
Abstract. The effect of the real part of the Raman suscep-
tibility on the Stokes spectrum excited by Gaussian and
Bessel beams is studied theoretically and experimentally. This
part of the susceptibility is shown to be responsible for the
increase in the overlap integral of the Stokes beam and the
pump beam and, as a result, for the increase in the Raman
ampliécation in the region of frequencies higher than the
frequency of the exact Raman resonance. This, in particular,
is observed in the spectral shift of the axial component of
Raman generation in the case of Bessel pump and Stokes
radiation in the case of the Gaussian pump to the high-
frequency region. It is shown that the shift caused by the
Bessel pump signiécantly exceeds the shift caused by the
Gaussian pump. The conical component in the case of the
Bessel pump is generated at the frequency of the exact
Raman resonance.

Keywords: stimulated Raman scattering, Gaussian beam, Bessel
beam, axicon.

1. Introduction

Quasi-steady-state stimulated Raman scattering (SRS) is
known to be described by the Raman susceptibility, which
is a complex value proportional to the pump beam intensity
and strongly dependent on the frequency of the scattered
(Stokes) radiation. The imaginary part of this quantity is
manifested in the Stokes radiation ampliécation (transfer of
photons from the pump beam to the Stokes beam), while
the real part leads to the change in the refractive index of
the scattering medium at the Stokes frequency: to its
increase in the region of frequencies higher than the
frequency of the maximum of the imaginary part of the
Raman susceptibility (exact Raman resonance) and to a
decrease in the region of lower frequencies. Because of this,
in the case of scattering of the spatially nonuniform pump
the high-frequency and low-frequency components of the
Stokes beam focus and defocus, respectively, which undo-
ubtedly should lead to the frequency-dependent change in

the spatial overlap of interacting éelds, and, hence to the
frequency dependence of the Raman ampliécation
eféciency.

The fact, that the Raman susceptibility is a complex
quantity, is known virtually from the érst works on the
Raman research [1, 2]. However, in most papers devoted to
the Raman, the real part of this susceptibility, as a rule, is
not taken into account. Obviously, the author of [3] was the
érst to observe experimentally the Stokes beam focusing
resulting from the real part of the Raman susceptibility
during the Raman ampliécation of the beam. The emer-
gence of this part of the Raman susceptibility in the
spectrum of the Raman ampliécation was considered later
in papers [4, 5]. These papers showed theoretically and
experimentally that in the case of the Gaussian pump the
real part of the Raman susceptibility leads to a weak shift of
the Raman gain maximum to the high-frequency range with
respect to the frequency of the exact Raman resonance.

This paper is devoted to the theoretical and experimental
investigation of the manifestation of the real part of the
Raman susceptibility (or, in other words, the imaginary part
of the Raman gain factor) in the spectrum of Raman
generation in the case of pumping be the Bessel or Gaussian
beams. It is shown that in the case of the Bessel pump the
conical component of the Stokes beam is generated at the
frequency of the exact Raman resonance and the axial
component is signiécantly (up to 0:6Dv, where Dv is the half-
width of the spontaneous Raman line) shifted from it to the
high-frequency region and that this shift of the axial
component in the case of the Bessel pump signiécantly
exceeds the spectral shift of the Stokes beam in the case of
the Gaussian pump. The results of these studies were
partially reêected in papers [6 ë 8].

2. Theory

2.1 General relations

Let the SRS be excited by a highly monochromatic axially
symmetric radiation beam. The scattered radiation beam
even then should be axially symmetric with respect to the
pump beam axis (the z axis) and its éeld E(z, r) in the
paraxial approximation can be found from the expression
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in which Ep (z, r) and Sp (z, r) � (cnp=2p)jEp (z, r)j2 are the
amplitude and the intensity of the pump éeld; np is the is

P.A. Apanasevich, R.V. Chulkov, A.S. Grabtchikov, V.A. Orlovich,
G.I. Timofeeva B.I. Stepanov Institute of Physics, National Academy of
Sciences of Belarus, prosp. Nezavisimosti 68, 220072 Minsk, Belarus;
e-mail: r.chulkov@dragon.bas-net.by, asg@dragon.bas-net.by

Received 8 December 2008
Kvantovaya Elektronika 39 (7) 615 ë 623 (2009)
Translated by I.A. Ulitkin

PACSnumbers: 42.65.An; 42.65.Dr; 42.60.Jf
DOI:10.1070/QE2009v039n07ABEH014019

Stimulated Raman scattering spectrum
of Gaussian and Bessel light beams

P.A. Apanasevich, R.V. Chulkov, A.S. Grabtchikov, V.A. Orlovich, G.I. Timofeeva

819/745 ëVOLO ë 4/ix-09 ë SVERKA ë 9 ÒÑÎÑÔ ÍÑÏÒ. å 1
Quantum Electronics 39 (7) 615 ë 623 (2009) ß2009 Kvantovaya Elektronika and Turpion Ltd



the refractive index of the medium at the pump frequency
op; k is the wave number of scattered radiation; r is the
transverse coordinate; D? � q 2=qr 2 � (1=r)q=qr is the
Laplacian in the plane of the beam cross section; sd is
the inverse length of spontaneous Raman scattering. The
Raman susceptibility is taken into account in (1) by the
complex value Gd � G 0d � iG 00d , where G 0d is the Raman gain
factor for the Stokes radiation determined by the real part
of the Raman susceptibility and G 00d is the parameter
determined by its real part. In the case of the Lorentzian
transition contour at which scattering occurs, we have
Gd � G0(1� id)=(1� d 2), where d � (oÿ op � O)T2 is the
deviation of the frequency o of scattered radiation from the
frequency op ÿ O corresponding to the exact Raman
resonance; O and T2 is the frequency andthe dephasing
time of the vibration at which Raman scattering occurs.
The last term in the right-hand side of (1) takes into
account the spontaneous Raman scattering. Its spectral
composition is determined by the relation jsdj2 � G 0d.

In the case of weak scattering, the éeld Ep (z, r) can be
assumed to be the given function of the coordinates. Due to
the linearity of equation (1) with respect to E(z, r), the éelds
with different frequencies can be assumed independent.

Of practical interest is not the éeld E(z, r) but the power
Pd(L) � cn

� 1
0 jE(L, r)j2rdr of the scattered beam at the

exit from the scattering medium of thickness L in the solid
angle DF and the frequency interval Do, which are
determined by the aperture and the spectral resolving power
of the measuring device. To determine this quantity,
equations

dPd�z�
dz

� G 0dSp�z�Md�z�P�z� � ZG 0dPd�z� (2)

are easily derived from (1) [9], where Z � ��ho 3n 2Do�
(p 2c 2)ÿ1�(DF=4p); �h is the Planck constant; n is the
refractive index;

Md�z� �
�1
0
jFp�z; r�j2jF �z; r�j2rdr

��1
0
jFp�z; r�j2rdr (3)

is the normalised overlap integral of cross sections of the
pump beam [Sp(z, r) � Sp(z, 0)jFp(z, r)j2] and the Stokes
beam [E (z, r) � E (z, 0)F (z, r)]. The expression for the
coefécient Z was found from the relation of the probabili-
ties of the spontaneous and stimulated Raman transitions.
This means that while deriving equation (2) we performed
averaging in realisations of spontaneous scattering.

By assuming that z is measured from the input surface of
the scattering medium, the general solution of equation (2)
can be written in the form

Pd�z� �
�
Pd�0� � ZG 0d

� z

0
Pp�z 0� exp�ÿDd�z 0��dz 0

�
exp�Dd�z��,

(4)

where

Dd�z� � G 0d

� z

0

Md�z 0�Sp�z 0�dz 0 (5)

is the Raman gain. Its frequency dependence, as is seen
from (5), is determined by the product of the Raman gain
factor G 0d and the overlap integral Md(z). The érst term in

(4) describes the Raman ampliécation of a seed light beam
and the second one ë Raman generation (Raman amplié-
cation of Stokes radiation, the source of which is
spontaneous Raman scattering).

At the given jFp(z, r)j2, the determination of the overlap
integral is reduced to énding the function F (z, r) with the
help of Eqn (1). However, even without addressing Eqn (1),
we can draw some general conclusions about the possible
values of this integral. In particular, it follows from
expression (3) that in the plane-wave approximation
Md(z) � 1. The integral Md(z) is approximately equal to
unity in those cases when the Stokes beam cross section is
signiécantly smaller than the pump beam cross section. In
all other cases, Md(z) < 1. Here, Md(z) cannot be substan-
tially smaller than unity for the Stokes beam cross section is
formed by the pump and because of this cannot be larger
than the pump beam cross section. The integral Md(z) is the
part of the exponent which under conditions of a real
experiment takes large values (more than 20). Thus, the
weak dependence of Md�z� on d can signiécantly affect the
spectrum of the ampliéed Stokes beam. Consider this effect
in the case of pumping by Gaussian and Bessel beams.

2.2 Pumping by a Gaussian beam

The Gaussian beam, as is known, is deéned by the relations

jFp�z; r�j2 � exp
�ÿ a 0p�z�r 2�, Sp�z� � Ppa

0
p�z�=�pw 2

0 �, (6)

where Pp is the pump beam power independent of z;
a 0p(z) � 1=�1� (zÿ z0)

2=l 2p � is the parameter determining the
radius wp(z) � w0=�a 0p(z)�1=2 of the beam intensity distribu-
tion in the cross section z; z0, w0 � wp(z0), lp � kpw

2
0 is the

position, radius and the half the length of the beam waist;
kp is the wave number of pump radiation. Hereafter, the
transverse coordinate r is normalised to the waist radius
w0.

In the case of the Gaussian pump, it is natural to model
the scattered radiation éeld in the cross section z by the
function

F �z; r� � exp�ÿa�z�r 2=2�, (7)

in which the complex parameter a � a 0 � ia 00 determines
the radius ws � w0

�����
a 0
p

of the intensity distribution and the
radius R � ksw

2
0 =a

00 of the wave-front curvature of the
scattered beam. It follows from physical assumptions that
the use of function (7) for describing the Stokes beams is
permissible when this beam is completely overlapped by the
pump beam, i.e. when the condition a 0 > a 0p is fulélled. In
situations when the Stokes beam develops from sponta-
neous scattered radiation, this conditions is fulélled
automatically.

As is shown in [9], a can be determined by using the
equation

da
dz
� ÿ i

kw 2
0

a 2 � gd
kpw 2

0

a 0 2p a 0

a 0p � a 0
(8)

obtained from (1), where gd � g 0d � ig 00d � g0=(1ÿ id). The
parameter g0 � kpG0Pp=p means the plane-wave Raman
gain at a distance equal to lp � kpw

2
0 .

Analysis of equation (8) shows that when the condition
a 0 > a 0p is fulélled, the quantity a is a slowly varying
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function z and the derivative da=dz can be neglected. As a
result, we obtain the algebraic equation, whose solution has
the from

a�z� � 1

2

�
1� 2

ÿjgdj � g 00d
� k

kp

�1=2�
1ÿ i

g 0d
jgdj � g 00d

�
a 0p�z�. (9)

It follows from (9) that the allowance for the imaginary
part g 00d of the Raman gain factor (i.e. the real part of the
Raman susceptibility) leads to a decrease and to an increase
in the radius 1=

�����
a 0
p

of the Stokes beam at g 00d > 0 (at d > 0)
and g 00d < 0 (i.e. at d < 0), respectively, compared to the
radius calculated at g 00d � 0. The phase front of this beam is
convex in the direction of its propagation (a diverging
beam), its curvature in the region d > 0 being smaller than
that in the region d < 0. All this means that the real part of
the Raman susceptibility produces a focusing and defocus-
ing effect on high-frequency (d > 0) and low-frequency
(d < 0) Stokes beam components, respectively.

The overlap integral Md(z) for the Stokes beam,
described by function (7), is determined by the expression

Md �
a 0d

ap � a 0d
�
��

1� 2g0
k

kp
jd

�1=2
ÿ 1

�

�
��

1� 2g0
k

kp
jd

�1=2
� 1

�ÿ1
, (10)

where jd � �(1� d 2)1=2 � d�=(1� d 2). Without taking into
account the imaginary parts of the Raman gain factor (at
g 00d � 0) the quantity Md is also determined by expression
(10) but with the parameter gd � 1=(1� d 2). The overlap
integral in the case under study is independent of z. Taking
into account this fact, expression (5) for the Raman gain
assumes the form

Dd�z� � g 0dMd

�
arctan

�
zÿ z0
lp

�
� arctan

z0
lp

�
(11)

and the frequency dependence of the gain is determined by
the function

g�d� � 1

1� d 2

��
1� 2g0

k

kp
jd

�1=2
ÿ 1

�

�
��

1� 2g0
k

kp
jd

�1=2
� 1

�ÿ1
, (12)

Figure 1 presents the dependences of g (d) at different
g0k=kp calculated with and without the imaginary part of
the Raman gain factor. One can see that the account for the
imaginary part of Gd increases and shifts the maximum of
the function g (d) to higher frequencies, this shift decreasing
with increasing g0. By using expression (12) and the
condition dg (d)=dd � 0, it is easy to show that the position
of the maximum of the function g (d) is determined by the
relation

2dm

��
1� 2g0

k

kp
jd

�1=2
� 1

�
� ÿ1� d 2

m

�1=2
, (13)

and its amplitude ë by the relation

gm � g�dm� �
ÿ
1� d 2

m

�1=2 ÿ 4dmÿ
1� d 2

m

�3=2 . (14)

The quantities dm and gm calculated with the help of
expressions (13) and (14) as functions of the parameter
g0k=kp are shown in Fig. 2. For comparison the same égure
presents the dependence g (0) calculated with expression
(12) and determining the amplitude of the maximum
without taking into account the imaginary part of the
Raman gain factor. Note that the difference gm ÿ g (0) is
always positive, i.e. the maximum of the Raman gain
calculated by taking into account the imaginary part G 00d is
always larger than the maximum of the Raman gain by
neglecting G 00d .

In the region of large g0 (virtually already at g0 > 10), dm
and gm can be determined by using the approximate
expressions dm � 1=�2(2g0k=kp)1=2� and gm� 1ÿ 2=(2g0k�
kÿ1p )1=2. Using expressions (4) and (11) it is easy to analyse
the power spectrum of the ampliéed Stokes beam.

As was noted above, the second term in expression (4)
describes Raman generation. Its source is spontaneous scat-
tering. To estimate the power of this source, note that in the
region z where the arctangent function can be replaced by its
argument (for z, z0 < 0:3lp), we have the relation� z

0

exp�ÿDÿz 0��dz 0 � lp
g 0dMd

�
1ÿ exp

�
ÿ g 0dMdz

lp

��
.

g
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Figure 1. Functions of g�d� at g0k=kp � 4 ( 1 ), 40 ( 2 ) and 120 ( 3 ) cal-
culated taking into account (solid curves) and neglecting (dashed curves)
the imaginary part of the Raman gain.
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Figure 2. Amplitude gm ( 1 ) and the position dm ( 2 ) of the maximum of
function (12) and g�0� ( 3 ) as functions of g0k=kp.
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If in this case the condition gdMdz=lp 4 1 is fulélled (for
example, more than four) in the region z < L, the
exponential in the derived relation can be neglected and
expression (4) is reduced to the form

Pd�L� � �Pd�0� � pZw 2
0 =Md� exp�Dd�L��, (15)

where Dd(L) is deéned by expression (11).
Thus, the spectrum of the ampliéed radiation is deter-

mined by the spectrum of the gain Dd(L), achieves the
maximum at the maximal gain Ddm and in the case Ddm 4 1
has a Gaussian shape of width in D

ÿ1=2
dm times narrower than

the spectrum of spontaneous scattering [6].

2.3 Pumping by a Bessel beam

Let pump radiation represent a Bessel beam obtained from
a Gaussian beam with the help of an axicon. If the
Gaussian beam waist is on the axicon, the Bessel beam éeld
is determined by the relations

jFp�z; r�j2 � J 2
0 �qpr�, Sp�z� �

Pp

pw 2
0

f �z�, (16)

f �z� � 2p�npl1 � z� q
2
p

lp
exp

�
ÿ �npl1 � z�2

�
qp
lp

�2 �
, (17)

where J0(qpr) is the zero-order Bessel function; qp � kp�
w0yp; yp is the angle of inclination of the Bessel beam to the
z axis in the scattering medium; l1 is the distance between
the axicon and the scattering medium; Pp and w0 are the
power and radius of the Gaussian beam at its entrance to
the axicon; the coordinate z is measured from the input
surface of the scattering medium. The éeld described by
(16) exists in the region determined by the condition
0 < r < rz, where

rz�
yp�npl1 � z�=w0; npl1 � z < r0=�2yp�;
r0=w0ÿyp�npl1 � z�=w0; r0=�2yp�< npl1� z< r0=yp

(

is the Bessel beam radius in the cross section z; r0 is the
aperture radius on the axicon. If r0 > w0, it should be
replaced in the presented inequalities by w0. At points
zm � w0(yp

���
2
p

)ÿ1ÿ npl1, the function f (z) has a maximum
equal to 0:86pqp. At points rN � (p=qp)(N� 3=4) at
N � 0, 1, 2, . . . , the function jFp(z, r)j2 is equal to zero.
The parameter N determines the ring number of the Bessel
beam and r0 � 3p=(4qp) ë the radius of its central spot to
the base. The éeld Sp(z)J

2
0 (qpr) has the maximum number

of rings Nm � qp=pÿ 3=4 in the cross section z � w0=(2yp)
ÿ npl1.

It is known that the ampliéed Stokes radiation pumped
by a Bessel beam consists of the conical and (or) axial
components. Under the conditions when the depletion of the
pump due to the Raman can be neglected, these components
can be treated as independent modes. The transverse éeld
structure of a conical mode can be described by the Bessel
function: F (z, r) � J0(qr), where q � kw0y and y is the
angle of inclination of scattered radiation to the z axis. For
this mode the overlap integral has the form

Md�z� �
� rz

0

J 2
0 �qpr�J 2

0 �qr�rdr
�� rz

0

J 2
0 �qr�rdr. (18)

Analysis shows [9] that expression (18), if considered as a
function of the parameter q, has a maximum at the point
q � qp, and, hence, y � (kp=k)yp. Thus, the spectrum of the
conical components according to relations (4) and (5) is
completely determined by the frequency dependence of the
Raman gain factor G 0d, i.e. has a maximum at the point of
the exact Raman resonance.

We will consider the spectrum of the axial mode of the
Stokes beam in the case of the Bessel pump assuming that
the mode éeld can be described by function (7). In this case,
we obtain from (1) the equation [9]

da
dz
� ÿ i

kw 2
0

a 2 � gd
kpw 2

0

f �z�u�a 0� (19)

for determining the quantity a from (1), where

u�a 0� � 2a 0 2
�1
0

�1ÿ J 2
0 �qpr�� exp

ÿÿ a 0r 2
�
rdr, (20)

and expression (3) for the overlap integral assumes the form

Md�z� � 2a 0
�1
0

J 2
0 �qpr� exp

ÿÿ a 0r 2
�
rdr. (21)

Expressions (20) and (21) are written for the region z in
which the radius rz of the Bessel beam is signiécantly larger
than the radius 1=

�����
a 0
p

of the Stokes beam.
In the region of large a 0 (at a 0 > q 2

p with the error less
than 2%) we can set J 2

0 (qpr) �1ÿ q 2
pr

2=4 in expressions
(20) and (21) and obtain correspondingly u � q 2

p=4, Md �
1ÿ q 2

p=(4a
0),

a 0 � �jdg0q
2
p f �z�k=�8kp��1=2. (22)

The condition of the applicability of this approximation is
determined by the relation g0 f (z) > 8q 2

p taking the form of
a simple inequality g0 > 3qp in the region of the maximum
of the function f (z).

The expression for the Raman gain in this case assumed
the form

Dd�d� � g0gb�d�
� L

0

f �z�dz, (23)

where

gb�d� �
1

1� d 2

�
1ÿ b�1� d 2�1=2
�1� d 2�1=2 � d

�
(24)

is the function determining the gain spectrum. This spec-
trum is governed by one parameter b � �2(kp=k)=g0�1=2 � T,
where T � � L0 �q 2

p f (z)=4�1=2dz=
� L
0 f (z)dz is the parameter

depending on the geometry of the experiment: the scattering
medium thickness L, its distance l1 from the axicon and
radius r0.

The dependence of the parameter b on the geometry of
the experiment (parameters L, l1 and r0) differs signiécantly
for the Bessel and Gaussian pumps; the latter at g0 4 1 is
also described by expressions (22), (23), if every of the
quantities f (z) and q 2

p=4 in them is replaced by a 0p and if to
take into account that after this replacement T � 1 and
b � �2(kp=k)g0�1=2.

The possible values of the parameter T in the case of the
Bessel pump, as a rule, signiécantly exceed a unity. For
example, in the case, when the scattering medium is placed
in the region of the maximum of the function f (z) and its
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thickness L is considerably smaller than the length of the
Bessel beam waist w0=yp (i.e. atL5 kpw

2
0 =qp) we have the

relation T � qp�4f (zm)�ÿ1=2 � 0:54
�����
qp
p

. Under conditions of
a real experiment we have

�����
qp
p � 10ÿ 100, and, hence, the

parameter b in the case of the Bessel pump takes values
which are ten times larger than in the case of the Gaussian
pump of the same power (at the same g0).

The dependences of the position dm and the amplitude
gb(dm) of the maximum of function (24) on the parameter b
are presented in Fig. 3. One can see that with increasing b,
the shift dm of the maximum of the Raman gain rapidly
increases. The amplitude of the maximum of the Raman
gain proportional to g0gb(dm) grows linearly with

���������g0qp
p

in
this case. Because at the éxed pump power the parameter b
in the case of the Bessel pump is signiécantly higher than in
the case of the Gaussian pump, one can easily conclude
from Fig. 3 that the frequency shift of the axial component
of the Stokes beam in the case of the Bessel pump should be
considerably greater than that in the case of the Gaussian
pump.

3. Experiment and discussion of the results

The frequency shift of the Raman gain upon pumping by
Bessel and Gaussian beams was studied experimentally in
the regime of Raman generation (ampliécation of the
Stokes beam from the spontaneous noise level) in barium
nitrate crystals. Crystals of length L � 8 cm were mounted
at an angle to the pump beam axis to prevent the feedback.

Their faces had an AR coating for the pump and Stokes
radiation wavelengths. Scattering occurred at the vibra-
tional frequency of 1047 cmÿ1. The dephasing time of this
vibration was T2 � 25 ps [10], and hence the half-width of
the spontaneous Raman scattering line was
Dv � 1=(2pT2) � 6 GHz. Pumping was performed by
using second harmonic radiation from a passively Q-
switched 532-nm Nd :YAG laser. The laser generated a
close-to-Gaussian beam (M 2 � 1:1) of radius wp � 1:6 mm
with the pulse energy of up to 5 mJ. The laser pulse
duration FWHM tp was 10 ns, i.e. exceeded by several
orders of magnitude the time T2, which made it possible to
consider the scattering process as quasi-steady-state.
Measurements were performed near the Raman threshold
(the conversion eféciency into Stokes radiation did not
exceed 0.1%).

3.1 SRS of a Bessel beam

The optical scheme of the experiment on studying the SRS
pumped by a Bessel beam is presented in Fig. 4. Here the
collimated Gaussian beam is transformed by the axicon
into a quasi-Bessel beam with the angle at the cone vertex
yp � 22 mrad (in air). The barium nitrate crystal over-
lapped the central part of the Bessel beam. Stokes radiation
at the crystal output was spectrally selected with the help of
a glass élter. A part of radiation was directed to the CCD
camera placed in the focal plane of lens L1 in order to
detect its angular structure. The other part was analysed
with the Fabry ë Perot interferometer with a free spectral
region of 15 GHz. The interference pattern was detected
with the second CCD camera in the focal plane of lens L2.

Under the conditions described above, Stokes radiation
was, as a rule, generated in the form of the conical and axial
modes. Figures 5a, b show two realisations when either the
conical or axial mode dominated. Quite frequently both
modes with approximately equal intensities (Fig. 5c) were
observed. The angular radius of the conical mode was
y � 23 mrad, which in agreement with the condition of
the transverse phase matching ypkp � yk. The divergence of
the axial mode was three times lower. The Fabry ë Perot
interference patterns of the Stokes spectrum shown in
Figs 5d ë f represent a system of double rings. The doublet
structure of the spectrum was observed in all detected
realisations. If one of the generation channels (conical or
axial) was blocked, one of the spectral components dis-
appeared. This obviously indicates that the observed
splitting of the spectrum is caused by the frequency differ-

2
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gb

0 0.2 0.4 0.6 0.8 b

0.2

0.4

0.6

0.8

dm

0

0.1

0.2

0.3
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Figure 3. Dependences of the amplitude gb ( 1 ) and the position dm ( 2 )
of the maximum of function (24) on the parameter b.
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CCD camera

L2 FP LD F BN A
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Nd :YAG

L1

Figure 4. Optical scheme of the experiment on measuring the spectral shift between the axial and conical components of Stokes radiation in the case of
the Bessel pump: (Nd :YAG) a single-mode single-frequency Nd :YAG laser (oscillation wavelength is 532 nm); (At) attenuator of laser pulse energy
(half-wave plate and polariser for a wavelength of 532 nm); (A) glass axicon with the angle 38 at the base; (BN) 8-cm-long barium nitrate crystal; (F)
glass élter; (LD) light diffuser; (FP) Fabry ëPerot interferometer; (L1) lens with the focal distance f1 � 14 cm; (L2) lens with the focal distance
f2 � 50 cm.
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ence in conical and axial modes. One can see from Fig. 5
that the generation frequency of the axial mode (external
rings on the interference patters) is shifted to the high-
frequency region with respect to the generation frequency of
the conical mode (internal rings).

The presented interference patterns are the examples of
the narrow-band generation at which the spectral band-
widths of generation of individual modes, approximately
equal to 0.6 GHz, were smaller by more than an order of
magnitude than the linewidth of the spontaneous Raman
scattering. Some realisations had broader spectra (up to
2 GHz). Such êuctuations in the Stokes spectral are natural.
In our experiment the average (with respect to the ensemble
of realisations) width of the generation band of each mode
was remarkably smaller than the linewidth of the sponta-
neous Raman linewidth and the frequency shift between the
axial and conical modes signiécantly exceeded their spectral
widths. The frequency shift measured over 50 realisations
was 3:7� 0:6 GHz, which corresponds to 0:6� 0:1 of the
Raman line HWHM of barium nitrate.

3.2 Comparison of shifts in the case of Gaussian and
Bessel pumps

The optical scheme of the experiment aimed at comparing
the frequency shifts of the Stokes radiation in the case of
the Bessel and Gaussian pumps is presented in Fig. 6. In
this experiment we used two generation channels. Initially,
the identity between channels was established by pumping
both of them by Gaussian beams. In this case, the single-
mode laser beam was preliminary split into two. Then the
beams were focused by lenses L3 and L4 with identical

focal lengths to the centres of the crystals. The Stokes
beams of different channels were combined with each other.
Their spectral structure was analysed interferometrically
with the help of a CCD camera placed in the focal plane of
lens L2. To identify each channel in the interference
pattern, a polarisation duplex was mounted in front of the
camera, whose top and bottom half-planes had mutually
orthogonal transmission axes [11]. In this case, a l=2 plate
was inserted into one of the generation channels, which
rotated the polarisation plane of Stokes radiation of this
channel by the angle � 458.

Then the optical scheme of the experiment was changed
as follows. Lens L3 was replaced by the axicon which
produced the Bessel beam with the angle at the cone vertex
yp � 30 mrad. This beam excited the SRS in the barium
nitrate crystal, which was placed directly behind the axicon.
The excitation conditions corresponded to generation of
only the axial Stokes beam with the transverse intensity
proéle close to super-Gaussian and with the divergence
y � 10 mrad. The generation channel with the Gaussian
pump beam was used as a reference one.

Figure 7 presents typical interference patters obtained
when pumping in both channels was performed by Gaussian
beams. Figures 7a and b correspond to situations when one
of two generation channels is blocked. The polarisation
plane of Stokes radiation in the second generation channel is
rotated by the angle 458 with respect to the transmission
axes of the polarisation duplex. Figure 7c demonstrates
radiation of both channels detected simultaneously. One
can see from the interference patters that the positions of
generation bands of Stokes radiation in different channels

y
�
mrad

ÿ20 0 20

a

y
�
mrad y

�
mrad

ÿ20 0 20

c

ÿ20 0 20

b

20

0

ÿ20

20

0

ÿ20

20

0

ÿ20

y
�
mrad y

�
mrady

�
mrad

ÿ6 0 6

r

f2

�
mrad

r

f2

�
mrad

ÿ6 0 6

r

f2

�
mrad

r

f2

�
mrad

ÿ6 0 6

r

f2

�
mrad

r

f2

�
mrad

6

0

ÿ6

6

0

ÿ6

6

0

ÿ6

d e f

Figure 5. Examples of the far-éeld ransverse structure of Stokes radiation (a ë c) and corresponding Fabry ë Perot interference patterns (d ë f) obtained
in the experiment in the case of the Bessel pump.
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coincide. Analysis of 40 interference patterns showed that
the shift of generation bands in different channels with
respect to each other did not exceed 0.1 of the spontaneous
Raman line HWHM.

Figure 8 presents the examples of interference patterns
obtained with the Bessel pump beam used in one of the

generation channels. The frequencies of the axial Stokes
beam in the case of the Bessel pump (full rings) and Stokes
generation in the case of the Gaussian pump are distinctly
resolvable. Their difference measured in 30 realisations was
3:1� 0:8 GHz, i.e. 0:5� 0:1 of the Raman line HWHM in
barium nitrate.

CCD camera

PD

L2 FP S ¶ l=2 BN

A L3

At

BN L4 At

Nd :YAG

Figure 6. Optical scheme of the experiment on measuring the spectral shift between two generation channels of Stokes radiation: (L3, L4) lenses with
the focal distance f3 � 30 cm; (A) glass axicon with the angle 48 at the base; (l=2) half-wave plate for a wavelength of 532 nm; (PD) polarisation
duplex; other notations are the same as in Fig. 4.
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Figure 7. Examples of Fabry ë Perot interference patterns of Stokes radiation obtained in the experiment upon pumping both generation channels by
Gaussian beams in the case when one of the channels is open (a, b) and when both channels are open (c).
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3.3 Discussion of the results
Thus, it follows from the experimental data that the axial
and conical components of the Raman generation in the
case of the Bessel pump have different frequencies, the
frequency of the axial component being signiécantly shifted
to the high-frequency region with respect to the conical
component and that the frequency shift of the axial
component in the case of the Bessel pump considerably
exceeds the frequency shift of the Raman generation in the
case of the Gaussian pump. This experimental result is in
qualitative agreement with the conclusions of the theory
presented above. Therefore, it is explained by the mani-
festation of the real part of the Raman susceptibility in the

spectra of ampliéed radiation under conditions of the
spatial inhomogeneity of the pump, i.e. under the
conditions when the pump-induced focusing of high-
frequency components of the Stokes beam resulting from
the contribution of the real part of the Raman susceptibility
to the refractive index of the medium, leads to the increase
in the overlap integral of interacting beams and in the
eféciency of the Raman ampliécation.

Unfortunately, the quantitative comparison of the
results of the theory developed in this paper and the
experiment performed are cumbersome. In theoretical
relations the frequency dependence of the Raman gain is
governed by the parameter g0 � kpG0Pp=p proportional to
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Figure 9. Spectra (a, c, e) and far-éeld structures of ampliéed Stokes radiation (b, d, f) calculated for the Bessel pump beams with qp � 414, g0 � 200
(a ë d) and qp � 566, g0 � 200 (e, f) taking into account (a, b) and neglecting (c ë f) the imaginary part of the Raman gain factor (at G 00d � 0).
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the pump beam power Pp and in the case of the Bessel pump
ë also by the parameter qp � kpypw0. In the experiment
g0 � 200, and qp � 414 (at yp � 22 mrad) and 566 (at
yp � 30 mrad). For these g0, the frequency shift dm in
the case of the Gaussian pump should be signiécantly lower
than 0.1. At the same time the measurement error in dm was
� 0:1. As was noted above, the developed theory for the
case of the Bessel pump is applicable under the condition
g0 > 3qp. In the experiment this condition was hardly
fulélled.

At g0 < qp, we failed to construct the analytic solution of
equation (1). Therefore, to increase the reliability of the
results obtained, we analysed the d dependence of the
quantity

W (d) �
�
jE (L, r)j2rdr

��
jE (0, r)j2rdr,

having the sense of the Raman ampliécation eféciency of
the seed éeld E (0, r) in the medium of thickness L. This
was done by solving numerically equation (1) for the Bessel
pump beam, which was determined by expressions (16) and
(17). Other parameters were close to those realised in the
experiment. The intensity of Stokes radiation at the input to
the scattering medium jE (0, r)j2 was given in this case by
the function exp (ÿ r 2=r 2

0 ) with the radius of the transverse
structure equal to the radius r0 of the central core of the
Bessel beam. Figure 9 presents the results of this analysis.
Figure 9a and c show the dependences of W (d) calculated
with and without the allowance for the imaginary part G 00d
of the Raman gain factor, and Figs 9b and d ë angular
structures of ampliéed beams corresponding to them (their
éelds in the far-éeld region). One can see that the frequency
of the conical component coincides with the frequency of
the exact Raman resonance, while the frequency of the axial
component is considerably shifted to the high-frequency
region with respect to it. Figures 9e and f illustrate the
situation when only the axial component is manifested in
the Raman ampliécation.

4. Conclusions

In this paper we present the results of the theoretical and
experimental investigation on the manifestation of the real
part of the Raman susceptibility in the spectra of Stokes
radiation ampliéed from the level of the spontaneous
Raman scattering (Raman generation) upon irradiation of
the scattering medium by the Gaussian or Bessel pump
beams. Relations have been obtained which allow com-
paratively simple estimation of the Raman ampliécation
eféciency and spectral characteristics of the Stokes beam in
different cases. It is shown that the account for the real part
of the Raman susceptibility leads to an increase in the
overlap integral of the Stokes beam and the pump beam
and, as a result, to the increase in the eféciency of the
Raman generation in the range of frequencies higher than
the frequency corresponding to the maximum of the
spontaneous Raman scattering. Due to this, there occur
high-frequency shifts of the Stokes spectrum in the case of
the Gaussian pump and of the axial component of the
Raman generation in the case of the Bessel pump. In the
latter case the shift is signiécantly higher, which is
demonstrated in the experiments on the Raman generation
in barium nitrate crystals. The conical components

appearing in the case of the Bessel pump is generated at
the frequency corresponding to the maximum of the
spontaneous Raman scattering.
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