
stochastic approach developed in the paper. Analytic results
clearly show that the requirements to the accuracy of
manufacturing a periodic structure increase with decreasing
the nonlinear structure period and increasing the crystal
length [see (14), expression for C (q0), and Fig. 6] and the
quasi-phase matching order. The results obtained in the
paper can be used to estimate the accuracy required for
manufacturing the nonlinear structure of crystals. By
specifying the crystal length and the required parametric
conversion eféciency, the maximum root-mean-square devi-
ation of the position of the domain walls in NPCs can be
determined by the dependences in Figs 3 and 4.

The numerical approach and analytic stochastic method
developed in the paper can be used for studying other three-
frequency nonlinear-optical processes and various multi-
wave processes proceeding in crystals with randomly
violated periodicity of the nonlinear structure.
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