
Abstract. The nonstationary double resonance is numerically
simulated in the K-scheme of degenerate energy levels with
the quantum number J of the total angular momentum equal
to 0, 2, and 1. The analysis is performed in the slowly varying
envelope approximation taking into account the inhomoge-
neous broadening of quantum transition lines. In the case of a
high-power input low-frequency pulse of long duration with a
êat top switched on before the application of a comparatively
weak and short input high-frequency pulse and switched off
after the end of the latter, a speciéc pulsed structure, the
so-called double adiabaton, can appear. It differs from an
adiabaton known from the theory of electromagnetically
induced transparency by the decomposition of the high-fre-
quency pulse into two pulses with oppositely directed elliptic
polarisations.

Keywords: degeneracy of energy levels, elliptic polarisation of
radiation, inhomogeneous broadening, adiabaton.

1. Introduction

A double resonance in laser éelds is the resonance inter-
action of two laser radiations with two quantum transitions
sharing an energy level. The study of a nonstationary
double resonance in the éelds of short pulses has revealed a
number of pulsed structures such as simultons [1, 2], Raman
solitons [3], and pulses with complete energy transfer from
one pulse to another [4]. Extensive investigations of the
phenomenon of electromagnetically induced transparency
(EIT), which is a particular case of the double resonance,
included the description of pulsed structures such as con-
sistent pulses [5], adiabatons [6], super-slow pulses [7], and
dark polaritons [8]. The use of such pulsed structures opens
up new possibilities for the development of a quantum memory
[9 ë 11] and controlling laser radiation parameters [12 ë 14].

Theoretical studies of the nonstationary double reso-
nance were based, as a rule, on the model of quantum
transitions involving nondegenerate energy levels. Such an
approach excludes effects related to a change in the polar-

isation state of pulses during their propagation. The non-
stationary double resonance on degenerate quantum tran-
sitions was studied in papers [15, 16]. By using the method of
inverse scattering problem, the authors of these papers
found solutions of the simulton type for the system of
equations describing this process.

The aim of our paper is to simulate numerically effects
appearing in the nonstationary double resonance on degen-
erate energy levels taking into account a possible change
in the polarisation states of interacting radiations. Unlike
studies [15, 16], we take into account the inhomogeneous
broadening of quantum transition lines and the inequality of
their oscillator strengths at which the system of evolution
equations cannot be integrated by the method of inverse
scattering problem [15]. It is assumed that energy levels are
characterised in the order of their increasing energy by the
quantum numbers J � 0, 2, 1 of the total angular momen-
tum operator, the upper level being shared by two resonantly
excited quantum transitions (the L interaction scheme).
Irreversible relaxation processes are neglected. It is assumed
that a high-power low-frequency input radiation pulse of
long duration with a êat top is switched on before the
application of a comparatively weak and short high-fre-
quency input pulse and is switched off after the end of the
latter. Simulations are performed for the L-scheme of energy
levels of the 202Pb isotope, in which EIT was observed for
circularly polarised laser éelds [17]. This L-scheme was
chosen for the theoretical analysis due to its simplicity and
the possibility of experimental veriécation of the obtained
results. This study is a continuation of investigations [18] in
which the input low-frequency radiation was weaker than
the input high-frequency radiation.

2. Formulation of the boundary-value problem

The three-level L-scheme, consisting of the nondegenerate
(J � 0) lower, éve-fold degenerate (J � 2) middle, and triply
degenerate (J � 1) upper levels, is formed, for example,
by the 6p2 3P0, 6p2 3P2, and 6p7s 3P o

1 levels of the 208Pb
isotope. Let M be the quantum number of the operator of
the projection of the total angular momentum on the z axis,
and fk (k � 1, 2, :::, 9) be the orthonormalised set of the
common eigenfunctions of the Hamiltonian and operators
of the total angular momentum and its projection on the z
axis for an isolated atom, which correspond to the lower
(k � 1, M � 0), upper (k � 2, 3,4, M � ÿ1, 0, 1, respectively)
and middle (k � 5, 6, :::, 9, M � ÿ2,ÿ1, 0, 1, 2, respectively)
levels. Let D1 and D2 be the reduced electric dipole moments
for the J � 0! J � 1 and J � 2! J � 1 transitions, respec-
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tively, and o1 and o2 be the frequencies of these transitions
for an atom at rest (o1 > o2). By assuming that the reson-
ance medium is a rareéed gas, we introduce the notation
T1 � 2=D1, where D1 is the width (at the eÿ1 height level) of
the Doppler density distribution of transition frequencies o01.

We represent the electric éeld of two laser pulses prop-
agating along the z axis with carrier frequencies o1 and o2

in the form

E �
X2
l�1

ml�iExl cos�oltÿ klz� dxl�

�jEyl cos�oltÿ klz� dyl��, (1)

where ml � h
������������
2l� 1
p

=(jDljT1); i and j are the unit vectors of
the x and y axes; Exl, Eyl, dxl, dyl are functions of z and t;
and kl � o1=c. Because o1 > o2, radiation at frequency o1

is the high-frequency radiation, while radiation at frequency
o2 is the low-frequency radiation.

The wave function of an atom can be written in the form

C � �c1f1 �
�X4

k�2
�ckfk

�
exp�ÿix1�

�
�X9

k�5
�ckfk

�
exp
�ÿ i�x1 ÿ x2�

�
; (2)

where xl � ol tÿ klz. Let us introduce variables fl and gl
and quantities ci:

fl �
�
Exl exp�idxl� ÿ iEyl exp�idyl�

�
=
���
2
p

,

gl �
�
Exl exp�ÿidxl� ÿ iEyl exp�ÿidyl�

�
=
���
2
p

,

c1 � ÿ2�c1 argD1; c2 � �c2; c4 � �c4; c5 � 2�c5 argD2,

c7 �
ÿ
2=

���
6
p
��c7 argD2; c9 � 2�c9 argD2:

Let us deéne the normalised independent variables s and
w as

s � z=z0; w � �tÿ z=c�=T1; (3)

where z0 � 3hc=(2pN jD1j2T1o1) and N is the concentration
of atoms. By describing the evolution of the éeld and atoms
with the help of Maxwell and Schr�odinger equations, respec-
tively, we obtain, in the slowly varying amplitude approx-
imation, the system of equations

q f1
q s
� i���

p
p
� �1
ÿ1

c1c
�
2 exp�ÿe21�de1,

q f2
q s
� ÿ i���

p
p x

� �1
ÿ1
�c�4c9 � c�2c7� exp�ÿe21�de1,

q g1
q s
� i���

p
p
� �1
ÿ1

c�1c4 exp�ÿe21�de1,

q g2
q s
� ÿ i���

p
p x

� �1
ÿ1
�c2c�5 � c4c

�
7� exp�ÿe21�de1,

q c1
qw
� ÿ i� f1c2 ÿ g�1c4�,

(4)

q c2
qw
� ie1c2 � ÿ

i

4
� f �1 c1 � g2c5 ÿ f �2 c7�,

q c4
qw
� ie1c4 �

i

4
�g1c1 ÿ g2c7 � f �2 c9�,

q c5
qw
� ie1�1ÿ b�c5 � ÿ ig�2c2,

q c7
qw
� ie1�1ÿ b�c7 �

i

6
� f2c2 ÿ g�2c4�,

q c9
qw
� ie1�1ÿ b�c9 � i f2c4.

Here,

e1 � T1�o01 ÿ o1�; b � o2

o1

; x � 3

5

o2jD2j2
o1jD1j2

.

The amplitudes �c3, �c6, and �c8 do not enter into system
(4). Their evolution is determined by the closed system of
three differential equations, which for the initial conditions
�c3 � �c6 � �c8 � 0, has the trivial solution �c3 � �c6 � �c8 � 0
for all s and w. Integrals in the right-hand sides of the érst
four equations of system (4) are introduced to take into
account the Doppler broadening by averaging the dipole
moments of individual atoms over the parameter e1, which is
uniquely related to the thermal velocity of each atom directed
along the z axis. For the chosen transitions of the 208Pb
isotope, according to [19], b � 0:7 and x � 2:11.

The use of the plane wave approximation in our paper is
justiéed by the fact that in most experiments on the non-
stationary double resonance the laser beams of compara-
tively low intensity with rather large cross sections are
employed. For example, it is in this approximation that all
the main results of the EIT theory were obtained [20]. The
slowly varying amplitude approximation assumes the use of
long enough laser pulses so that the values of Exl, Eyl, dxl,
dyl, and �ck weakly change during the light oscillation cycle and
over the light wavelength [21, 22]. We took all these factors
into account in our dimensional estimates in Section 4.

Let us analyse the solutions of system (4) in terms of
parameters al, al, and gl of the polarisation ellipses (PEs) of
high-frequency (l � 1) and low-frequency (l � 2) radiations.
Here, al is the major semiaxis of the PE measured in the
units of ml; al is its inclination angle to the x axis; gl is the
compression parameter; and al 5 0, 04al < p, ÿ14gl 4 1
[23]. The parameter jglj in the ratio of the minor PE axis to
its major axis, and the condition 0 < gl < 1 (ÿ1 < gl < 0)
corresponds to the right-hand (left-hand) elliptic polarisa-
tion, while gl � 0 corresponds to linearly polarised radiation.
By specifying al, al, gl and one of the phases, for example dxl,
we can uniquely determine the values of fl and gl. The
parameters of the PE are generally the functions of s and w,
which vary slowly over the temporal and spatial periods of
the carrier quasi-harmonic.

For jglj � 1 (circular polarisation), the angle al is not
deéned. The unavoidable small errors in the calculation of gl
for jglj � 1 lead to considerable errors in the determination
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of al. To avoid these errors, we ascribed to al the value
outside the interval 04al < p, namely, assuming that al �
ÿ0:1 when jglj > 0:99, i.e. when the PE transforms virtually
to a circle. Therefore, the appearance of the negative value
of al in the dependences means the uncertainty of the angle
al at the instant when radiation is circularly polarised. If
polarisation was elliptic before this moment, the angle al
changes jump-wise from a value lying in the interval
04al < p to al � ÿ0:1. The jump-wise change of al from
al � ÿ0:1 to 04al < p occurs when circular polarisation
transforms to circular polarisation. If the rotating major
axis of the PE coincides with the x axis and continues its
rotation in the same direction, the angle al experiences a
jump by �p. The sign of the jump depends on the rotation
direction.

The initial conditions (w � 0) for system (4) are speciéed
in the form

c1=2 � 1; c2 � c4 � c5 � c7 � c9 � 0; s5 0;

which corresponds to the state in which all the atoms
occupy the lower energy level at the initial instant of time.
The boundary conditions (s � 0) are

al � al 0, gl � gl 0, dxl � 0, al � al 0�w�, w5 0, (5)

where l � 1, 2 and al 0 and gl 0 are constants. Equalities (5)
correspond to input laser pulses with a éxed orientation of
the major axis and constant eccentricity of the PE, whereas
functions al 0(w) determine the time evolution of the major
semiaxis of this ellipse for high-frequency (l � 1) and low-
frequency (l � 2) pulses at the input to the resonance medium.

As additional radiation parameters, we use below the
êuence Il of high-frequency (l � 1) and low-frequency (l � 2)
pulses measured in the units of cm 2

1 =(8p) and their energy Wl

per unit cross section measured in the units of cm 2
1T1=(8p).

Below, for brevity the quantity Wl is simply called energy.
According to the theory of self-induced transparency

(SIT) on nondegenerate levels, a bell-shaped pulse decays
in a medium if its `area' satisées the condition Y1 < p [24].
In the case of SIT on the degenerate J � 0$ J � 1 transi-
tion [25], this condition is valid when the area of the input
bell-shaped elliptically polarised pulse is deéned by the
expression

Y1 �
� �1
ÿ1

a10�w�
��������������
1� g 210

q
dw. (6)

For linearly and circularly polarised radiations, expression (6)
in the case of the bell-shaped dependence a10(w) coincides
with the pulse area in the theory of SIT on a nondegenerate
quantum transition.

3. Results of calculations

3.1. Let us set in (5)

a10 � 0:5; g10 � 0, a10 � 0:8 sech�wÿ 7�,

a20 � ÿ0:1; g20 � ÿ1,

a20 � 2:46
�
tanh

��wÿ 6�=2�� tanh
��ÿw� 54�=2�	.

Here, we have a linearly polarised bell-shaped input high-
frequency radiation pulse, for which Y1 � 0:8p. The input
low-frequency radiation is a left-hand circularly polarised
pulse with a êat top, which is smoothly switched on before
the arrival of the high-frequency pulse and smoothly switched
off after the end of the latter. Such an order in the appli-
cation of input pulses is called the contraintuitive sequence
in the EIT theory [6], high-frequency and low-frequency
radiations being called probe and controlling radiations,
respectively. The low-frequency pulse intensity in the region
of its êat top is in this case 25 times higher than the maxi-
mum intensity of the high-frequency pulse.

The dependences I1(w) and I2(w) are presented in Fig. 1
for different distances s. Because changes of I2 during the
propagation of low-frequency radiation in a medium are
comparatively small and are manifested only in the upper
part of the curve, the dependences for I2 are presented in the
region I2 5 11.

The calculation showed that the high-frequency pulse
decomposes in the medium into two separate pulses [pulses
( 1 ) and ( 2 ) in Figs. 1b ë d]. In this case, the high-frequency
radiation energy weakly decreases during propagation, approx-
imately 1.5 times at a distance of s � 30. Note that if high-
frequency radiation were absent, then, as follows from cal-
culations, the high-frequency pulse energy for Y1 � 0:8p at
this distance would decrease almost by a factor of 800.

The evolution of the PE parameters for the high-fre-
quency pulse at a distance of s � 30 is shown in Fig. 2.
According to the dependence of a1, the high-frequency pulse
decomposes into pulses ( 1 ) and ( 2 ) corresponding to pulses
( 1 ) and ( 2 ) in Fig. 1d. Between these pulses, weak short
closely spaces pulses are located, and pulse ( 2 ) is followed
by another weak and long pulse. (These weak pulses are
unnoticeable at the scale of Fig. 1d.)

In the region of pulse ( 1 ), we have g1 � 1. This means
that after the decomposition of the input low-frequency
pulse into component pulses, which occurs, as follows from
Fig. 1, for s > 7, the érst pulse has the right-hand circular
polarisation. Recall that the input high-frequency pulse is
linearly polarised. The value of g1 in the region of pulse ( 2 )
is close to ë1, as in the region of the third pulse. Therefore,
pulse ( 2 ) and the third pulse have in fact left-hand circular
polarisations. During each weak pulse located between

Figure 1. Evolution of the intensities I1 (thin curves) and I2 (thick curves)
of high-frequency and low-frequency radiations, respectively, for diffe-
rent values of s.
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pulses ( 1 ) and ( 2 ), polarisation changes from the left-hand
circular (g1 � ÿ1) to the left- or right-hand elliptical. The
dependence for a1 shows that this angle increases jump-wise
by p=2 from 0.5 at the input plane and then, also jump-wise,
returns to its value at the instants when the PE transforms to
a circle (g2 � ÿ1). Such a jump means the transformation of
the major axis of the PE to the minor axis during the
passage through the stage of circular polarisation.

We treat the pulsed structure obtained in this calculation
as the complicated shape of an adiabaton in the case of
elliptically polarised input radiations. Because the high-
frequency pulse decomposes into two well separated pulses,
this structure can be called a double adiabaton. The concept
of the adiabaton was proposed in the study of the speciéc
manifestation of EIT in the L-scheme for nondegenerate
energy levels in the case of circular or collinear linearly
polarised radiations. According to [6], the adiabaton is a
pair of high-frequency and low-frequency pulses, appearing
if the intensities of input high-frequency and low-frequency
radiations have the form shown in Fig. 1a. The high-fre-
quency component of the usual adiabaton propagates in a
medium without the energy loss and without changing the
bell-shaped envelope. On the plateau of the low-frequency
component of the adiabaton, a hump is formed, which is
followed by a dip located in the region of the high-frequency
component [6]. The leading and trailing edges of the low-
frequency component of the adiabaton and the hump on
its plateau propagate at the speed of light in vacuum. The
propagation velocities of the high-frequency component and
the dip on the plateau of the low-frequency component are
smaller, and, as the peak value of the high-frequency com-
ponent, they decrease with decreasing the Rabi frequency of
the low-frequency component of the adiabaton.

Returning to current calculations, note that linearly
polarised high-frequency radiation (g10 � 0) incident on the
medium can be represented by a sum of components with
left- and right-hand circular polarisation. Quantum transi-
tions excited by these components are shown in Fig. 3a by the
arrows tilted to the left and right, respectively. The thick
arrows in Fig. 3a indicate quantum transitions excited by high-
power low-frequency radiation with the left-hand circular
polarisation (g20 � ÿ1).

It is reasonable to assume that the evolution of the left-
hand circularly polarised component high-frequency radia-
tion in the medium is determined by EIT in the L-scheme of
levels 1, 7, 4, while the evolution of right-hand circularly
polarised component ë in the L-scheme of levels 1, 5, 2. In

the érst case, an adiabaton with the left-hand circularly
polarised high-frequency and low-frequency components
should appear, while in the second one ë with the right-
hand circularly polarised high-frequency component and
left-hand circularly polarised low-frequency component.

The low-frequency radiation éelds (controlling éelds in
the EIT theory) in these L-schemes are identical. The moduli
p52 and p74 of the electric dipole moments of these transi-
tions satisfy the relation p52 �

���
6
p

p74 [26]. Therefore, the
Rabi frequency of the controlling éeld in the L-scheme of
levels 1, 7, 4 is lower than that in the L-scheme of levels 1, 5, 2.
Because of this, the left-hand circularly polarised high-fre-
quency component of the adiabaton in the L-scheme of
levels 1, 7, 4 has the smaller intensity and smaller prop-
agation velocity than the right-hand circularly polarised high-
frequency component of the adiabaton in the L-scheme of
levels 1, 5, 2. Due to the difference in the velocities, the high-
frequency components of adiabatons appearing in the two
L-schemes are separated. This explains the two-pulse struc-
ture of high-frequency radiation obtained in calculations
(Figs 1b ë d).

Note that both pulses of the high-frequency component
of the adiabaton presented in Figs 1 and 2 decay during
their propagation deep in the resonance medium, whereas
the high-frequency pulse of the classical adiabaton [6] prop-
agates without the energy loss. This is explained by the fact
that the adiabaton theory [6] is constructed assuming that the
oscillator strengths of quantum transitions are identical and
neglecting the inhomogeneous broadening of spectral lines.

3.2. In the case of linearly polarised input high-frequency
and low-frequency pulses, the diagram of transitions has the
form shown in Fig. 3b. The thick arrows correspond now to
the right-hand and left-hand circularly polarised components
of the input low-frequency radiation of the same intensity. It
is obvious that in this case the left-hand and right-hand
circularly polarised components of high-frequency radiation
are under the same conditions, and a double adiabaton
should not appear.

To elucidate how a double adiabaton transforms to a
usual adiabaton described in [6] when the polarisation of the
input low-frequency radiation changes from circular to linear,
we performed additional calculations with the boundary
conditions

a10 � 0:5; g10 � 0, a10 � 0:8 sech�wÿ 7�; a20 � 0:5;

a20 � 2:46
��������������
1� g220

q �
tanh

��wÿ 6�=2�� tanh
��ÿw� 54�=2�	

Figure 2. Evolution of PE parameters for the high-frequency pulse for
s � 30.

Figure 3. Schemes of quantum transitions. The numbers to the left of
horizontal straight lines are the numbers of states, the numbers at the top
or bottom indicate the quantum number M of the corresponding states;
(a) calculations in section 3.1, (b) calculations in section 3.2.
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for g20 � ÿ0:5, ÿ0:25, and 0. The input high-frequency
pulse and the intensity of the input low-frequency pulse in
these calculations are the same as in section 3.1.

Figure 4a presents the dependences W1(s) of the low-
frequency radiation energy for the values of g20 indicated
above and g20 � ÿ1. One can see that as jg20j decreases, the
losses of the high-frequency radiation energy decrease and
become minimal when both radiations are linearly polarised.

Figure 4b presents the intensities of high-frequency radi-
ation pulses at a large distance (s � 30) for g20 � ÿ0:5,
ÿ0:25, and 0 (the case g20 � ÿ1 is shown in Fig. 1d). As jg20j
decreases, the time interval between the pulses of the double
adiabaton decreases, and when g20 � 0, the high-frequency
radiation is almost completely concentrated in one pulse
accompanied by several weak pulses at its trailing edge. Our
calculations showed that in this case the high-frequency
radiation is linearly polarised (g1 � 0) in the same direction
as the low-frequency pulse. Such a high-frequency pulse is
similar to the high-frequency component of the usual adia-
baton on nondegenerate quantum transitions [6].

The evolution of the PE parameters of the high-
frequency radiation pulse at a distance of s � 30 for small
jg20j (g20 � ÿ0:25) is shown in Fig. 5. The leading front of
the érst pulse of the double adiabaton has the right-hand
elliptic polarisation (g20 � 0:62), while polarisation at the
trailing edge of the pulse becomes left-hand elliptic, with
variable g1. Recall that for g20 � ÿ1, the entire érst pulse
of the double adiabaton has the right-hand circular polar-
isation. In the region of the second pulse and low-intensity
pulses, the trailing edge of the high-frequency pulse has
mainly left-hand elliptic polarisation with variable param-
eter g1. At the instants when polarisation becomes circular,
the major axis of the PE transforms to the minor axis (the
angle a2 changes jump-wise by p=2 ).

3.3. Note that if the values of g20 are changed to
opposite, the results of calculations presented in section 3
remain also valid when the sign of g2 is changed.

4. Dimensional estimates

Let us make estimates for the saturated vapour of the 208Pb
isotope at temperature 950 K. In this case T1 � 1:63� 10ÿ10 s.
By using the oscillator strengths for quantum transitions
in the 208Pb isotope [19] and the temperature dependence
of the saturated vapour pressure for lead [27], we obtain
N � 3:4� 1013 cmÿ3 and z0 � 0:03 cm. The quantities z0
and T1 are used as normalisation parameters on passing
from the dimensional distance z and the dimensional time t
to dimensionless variables s and w by expressions (3). Then,
the duration of bell-shaped input pulses, speciéed in our
calculations with the help of hyperbolic cosecant, will be
approximately 0.4 ns. The exact value of the duration of the
input low-frequency pulse with a êat top used in calcula-
tions is obviously insigniécant. The duration of this pulse
should only considerably exceed the duration of the input
high-frequency pulse. Note that the value of z0 strongly
depends on the absolute temperature. Thus, z0 � 0:1 cm
at 900 K and 0.01 cm at 1000 K. The value of T1, on the
contrary, very weakly depends on the absolute temperature:
T1 � 1:68� 10ÿ10 s at 900 K and 1:59� 10ÿ10 at 1000 K.

The dimensional intensities of low-frequency and high-
frequency radiations (in kW cmë2, �I1 and �I2, respectively)
can be estimated from the expression �Il � 1:3Il, l � 1, 2. The
calculation by this expression in section 3.1 gives the maxi-
mum intensity of the input high-frequency radiation equal
to 0.84 kW cmë2 and the intensity of the êat top of the input
low-frequency radiation pulse equal to 20.9 kW cmë2.

By using oscillator strengths for the 208Pb isotope [19],
we can easily estimate the relaxation times of the quantum
transitions under study. The shortest of these times is 10 ns.
Because low-frequency radiation acts on a quantum transi-
tion with initially unpopulated levels, each atom experiences
perturbation only when it is simultaneously excited by low-
frequency and high-frequency pulses. The duration of this
perturbation coincides with that of the low-frequency pulse.
The latter, as noted above, is 0.4 ns, which means that the
inêuence of irreversible relaxation can be neglected.

5. Conclusions

We have shown that if a high-power input low-frequency
pulse with a êat top and a long enough duration is applied
contraintuitively on a weak bell-shaped input high-frequency
pulse of small duration, an adiabaton of a new type can
appear. The high-frequency component of this adiabaton

Figure 4. Dependences of the high-frequency radiation energyW1 on s (a)
and of the high-frequency radiation intensity I1 on w for s � 30 (b).

Figure 5. Evolution of the PE parameters for the high-frequency pulse
for s � 30.
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consists of two circular polarised pulses with electric-éeld
strength vectors rotating in the opposite directions and with
different propagation velocities.

These results, according to calculations, which are omitted
here, remain valid for input high-frequency pulses of dif-
ferent shapes and durations under the condition that their
spectral widths differ no more than 2 ë 3 times from the
spectral width of the resonance quantum transition with a
higher frequency in the L-scheme under study. In this case,
the duration of the input low-frequency pulse with a êat top
should considerably exceed the duration of the input high-
frequency radiation pulse. An increase (decrease) in the
spectral width of the input high-frequency pulse leads to the
increase (decrease) of distances at which the described effects
can be observed.

The calculations preformed in the paper assumed that
the frequency of each input pulse coincided with the central
frequency of the corresponding quantum transition. The
abandonment of this restriction may become the main
direction of further investigations of the nonstationary double
resonance of elliptically polarised pulses on degenerate
quantum transitions.
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