
Abstract. We describe a new type of spatially periodic
structure (lattice models): a polaritonic crystal formed by a
two-dimensional lattice of trapped two-level atoms interacting
with the electromagnetic éeld in a cavity (or in a one-
dimensional array of tunnelling-coupled microcavities), which
allows polaritons to be fully localised. Using a one-dimen-
sional polaritonic crystal as an example, we analyse condi-
tions for quantum degeneracy of a lower-polariton gas and
those for quantum optical information recording and storage.

Keywords: coherent polaritons, two-dimensional atomic lattice,
quantum optical information.

1. Introduction

This work develops the ideas that S.A. Akhmanov paid
much attention to in the last years of his life. It addresses
the general principles, laid by Akhmanov, behind the
optical information recording and processing using non-
linear imaging in spatially periodic or inhomogeneous
dynamic structures excited by laser radiation in nonlinear
media of various kinds (see, e.g., [1]).

In recent years, great advances have been made in laser
control of macroscopic amounts of ultracold atoms [2]. The
ability to produce an array of macroscopic atomic Bose ë
Einstein condensates (BECs) by cooling and trapping atoms
in one- and two-dimensional optical lattices enables research
into various physical aspects of phase transitions. Strong
atomëphoton coupling has recently been demonstrated for
BEC atoms in a cavity [3]. Basically, the fabrication of
spatially periodic atomic structures conéned in an optical
cavity opens up novel opportunities for gaining insight into
critical phenomena in coupled atomë photon systems [4].
Recent advances in nanotechnology and photonics have
made it possible to create such structures using one-dimen-
sional (1D) arrays of coupled microcavities, so-called
coupled-resonator optical waveguides, containing two- or
three-level atoms [5 ë 7]. A key role in determining the
behaviour of such systems is played by bright- and dark-
state polaritons ë bosonic quasi-particles resulting from a

linear superposition of a photon and macroscopic (coherent)
excitation of a two-level atomic system.

Averchenko et al. [8] considered Bose ëEinstein con-
densation and the Kosterlitz ë Thouless phase transition for
polaritons resulting from the interaction of a quantised light
éeld with an ensemble of two-level atoms in a cavity. Note
that the phase transition in question may take place at
suféciently high (room) temperatures because of the low
polariton effective mass [9]. Kasprzak et al. [10] demon-
strated a macroscopically populated ground state (in-plane
wave number kk) of a 2D gas of exciton polaritons in
semiconductor nanostructures (Cd ëTe) at 5 K. The superê-
uid properties and Josephson dynamics of such polaritons
were studied by Alodjants et al. [11] and observed exper-
imentally by Lai et al. [12]. In addition, as shown by
Alodjants et al. [13] certain conditions enable optical cloning
and optical memory based on the cavity polaritons in
question.

In this paper, we discuss a model of polaritonic crystals,
which can be produced using existing technologies and
procedures for laser control of atoms. A remarkable feature
of such structures is the possibility of polariton localisation,
an analogue of light localisation in photonic crystals in
nonlinear optics. This effect markedly reduces the group
velocity of an optical wave packet propagating through the
medium. At the same time, polaritonic crystals can be used
to observe BECs of lower-branch polaritons.

2. Models of polaritonic crystals:
governing equations

Consider two models of polaritonic crystals. In model 1, an
ensemble of ultracold two-level atoms is conéned in a deep
optical lattice (Fig. 1a). This can be done by a number of
experimental means, in particular by using a two-compo-
nent (spinor) condensate of atoms with levels jai and jbi
[14, 15]. In this case, a 2D periodic structure of elliptical
(needle-like) atomic condensates can be produced using
interference of two standing waves (not shown in Fig. 1a)
along the x and y axes, respectively. The atomic ensembles
will then interact with the light éeld in the cavity along the z
axis in the strong coupling regime (see Eqn (2) below).

Model 2 considers a lattice of M tunnelling-coupled
microcavities in the xy plane (Fig. 1b). Each cavity contains
two-level atoms interacting with the electromagnetic éeld
along the z axis. The polaritonic crystals differ fundamen-
tally from coupled-resonator optical waveguides (see, e.g.,
[6]) in that they offer the possibility of photon tunnelling in
the xy plane, normal to the main axis of the cavities.
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It can be shown that, in the limit of so-called strong
coupling between neighbouring cells (cavities in model 2)
containing atoms, the two models schematically illustrated
in Fig. 1 give the same physical results. In this approx-
imation, an atomic system can be described as a system of
bosons (bosonic modes) that evolve only in time: its spatial
degrees of freedom are frozen. This approximation is valid
when the number of atoms in each cell, N, is relatively small
(N4 104) [14]. The height of the potential barrier between
the cells of the optical lattice far exceeds the chemical
potential of each atomic ensemble [16]. Otherwise, it is
necessary to take into account the spatial conéguration of
the atomic system, which leads to the formation of spatially
localised atomic structures [17].

Here, we restrict ourselves to the strong coupling
approximation, completely neglecting interatomic interac-
tions and taking the atomic ensembles in the cells to be an
ideal gas. It will become clear from the analysis below that
the polariton model for atom photon coupling is then quite
correct.

For deéniteness, consider model 1 of polaritonic crys-
tals. The strong atom photon coupling condition is thought
to be fulélled: the coupling parameter k in each cell of the
lattice is substantially greater than the inverse of the
coherence time, tcoh, of the atomë photon system:

k4
1

tcoh
. (1)

The total Hamiltonian of the system is

H � Hat �Hint �Hph, (2)

where

Hat �
X
j�a;b

�
F�j

�
ÿ �h 2D
2Mat

� V
� j�
ext

�
Fj d

3r,

Hint � �hk
�
�C�F�a Fb � F�b FaC�d3r, (3)

Hph �
�
C�
�
ÿ �h 2D?
2Mph

� Vph

�
Cd2r.

Here, Hat represents the ensemble of noninteracting two-
level atoms (ideal gas) in the trap; Hint represents the
atomëphoton interaction in the cavity in the rotating wave
approximation; Hph represents the light éeld in the cavity in
the paraxial approximation; Fj (F

�
j ) are the boson annihi-

lation (creation) operators for the levels j � a and b; Mat is
the mass of a free atom; D is the Laplace operator; V � j�ext is
the total atom trapping potential, which comprises the
harmonic potential of the magneto-optical trap and the
optical lattice potential along the x and y axes [18]; C (C�)
is the annihilation (creation) operator for a éeld propagat-
ing along the z axis of the cavity, Mph � �hkz=c is the photon
effective mass in the cavity; kz is the z-axis projection of the
optical éeld wave vector; Vph is the photon trapping
potential in the atomëphoton coupling region, which can
be created by special gradient-index lenses or ébres [8]; and
D? � q 2=qx 2 � q 2=qy 2.

For an array ofM cells in an optical lattice, the Fj and C
operators can be represented in the form

Fa �
XM
m�1

am�t�j a
m�r�, Fb �

XM
m�1

bm�t�j b
m�r�,

(4)

C�r; t� �
XM
m�1

cm�t�xm�r�,

where j a;b
m (r) and xm(r) are the real-valued Wannier

functions describing the spatial distributions of the atoms
and éeld, respectively, in the mth cell (m � 1, . . . ,M). In the
limit of strong coupling between neighbouring cells, the
j a;b
m functions satisfy the relations [16, 17]� ��j a;b

m

��2d3r � 1,

(5)�
j a;b
m j a;b

m�1d
3r ' 0.

Analogous relations are valid for the xm(r) functions. The
am(t) and bm(t) operators characterise the dynamic behav-
iour of the two components (two modes) of the atomic
ensemble at the lower and upper levels, respectively, and the
cm(t) operator describes the time evolution of the cavity
éeld in the mth cell of the lattice.

Substituting (4) into (3) we obtain

Hat � �h
XM
m�1

�
o a

m ata
�
m am � o b

m atb
�
m bm ÿ

ba
2
�a�m amÿ1

� a�m am�1 � h:c:� ÿ bb
2
�b�m bmÿ1 � h:c:��,

Hint � �h
XM
m�1

gm�c�m a�m bm � b�m amcm�, (6)
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Figure 1. Schematic representation of the two models for polaritonic
crystals: (a) trapped ensembles of ultracold atoms in a cavity interact
with a quantised light éeld, whose distribution is represented by grey
circles; (b) polaritonic crystal formed by an array of microcavities
containing macroscopic ensembles of two-level atoms.
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Hph � �h
XM
m�1

�
om phc

�
mcm ÿ

a
2
�c�mcmÿ1

�c�mcm�1 � h:c:��,
where the coupling coefécients ba; b and a characterise atom
(photon) tunnelling between neighbouring cells and are
determined by the overlap integrals of the j a;b

m (r) and xm(r)
functions with their derivatives, respectively. The quantities
o a;b

m at and om ph are deéned in an analogous way [16, 17].
We take all the atom photon coupling coefécients to be the
same in all the cells: g � g1 � g2 � . . . � gM.

Let us turn to the momentum (k-space) representation.
Given that polaritonic crystals have a periodic structure, the
cm, am and bm operators can be represented in the form

am �
1�����
M
p

X
k

ak exp�ikn�, bm �
1�����
M
p

X
k

bk exp�ikn�,

cm �
1�����
M
p

X
k

ck exp�ikn�,
(7)

where n is a lattice vector.
For simplicity, in what follows we consider only a 1D

polaritonic crystal, for which kn � mkxl, where kx is the x-
axis projection of the optical éeld wave vector and l is the
lattice constant. Substituting (7) into (6), we obtain the k-
space Hamiltonian

H � �h
X
k

�
oph�k�c�k ck � oat�k�

1

2
�b�k bk ÿ a�k ak�

� g�����
M
p

X
q

�c�k a�q bk�q � b�k�qaqck�
�
, (8)

Here oph(k) and oat(k) determine the dispersion relations
for the photonic and atomic systems of the polaritonic
crystal, respectively, and are given by

oph�k� � om ph ÿ 2a cos�kl�, (9)

oat�k� � o b
m at ÿ o a

m at ÿ 2b cos�kl�,
where b � bb ÿ ba is the effective coupling coefécient of the
atomic lattice.

3. Quantum degeneracy of a 1D polariton gas

In the strong coupling regime, expression (8) is a many-
particle Hamiltonian in the momentum representation,
which describes a 1D periodic structure and can be
analysed in terms of dark- and bright-state polaritons.
We will consider it in the low atomic excitation density
limit, where all the atoms predominantly occupy the lower
level jai [11]. The boson annihilation (fk) and creation (f�k )
operators for collective excitations in a two-level atomic
system can then be deéned in the k-space representation:

fk �
X
q

a�q bk�q���������
MN
p , f�k �

X
q

b�k�qaq���������
MN
p . (10)

Using (10), Hamiltonian (8) of the system can be repre-
sented in a more convenient form:

H � �h
X
k

�
oph�k�c�k ck � oat�k�f�k fk

� g�c�k fk � f�k ck�
�
, (11)

where we denote again g instead of g
����
N
p

. Hamiltonian (11)
can be diagonalised using the Bogoliubov transformations

X1k � m1ck ÿ m2fk, X2k � m1fk � m2ck, (12)

where

m 2
1;2 �

1

2

�
1� doÿ

do 2 � 4g 2
�1=2 � (13)

are Hopéeld coefécients satisfying the normalisation
condition m 2

1 � m 2
2 � 1; do � oat(k)ÿoph(k)�Dÿ 2(bÿ a)

� cos (kl) is the frequency detuning, dependent on quasi-
momentum k; and D � ob

mat ÿ o a
m at ÿ omph is the detuning

at kl � p=2� pp with p � 0, 1, . . . .
The X1k and X2k operators represent two types of

elementary excitations in an atomic system ë upper and
low branch polaritons, with characteristic frequencies
O1;2(k); that determine the dispersion relations and band
structure of the polaritonic crystal. The frequencies are
given by the expression

O1;2�k� �
1

2

�
oat�k� � oph�k� � �do 2 � 4g 2�1=2�. (14)

Using (14), one can énd the mass of the upper (subscript
1) and low (subscript 2) branch polaritons:

m1;2 �
2matmph�~D 2 � 4g 2�1=2

�mat �mph��~D 2 � 4g 2�1=2 � �mat ÿmph�~D
, (15)

where ~D � Dÿ 2(bÿ a) is an effective detuning, which
includes the characteristic frequencies a and b, and mat �
�h=(2bl 2) and mph � �h=(2al 2) are the effective masses of the
atoms and photons in the lattice, respectively.

Figure 2 shows the upper and low branch polariton
dispersion, O1;2(k), in the érst Brillouin zone. The band gap
is determined by the Rabi splitting: (do 2 � 4g 2)1=2. In the
centre of the zone (near k � 0), both dispersion branches are
parabolic. At resonance (do � 0), the splitting is governed
by the atomëphonon coupling coefécient 2g (see also the
inset in Fig. 2).

The minimum at k � 0 in the lower polariton branch in
Fig. 2 is of fundamental importance. At small magnitudes of
the quasi-momentum, kl5 1, we have from (14)

O1;2�k� �
�hk 2

2m1;2

, (16)

which corresponds to the dispersion law of free particles
(polaritons) at the minimum in O2(k) in Fig. 2. The
statistical properties of the polariton gas are then governed
by its dimensionality (see, e.g., [19]). In particular, in the
case of resonance coupling the low branch polariton mass
can be found from (15):

m2 �
2mph

1�mph=mat

. (17)
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For mph=mat 5 1 (a4 b), the polariton mass is suféciently
low. For example, in the case of interaction of two-level
sodium atoms with an electromagnetic éeld in a cavity at a
level separation wavelength of 589 nm, the photon effective
mass in the cavity is mph ' 0:5� 10ÿ35 kg [12]. The
polariton mass estimated by Eqn (17) is then m2 �
10ÿ35 kg. Therefore, the quantum degeneracy temperature
of a 1D polariton gas, Td � 2p�h 2n 2

1 =(m2kB), may be rather
high (� 300 K at a polariton density n1 ' 104 cmÿ1). It
should, however, be kept in mind that the spatially periodic
structure of the polaritonic crystal in Fig. 1 has a long
coherence time only at suféciently low temperatures, where
a relatively large number of atoms can be trapped. The
polariton gas can then be considered a highly degenerate
quantum system, meeting the condition n1LT 4 1, where
LT � �2p�h 2=(m2kBT )�1=2 is the de Broglie wavelength. In
this limit, the formation of coherent polaritons in a
polaritonic crystal is of interest for distributed recording
and storage of quantum optical information [20, 21].

4. Group velocity of polaritons

Consider the group velocities v1;2 � qO1;2(k)=qk of polar-
itons in a lattice. From (14) we obtain

v1;2 �
�h sin�kl�
2lmph

�
1�mph

mat

�
�
1ÿmph

mat

�
do

�do 2 � 4g 2�1=2
�
. (18)

It follows from (18) that the group velocities v1;2 of
polaritons are low at small k. In particular, in the kl5 1
limit the low branch polariton has a linear v2(k):
v2 ' �hk=m2. At the same time, v1;2 � 0 at the boundaries
of the Brillouin zone, i.e., at kl � pp, p � 0, � 1, . . . . In this
case, the structure of the polaritonic crystal allows polar-
itons to be fully localised within this zone.

The ability to reduce the group velocity of polaritons can
be used to observe `slow' light, which is of high current
interest for quantum optical information recording and
storage. In our case, the group velocity of the optical
éeld can be varied by changing the atom éeld detuning

D (or ~D).
The possibility of controlling low branch polaritons with

small magnitudes of the quasi-momentum, k, is exempliéed
in Fig. 3. Control is performed near the bottom of the well
in Fig. 2, where the parabolic dispersion law (16) is valid. In
this limit, polaritons can be assigned a wave function,
C(x, t), which carries quantum information and satisées
the Schr�odinger equation:�

i�h
q
qt
� �h 2

2m2

q 2

qx 2

�
C�x; t� � 0. (19)

The solution to Eqn (19) is well known in quantum
physics (see, e.g., [13, 22]). Polaritons are a coherent wave
packet that broadens with time and propagates through the
polaritonic crystal (Fig. 1b). The characteristic wave packet
broadening time, tb � m2 f

2=�h, depends on both the polar-
iton mass, m2, and the x-axis width of the packet, f, at the
initial instant, that is, on the incident beam diameter.

Quantum optical information recording and storage
using a polaritonic crystal is expected to have a three-
step physical algorithm based on the ability to control the
group velocity of a polariton wave packet in the medium by
varying the ~D detuning (Fig. 3a).

For quantum information to be recorded in step I, the ~D
detuning must fulél the condition ~D4 2jgj. The correspond-
ing time interval in Fig. 3a is 04t4 0:25. The low branch
polariton is here photon-like, i.e., X2 k ' ÿck (m1 ' 0,
m2 ' ÿ1), and its effective mass m2 ' mph [see Eqs (12),
(13) and (15)]. The wave packet then propagates at a
velocity given by

124000
ÿp 0 p

125000

126000

O1;2=�2g�

kl

ÿp 0 p

O1;2=�2g�

kl

125000.001

125000.000

124999.999

Figure 2. Polariton dispersion branches O1 (dashed curve) and O2 (solid
curve) as functions of reduced quasi-momentum (Bloch vector) in the
érst Brillouin zone. The characteristic frequency of the atomic transition
is �ob

mat ÿ o a
mat�=2p � 500 THz, D � 0, the atomëphoton coupling

frequency is g�2p�ÿ1 � 2 GHz, the photon (atom) effective mass in the
lattice is mph � 5� 10ÿ36 kg (mat � 38:5� 10ÿ27 kg), and the lattice
constant is l � 2:24 mm. The inset shows the frequency range of Rabi
splitting.
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Figure 3. Propagation of a 1D polariton wave packet through a
polaritonic crystal: (a) D � ~D=�2jgj� as a function of normalised time
t � �ht=�mph f

2� and (b) wave packet envelope (probability density) S �
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at kx f � 10; optical information (I) recording, (II) storage and (III)
reading (restoration) steps.
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v2 �
�hk

mph

� 2al 2k, (20)

and displaces along the x axis from the point x � 0 to
x � v2t (Fig. 3b). For example, at a quasi-momentum k �
105 mÿ1 the estimated polariton group velocity is v2 �
2� 106 m sÿ1.

To convert the optical information to coherent excita-
tions of the medium in step II, the detuning should be made
negative: ~D5 ÿ 2jgj. In this limit, the low branch polariton
becomes atom-like, so that X2 k ' fk (m1 ' 1, m2 ' 0)
(Fig. 3). At mph=mat � b=a5 g 2=D 2, its group velocity is [7]

v2 �
�hkg 2

mph
~D 2
� 2al 2kg 2

~D 2
. (21)

When the more stringent condition g 2=~D 2 5mphm
ÿ1
at 5 1 is

fulélled, the lower-polariton group velocity is

v2 �
�hk

mat

� 2bl 2k, (22)

which corresponds to the velocity of the atoms in the
lattice. In particular, for sodium atoms with an effective
mass mat � 38:5� 10ÿ27 kg the group velocity of such
polaritons at the above wave vector is v2�2:6� 10ÿ4 m sÿ1

[21].
In effect, Eqn (22) determines the lower limit of the

velocity of an optical wave packet in the structure of a
polaritonic crystal at a given quasi-momentum. In this limit,
all the information carried by a light beam is recorded and
stored via atomic excitations. At an incident beam diameter
f ' 10ÿ4 m, the estimated characteristic broadening time is
tb � mat f

2=�h � 3:7 s. This time scale (the interval 0:254t
4 0:75 in Fig. 3a) determines the longest information
storage time in a quantum gas of two-level sodium atoms.
More precisely, a necessary condition for such information
recording is tstor 5 tb (where tstor is the information storage
time in the atomic system), which implies that the wave
packet retains its shape during the whole period of quantum
state storage.

To restore (read) optical information at the output of the
medium after time tstor (step III), the polaritons must be
again made photon-like by switching the ~D detuning in the
reverse direction. In Fig. 3a, the characteristic reverse
switching time of the wave packet, tretr, is determined by
the time interval 0:754t4 0:8. At the output (t � 1), we
again have an optical wave packet, which is displaced along
the x axis in a plane normal to the cavity axis.

In this work, we do not assess the quality (édelity) of
information storage. Alodjants et al. [13] estimated the
information storage édelity taking into account only
changes in wave packet shape, but this is generally
insufécient. It is, in addition, necessary to analyse trans-
formations of the quantum state of the optical éeld with
consideration for the structure of the polaritonic crystal and
its decoherence (see, e.g., [23]). Analysis of this problem is of
interest on its own and is beyond the scope of this paper. We
note only that, under real experimental conditions, the
information recording, storage and reading time is limited
by the decoherence time of the polaritonic crystal. It is
therefore quite reasonable to use a condensate of atoms that
have a suféciently long macroscopic coherence time ë tens of
microseconds according to experimental data [24].

5. Conclusions

We examined a lattice model of coherent polaritons in a
spatially periodic structure a polaritonic crystal formed by
a lattice of ensembles of two-level atoms effectively
interacting with the electromagnetic éeld in a cavity (or
in a 2D lattice of cavities) in the strong coupling regime.
Our results demonstrate that the structure of polaritonic
crystals allows the low branch polariton to be fully
localised, which can be used, érst, to achieve quantum
degeneracy of the polariton gas and, second, to substan-
tially slow down light pulses in such media. The coherence
properties of an ensemble of polaritons were discussed from
the viewpoint of spatially distributed quantum recording,
storage and retrieving of information related to a prop-
agating optical wave packet.
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