
Abstract. Polariton modes are studied in two-dimensional
traps based on quantum-well heterostructures allowing the
production of a Bose ë Einstein condensate of indirect
excitons. The characteristic equation for the modes is derived
using the boundary conditions on the exciton layer located
inside a resonator formed by such a trap. The spectrum and
the structure of high-Q modes are found analytically and
numerically. It is shown that some of these modes become
unstable at the high exciton density and long polarisation
relaxation time. According to the estimates, this instability
can take place in experiments on the Bose condensation of
dipolar excitons, thus explaining the origin of their coherent
emission.

Keywords: polariton modes, Bose ëEinstein condensation, dipolar
excitons.

1. Introduction

Recently, due to extensive investigations of a Bose ë
Einstein condensation (BEC) in various systems ë atomic,
molecular, excitonic, the problem of interaction of con-
densed bosons with the self-consistent electromagnetic éeld
has become urgent. One of the reasons is that in the case of
the Bose condensation, the homogeneous and inhomoge-
neous spectral broadenings of high-frequency oscillations of
boson polarisation can be strongly suppressed, which
favours the generation of coherent electromagnetic radia-
tion. Of special interest are exciton systems where the
condensation can be achieved at temperatures of the order
of several kelvins, which is much higher than for atomic
and molecular systems [1 ë 6]. In experiments performed
with indirect excitons in two-dimensional traps in single and
double quantum-well heterostructures (see, for example,
[5 ë 19]), the effects indicating the BEC formation were

observed. In particular, exciton luminescence studied in
recent experiments [7, 9, 11, 12, 14, 17 ë 19] exhibited inter-
ference phenomena, which point to the presence of the
spatial coherence of emission of recombining excitons
emerging from the trap surface.

In this paper, we study dipolar excitons, i.e. the coupled
states of an electron and hole in the external dc electric éeld,
and, thus, having a static dipole moment. Their recombi-
nation time `is suppressed' by this éeld down to several
nanoseconds required to thermalise and obtain a rather high
density of the excitons being condensed. Nevertheless, they
can eféciently interact with the optical electromagnetic éeld
if its frequency is close to that of the exciton recombination.
Therefore, in the heterostructures under study, polariton
modes can exist, namely, self-consistent polarisation oscil-
lations of excitons and the electromagnetic éeld. The
problem of existence and excitation of polaritons, including
excitonic polaritons, in different microresonators was
studied by many authors (see, for example, [20, 21]).

In the case under study, a trap accumulating excitons
can also serve as a resonator for the electromagnetic éeld
due to the efécient, including total internal, reêection of the
latter from a highly conducting heterostructure substrate,
surface and side faces of the trap. As a result, certain modes,
like whispering gallery modes, can have a high-Q factor.
Due to the narrow resonance line of the excitons, one or
several such polariton modes can become unstable during
the formation of the condensate, and, hence, will be
eféciently excited and maintained by induced radiation of
new excitons produced by a continuous nonresonance laser
pumping, thus producing the coherence of optical dipole
oscillations and exciton radiation.

Below, we analyse high-Q polariton modes in such
exciton traps taking into account the possible radiative
losses and polarisation relaxation but neglecting the exciton
dispersion (which is of no importance in the polariton
resonance region under study). The corresponding charac-
teristic equation coupling the wave numbers in the
directions parallel and perpendicular to the trap plane is
studied analytically in the general case and numerically for
typical parameters of the experiments [8 ë 12]. It is found
that under certain conditions imposed on the exciton
density, the relaxation rate of exciton polarisation, and
power losses due to radiation from the trap, some modes
become unstable. The peculiarities of lasing and resonance
scattering of laser radiation as well as the relation between
the spectral and polarisation properties of the modes and
the parameters of the Bose condensate of dipolar excitons
will be studied elsewhere.
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The problem under study is related to a number of
experimental papers [6, 14, 15, 17 ë 19] devoted to the inves-
tigation of vertical-cavity surface emitting semiconductor
microseronators formed by two Bragg mirrors between
which, in the maxima of the mode éeld of such a resonator,
quantum wells élled with excitons are located. The param-
eters of the microresonators were specially selected so that
an electromagnetic mode with the frequency coinciding with
the frequency of the exciton transition would exist. In
experiments [6, 14, 15, 18, 19], the heterostructures were
uniform in the direction along the plane of the quantum
wells, and in paper [17], a two-dimensional parabolic trap
for excitons was prepared. In all the experiments, the
authors observed a drastic increase in the radiation intensity
from the structure and the narrowing of its spatial and
frequency spectra, when some pump threshold was
exceeded, as well as interference phenomena in the emission.
In papers [14, 15, 19], the observed phenomena were
explained by the Bose stimulation of polariton scattering,
which transfers the polaritons to the lower energy state;
however, these observations and experiments [7 ë 12] can be
explained by the existence and interaction of unstable
polariton modes similar to those studied in this paper.

2. Trap for excitons as a resonator

For deéniteness, we consider a trap with a homogeneous
heterostructure used in papers [8 ë 12] (Fig. 1). The
structure contains a GaAs quantum well of thickness
l � 25 nm in the AlxGa1ÿxAs (x � 0:33) layer of thickness
H � 220 nm. An opaque metal élm is deposited on the
surface, and directly below the AlxGa1ÿxAs layer there is a
highly conducting layer ë a highly doped substrate or
specially prepared two-dimensional channel with a high
mobility and large density of electrons. The distance
between the quantum well and the highly conducting
substrate is h � 50 nm. In the metal élm, holes (circular
windows) of diameter D � 3ÿ 10 mm are etched (the shape
of the windows, generally speaking, can be rectangular or
triangular). The entire system is exposed to continuous laser

pump radiation, which propagates through the mentioned
windows and steadily `supplies' electrons and holes to the
quantum well, where they are combined into excitons.
Between the metal élm and a highly conducting layer of the
substrate, a dc voltage is applied, which leads to the
displacement of the hole and the electron with respect to
each other so that the excitons become dipolar and their
lifetime T1 drastically increases (from several nanoseconds
to tens of nanoseconds). In this case, the phonons have time
to cool the excitons and the density of the latter is
maintained by the balance between the pump and
recombination at the level sufécient to produce the BEC.

Such a trap can serve as a resonator for the electro-
magnetic éeld because the éeld losses in the highly
conducting substrate layer are not high, and under the
conditions of grazing incidence, there occurs, in fact, total
internal reêection of the wave from the structure surface and
substrate. Due to the nonuniformity of the waveguide
properties of the heterostructure, there appear reêections
from the side faces of the trap (i.e. from the edge of the
metal élm).

To calculate polariton modes in such a resonator, it is
necessary to know the polarisation dynamics of the exciton
layer (described by optical Bloch equations), namely, its
material equations. The interaction of the exciton with the
resonance electromagnetic éeld proportional to exp (ÿ iot)
means that the exciton acquires a high-frequency dipole
moment under the action of the applied éeld and when this
moment produces a radiation éeld. Because the exciton
layer (quantum well) has a thickness much smaller than
other linear dimensions of the problem, we can consider this
layer as an inénitely thin resonance dipole layer whose high-
frequency component of power (i.e. dipole moment per area
unit) is proportional to the applied electric éeld. We will
assume, for simplicity, the nonuniformly broadened emis-
sion line of the excitons to be Lorentzian, which, for the
linear problem of the mode spectrum investigation and
determination of the generation threshold, is tantamount to
considering the uniformly broadened line with the effective
polarisation relaxation time T2 � (n �0�2 � Dn)ÿ1, where Dv
and n�0�2 are the nonuniform and uniform line widths,
respectively.

In the isotropic case, for the power of the dipole layer
formed by the electric éeld E at the frequency o, we have

d � ÿo
2
c l

4p
1

o 2
0 ÿ o 2 ÿ 2io=T2

E, (1)

where

o 2
c � 8p

jp0j2Nso0

l�h
(2)

is the square of the so-called cooperative frequency of the
medium; o0 and p0 are the frequency and dipole moment of
the exciton transition; l is the characteristic thickness of the
exciton layer; Ns is the surface density of the excitons in the
well; �h is Planck's constant.

Allowance for the response anisotropy in expression (1)
is reduced to the introduction of different factors for
perturbations transverse (n) and longitudinal (t) with
respect to the layer: o 2

cn;ct and T2n;2t. The effective polar-
isation relaxation time T2, which can strongly increase with
decreasing the heterostructure temperature [5, 13], is easy to
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Figure 1. Heterostructure with a two-dimensional trap for excitons from
paper [9].
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estimate using the observed spontaneous emission line width
of the exciton system. In experiment [9], apart from
radiation from the windows, the authors also observed
emission from the homogeneous system without windows,
in which the metal élm on the trap surface was semi-
transparent. In both cases, at temperature � 2 K, the obser-
ved line width corresponded to the energy � 0:3 meV, which
yields T2 � 4 ps.

The dipole moment value of the exciton transition p0,
which should be substituted into expression (2), can be
found by using the relation of p0 with the radiative
relaxation time T1 of populations for a two-level system
in the medium (heterostructure) with the dielectric constant
e [22]:

T1 �
3�hc 3

4o 3
0

��
e
p jp0j2

, (3)

where c is the speed of light in vacuum.
The time T1, in fact, is the lifetime of an exciton. In

paper [7], T1 � 40 s; in paper [10], this value is several times
lower for the conditions of the experiments [8, 9].

Jumps of the electromagnetic éeld strengths on the
dipole layer are found from the boundary conditions, which,
taking into account (1), have the form

Et

��h�0
hÿ0 � ÿ2Ht�gn ~En�,

En

��h�0
hÿ0 � ÿ2Ht�gt ~Et�, (4)

Ht

��h�0
hÿ0 � ÿ

2ioe
c
�gt ~Et; z0�,

Hn

��h�0
hÿ0 � 0,

where

gn;t �
An;t

Dn;t
; An;t � ÿ

o 2
cn;ct l

2e
; Dn;t � o 2

0 ÿ o 2 ÿ 2i
o

T2n;2t
; (5)

B
��h�0
hÿ0 � B�z � h� 0� ÿ B�z � hÿ 0�;

~B � �B�z � h� 0� � B�z � hÿ 0��=2

are the jump and the average value of B on the layer
(difference and half-sum of the values above and below the
surface);

Ht � Hÿ z0
q
qz
� x0

q
qx
� y0

q
qy

is the tangential component of the Hamiltonian (the z axis
is directed along the normal to the layer); x0, y0, and z0 are
the coordinate unit vectors; Ht(gt ~Et) is the two-dimensional
divergence. For simplicity, we do not take into account the
Lorenz correction to the acting éeld. This means that in the
case of a small jump of the éeld on the exciton layer [see
expressions (17), (18) below], the éeld affecting the excitons
is determined by the average value used above.

Jumps of the éelds at the interface of the heterostructure
(Fig. 1) with air (e1 � 1) at z � H and with a highly
conducting substrate (e2 � e 02 � ie 002 ) at z � 0 determine
the coefécients of total internal reêection of electromagnetic

waves producing TM and TE modes in accordance with the
standard Fresnel formulae [23]:

RTM �
~ekn ÿ e

ÿ
~ek 2

0 ÿ k 2
t

�1=2
~ekn � e

ÿ
~ek 2

0 ÿ k 2
t

�1=2 , RTE �
kn ÿ

ÿ
~ek 2

0 ÿ k 2
t

�1=2
kn �

ÿ
~ek 2

0 ÿ k 2
t

�1=2 , (6)
where kt and kn � knz0 are the tangential and normal
complex wave vector components of the incident wave;
~e � e1 for the upper boundary and ~e � e2 ë for the lower
boundary. In the case when jknj � jktj [the thickness H of
the heterostructure is in the order of the wavelength in it
l�2pc=(o0

��
e
p

)], the highly conducting electronic layer tens
of nanometers in thickness (a two-dimensional channel at
the interface of GaAs and AlxGa1ÿxAs) with a large lateral
conductivity e 002o=4p4 1 and a real part of the dielectric
constant e 02, which does not differ much from the dielectric
constant of the semiconductor e � 13, can play the
electrodynamic role of the substrate in the resonator.
(According to Leontovich boundary conditions, the éelds in
the substrate will have only tangential components [23],
and, correspondingly, the conductivity which can be not so
large in the direction perpendicular to the heterostructure
layers is not important.)

Because we will be interested in the lower-order trans-
verse modes containing one ë two éeld variations along the z
axis, we can expect for them, according to the theory of
nonuniform waveguides, a rather nice reêection of the
electromagnetic éeld from the window boundary, i.e.
from the side faces of the trap (we will see below that
the reêection coefécient in the order of 0.5 is enough for the
mode instability). We will characterise this reêection by one
real number ë the reêection coefécient modulus in the wave
éeld amplitude Rs; the phase of the reêection coefécient
does not play an important role because the trap diameter is
much greater than the wavelength. Nonideal reêection from
the side faces of the trap speciées the nonzero imaginary
part of the wave number Im kt.

For the one-dimensional trap with the reêection coefé-
cient Rs from its boundaries, the set of the wave numbers is
well known ë it is ktm � pm=L� i( lnRs)=L, where L is the
trap length and m is the number of the longitudinal mode. In
the case of the two-dimensional trap, we will also assume in
the estimates that

Im kt �
lnRs

D
� ÿ j lnRsj

D
, (7)

where D is the trap diameter. Below, it will be also
convenient to introduce the effective conductivity s of the
heterostructure, which would give the same value of the
imaginary part of wave vector (7) under assumption of an
ideal reêection of the waves from the side faces of the trap:

s � c 2Re kt
2po

j lnRsj
D

. (8)

(The intrinsic volume conductivity of the used semi-
conductor structures is small and can be neglected as the
imaginary part of the volume dielectric constant propor-
tional to it.)

We will consider the real part of the wave vector Re kt as
a continuous quantity because at D4 l its discreteness
plays no signiécant role for the estimate of the Q factor and
the instability threshold of polariton modes. In addition, for
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simplicity, we will assume the density of the excitons to be
uniform along the entire plane of the trap, and, hence, we
will assume both real and imaginary parts of the tangential
wave numbers of all partial waves forming a speciéc mode
of the trap resonator to be identical. In this case, the
estimate of the Q factor and the threshold of the mode
instability will be independent of its conéguration in the
plane of the trap and of the window shape in the metal élm
at the given (to be calculated) effective reêection coefécient
Rs, which can differ for modes of different conégurations,
for example Fabry ë Perot resonator modes or whispering
gallery modes. The peculiarities of laser generation of high-
Q polariton modes with a different spatial structure and the
effect of their interaction, including with lower-Q modes, for
various shapes of the windows in the metal élm will be
analysed elsewhere.

3. Characteristic equations

Taking into account the Lorentzian type of the dipole layer
response (1), we will énd the resonator eigenmodes by
factorising the dependence of the electromagnetic éelds on
the coordinates in the trap plane and in the direction
perpendicular to this plane. According to the aforesaid, we
will characterise the modes by the frequency o, the wave
number kn in the direction perpendicular to the plane of the
quantum well, and by the wave number kt in the plane of
the quantum wave.

Because the excitons reside in a very thin layer, they do
not affect the mode dispersion equation, which takes the
standard form:

k 2
n � k 2

t �
o 2e
c 2

, (9)

where e � 13. By setting boundary conditions (4) on the
layer, we take into account the presence of a quantum well
with excitons. Therefore, the parameters of the exciton
layer will enter the characteristic equation, which is
responsible for the discretization of the kn values, and
follows from the boundary conditions on the substrate, the
trap surface, and the exciton layer. Note that the tangential
wave numbers kt, and, hence, according to (9), the
transverse wave numbers kn coincide for this mode
above and below the exciton layer.

We will take into account the boundary conditions on
the highly conducting substrate and on the trap surface by
introducing the Fresnel reêection coefécients Rb and R with
the corresponding phases jb � ÿi( lnRb)=2 and j �
i( lnR)=2ÿ knH. In the general case, all these quantities
are complex, and different for TE and TM modes; then,
jRbj < 1 and jRj < 1. When the condition of total internal
reêection on the trap surface, which for real wave numbers
has the form

kn < kt�eÿ 1�1=2, (10)

is fulélled, the modulus of the reêection coefécient R will be
equal to unity. However, taking into account the mode
energy loss, the wave numbers, in the general case, are not
real, and, hence, reêection from the surface will not be total
although, as shown below, the parameters of high-Q modes
will lie in the region

Re kn < Re kt�eÿ 1�1=2. (11)

The latter inequality is the approximate conditions of
reêection that is close to the total one. As for reêection
from the substrate, at rather large je2j, it will be also almost
total. Note that we interested in the vicinity of the mode
instability threshold, where Imo � 0 and the imaginary
part of the transverse wave number is given by the relation

Im kn � ÿIm kt
Re kt
Re kn

, (12)

which follows from equation (9).
We will consider érst TM modes for which Hn � 0. The

characteristic equation for them has the form

2gtk
2
n sin�knh� jbTM� sin�knh� jTM�

� 2gnk
2
t cos�knh� jbTM� cos�knh� jTM�

� kn�gngtk 2
t ÿ 1� sin�jTM ÿ jbTM� � 0, (13)

where gn;t are functions (5) depending on the complex
frequency o. This equation is derived from the condition
for the existence of nonzero solutions for the electro-
magnetic éeld, these solutions satisfying the boundary
conditions on the substrate, surface, and dipole layer. In
deriving the equation, we can express all the éelds via the
Hertz vectors [23] or directly via the tangential component
of the magnetic éeld.

Equation (13) together with dispersion equation (9)
determines the curve in the space of three complex quantities
(kn, kt, o). In particular, by using the speciéed kt we can
énd kn and o from these two equations, i.e. all the spectral
parameters of the mode. At the points, where the resonance
denominator Dn;t vanishes [see (5)], the left-hand side of
equation (13) is inénite; therefore, it is convenient to
multiply this denominator by DnDt, thus obtaining

2AtDnk
2
n sin�knh� jbTM� sin�knh� jTM�

� 2AnDtk
2
t cos�knh� jbTM� cos�knh� jTM�

� kn�AnAtk
2
t ÿ DnDt� sin�jTM ÿ jbTM� � 0. (14)

Note that at An;t ! 0, i.e. in the limit of the small
exciton density, equation (14) takes the form

DnDt sin�jTM ÿ jbTM� � 0,

decomposing into three equations corresponding, obvi-
ously, to two partial oscillations of the excitons [tangential
(Dt � 0) and normal (Dn � 0)] and purely electromagnetic
oscillations [(sin (jTM ÿ jbTM) � 0)]. In the general case,
equation (14) describes three normal modes, which are a
superposition of two exciton and one electromagnetic
modes. In the case of isotropic polarisation relaxation
(Dn � Dt � D, An � At � A) at A 2k 2

t 5 jDj2, the quantity
AnAtk

2
t in the last term can be neglected; as a result, the

equation D � Akt describing a purely exciton branch is
separated, and we have only the equation describing two
electromagnetic-exciton, i.e. polariton, branches. The latter
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equation, after substituting into it k 2
t from dispersion

equation (9), allows one, in fact, to express the frequency o
via the transverse wave number kn.

Similarly, we énd TE modes for which En � 0. The
characteristic equation for them takes the form

2gt
ÿ
k 2
t � k 2

n

�
cos�knh� jTE� sin�knh� jbTE�

ÿ kn cos�jTE ÿ jbTE� � 0. (15)

As could be expected, the quantity gn did not enter this
equation because TE modes do not excite exciton
oscillations transverse with respect to the layer. Similarly,
by multiplying equation (15) by Dt, we obtain

2At

ÿ
k 2
t � k 2

n

�
cos�knh� jTE� sin�knh� jbTE�

ÿDtkn cos�jTE ÿ jbTE� � 0, (16)

and after substituting k 2
t from dispersion equation (9), we

obtain the explicit dependence of o on kn.
Equation (16) at a small exciton density (At ! 0) is

transformed into the equation

Dt cos�jTE ÿ jbTE� � 0,

i.e. it is decomposed into the exciton (Dt � 0) and
electromagnetic [cos (jTE ÿ jbTE) � 0] branches and, in
the general case, gives a superposition of one exciton
and one electromagnetic branches, i.e. two polariton
branches.

4. Mode spectrum: numerical calculation

In the general case, to calculate the mode spectrum, i.e. to
search for the dependences o(kt) and kn(kt), it is necessary
to solve numerically the systems of dispersion (9) and
characteristic (13), (15) equations, which is convenient to do
in stages. First, we can énd the real spectrum in the absence
of losses by calculating the left-hand side of the character-
istic equation for discrete, closely spaced values of kn and kt
and their corresponding frequency o from the dispersion
equation; after that, we separate the regions, where the left-
hand side of the equation changes its sign, and deéne the
solution by the binary search method. Then, the complex
spectrum (taking into account the losses) is found by the
Newton method using, as an initial approximation, the
system of solutions obtained from the real equation and
exact partial solutions obtained in the absence of inter-
action between the excitons and the electromagnetic éeld.

We will use the typical parameters of the experimental
setup [9]: e � 13, H � 220 nm, h � 50 nm, l � 10 nm,
o0 � 2:3� 1015 sÿ1 (the exciton energy, �ho0 � 1:5 eV; the
wavelength in the heterostructure, l � 220 nm � H ), the
trap diameter D � 5 mm. For deéniteness, we will present all
the calculations for the isotropic case (gn � gt � g,
An � At � A, etc.). For simplicity, we will restrict ourselves
to the case of ideal reêection for the highly conducting
substrate: jRbj � 1; below we will ascertain the conditions
under which this approximation can be used. Note that the
selected parameters at the reêection coefécients from the
side faces of the trap Rs � 0:5 correspond to the effective
conductivity of the heterostructure (8), which is much
greater than the inverse time of the polarisation relaxation

(s4 1=T2), i.e. to class D lasers [24, 25] in which polar-
isation of the excitons lives longer than that of phonons and
generation is caused by the polariton and not by the
electromagnetic mode.

With these parameters there exist two intersection
regions of unperturbed electromagnetic and exciton bran-
ches of the spectrum for TM modes and two more regions
for TE modes corresponding to TM0, TM1, TE0, and TE1

modes of this planar waveguide. Thier transverse wave num-
bers satisfy the conditions knH � p=2 (TM0), p (TE0), 3p=2
(TM1), and 2p (TE1) [exact equalities would take place at
RTM;TE � ÿ1, which is valid at kt(eÿ 1)1=2 4 kn].

Typical complex spectra of polariton TM0 modes are
presented in Fig. 2 for the surface density of the excitons
Ns � 1011 and 1010 cmÿ2; in this case, the cooperative
frequency oc was calculated using (2) where we substituted
the dipole moment (related to the electron charge)
p0=e � 3

�
A found [see (3)] with the help of the radial

decay time of the excitons T1, which, for deéniteness, was
taken equal to 2 ns (in accordance with [10]). As was shown
above, the polarisation relaxation time is T2 � 4 ps, and the
reêection coefécient from the side faces of the trap is
Rs � 0:8. One can clearly see that at the given parameters,
the branches are not `overlapped', i.e. in the case of
continuous motion along the branch, the jumps are absent:
there exist two exciton branches (those, which merge far
from the intersection region) and one electromagnetic
branch.

At Ns � 1010 cmÿ2 (Fig. 2b), the mode spectrum insig-
niécantly differs from the unperturbed one, while at Ns �
1011 cmÿ2 (Fig. 2a), some TM0 modes near the resonance
(k2n � k2t � o2

0e=c
2) become unstable (Imo > 0). The latter

is evidenced by the presence of two singularities on the
exciton (polariton) branch of the dependence of
Q � jReo=(2Imo)j on Re kt between which Imo > 0;
for the electromagnetic branch and the other split exciton
branch, the instability is absent, i.e. Imo < 0 everywhere.
This is natural for these parameters at which the Q factor of
unperturbed electromagnetic modes is lower than that of
unperturbed exciton modes. A higher-Q factor of the
electromagnetic modes that would correspond to the elec-
tromagnetic branch instability requires close-to-unity values
of Rs, which are hardly realised in the experiments. The
presence of the weakly perturbed exciton (third) branch is
also natural because under these parameters A 2k2t 5D 2 for
two polariton modes.

Figure 3 shows the éeld structure of the polariton mode
with the largest instability increment at Ns � 1011 cmÿ2.
One can see that the jump of the éeld (or the éeld derivative)
on the layer can achieve � 10%. It is easy to obtain from
conditions (4) an expression for the relative jumps of the
éeld. For example, for the Et component we have

Et

��h�0
hÿ0

~Et
� k 2

t

kn
gn. (17)

For the modes in the vicinity of the instability threshold
[see condition (31) below], we can write the following
expression:

Et

��h�0
hÿ0

~Et
� ps

eo0

k 2
t H

kn
. (18)
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One can see from this expression that the jump is not high
and is determined, érst of all, by the small ratio s=o0.

The calculation results for the TM1, TE0, TE1 modes are
completely analogous and are not presented in this paper.

It is convenient to study numerically the boundary of the
mode instability region on the plane Ns, Rs by the binary
search method with respect to the variable Rs for each of
four intersection regions of the unperturbed electromagnetic
and exciton branches by énding the threshold value Rs at
which the instability appears in the centre of each region.
The dependences obtained for TM0, TM1, TE0, and TE1

modes are presented in Fig. 4. One can see that the
instability of the modes does not require very high reêection
coefécients from the side faces of the trap, and the values of
Rs down to 0.5 are sufécient.

5. Mode spectrum: analytic solution

The above results can be obtained analytically by solving a
system of the characteristic and dispersion equations

expanded in series in the vicinity of the resonance and
by énding the frequency o as a function of deviation from
the resonance value of the real part of the wave number
Re kt, which plays the role of the spectral parameter [the
imaginary part of kt is given by relation (7)]. We will
consider only the TE modes; similar results can be easily
obtained for TM modes, and if we initially neglect the term
gngtk

2
t in equation (13), i.e. split almost purely exciton

branch, the calculations for the TM modes in the isotropic
case virtually coincide with those presented below.

The expansion in series is conveniently performed in the
vicinity of the point corresponding to the intersection of
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Figure 2. Complex spectrum of TM0 modes consisting of the electromagnetic ( 1 ), detached ( 2 ), and polariton ( 3 ) branches: real parts of the wave
numbers Re kn, the differences Reoÿ o0, and the quantities Q � jReo=�2Imo�j (equal to the Q factors for the stable modes and characterising the
increment for the unstable modes) as a function of Re kt at Ns � 1011 (a) and 1010 cmÿ2 (b).
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Figure 3. Field structure of the TM0 mode.
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unperturbed real branches, which are obtained in the
absence of losses and relaxation. The corresponding wave
numbers and the frequency are found from the conditions

o � o0,

k 2
t � k 2

n �
o 2e
c 2

, (19)

cosjTE � 0.

We will designate below the solution of this system as �kn,
�kt, and �o � o0; they are all real. Note that the resonance
denominator D for them will be nonzero despite the fact
that it is equal to zero for purely exciton modes, taking into
account the polarisation relaxation.

The expansion in series can be also performed by taking,
as an initial approximation, the parameters corresponding
to the intersection point of unperturbed complex branches,
which are obtained taking into account the polarisation
relaxation of the excitons but by neglecting the emission
from the trap. The characteristic feature of this consid-
eration results in the presence of imaginary parts in the
unperturbed frequency (Im �o � ÿ1=T2) and, hence, in the
wave numbers kt and kn, is not associated directly with the
emission from the trap. The énal results are, of course,
independent of the decomposition technique and are
obtained equal.

Below, it will be convenient to use the notations

Cn �
���� q
q�kn

cosjTE

����, z � cos��knh� jTE� sin��knh� jbTE�

and assess the results taking into account z � 1 and

Cn �
���� q
q�kn

cos

�
i
lnRTE

2
ÿ �knH

����� � H

(the latter estimate is obtained by neglecting the weak
dependence of RTE on kn, which, in particular, describes the
possible emission of the modes through the heterostructure
surface).

The obtained results can be readily expressed by the
effective conductivity s of the medium (8). In this case, it
turns out that the absorption of the modes in the substrate
enters the énal expression as a term, which is added to s;
therefore, we will introduce an additional effective con-
ductivity of the resonator volume caused by the losses in the
substrate:

sb �
c 2Re kn
2po

ImjbTE

Cn

� c 2Re kn
4po

j ln jRbjj
Cn

� c 2Re kn
4po

j ln jRbjj
H

. (20)

Then, the total conductivity

sS � s� sb (21)

will enter the énal expressions. The presence of the
multiplier 4 in the denominator of expression (20), unlike
the multiplier 2 in the denominator of (8), is explained by
the fact that the losses through the side faces occur twice

per transit of light in the resonator and the losses through
the substrate ë once.

The condition of ideal reêection from the substrate used
earlier becomes obvious from the above said: the éeld
absorption in the substrate can be neglected, if s4 sb,
i.e. if

ktj lnRsj
D

4
knj lnRbj

2H
, (22)

which, for the above parameters and Rs � 0:5, yields
Rb > 0:97 corresponding to very high dielectric constants
of the highly conducting substrate layer: jebj4 5� 105. In
the limit corresponding to inverse inequality (22), we can
neglect the emission through the side faces of the trap.

In the notations used in the main order of the
perturbation theory, the frequencies of the polariton modes
depend on Re kt as follows:

do � ÿi 1

2T2

ÿ i
p
e
sS � bfdkt

� i

��
1

2T2

ÿ p
e
sS ÿ ibfdkt�2 � o 2

c lz
2eCn

�1=2
. (23)

Here, do � oÿ o0 is the frequency shift of the mode from
the frequency of the exciton resonance; b � c 2 �kt=(2eo0);fdkt � Re kt ÿ k

�0�
t .

The line centre k
�0�
t , i.e. the value of the real part of the

wave number Re kt, at which the maximum of the imaginary
part of the frequency (increment maximum or decrement
minimum) is achieved, does not coincide with the unper-
turbed value of �kt obtained from conditions (19) but is
shifted from it by the quantity

k
�0�
t ÿ �kt �

�kn
�kt

RejbTE

Cn

. (24)

This shift is explained by the fact that when the énite
conductivity of the substrate is accounted for, not only the
modulus of the reêection coefécient from the substrate [it is
taken into account in (20)] but also its phase change, which
leads to a shift of the partial electromagnetic branch. Note
again that we study the frequency dependence o on the real
part of the wave number kt, which determines the speciéc
mode.

The real part of the frequency in the line centre proves
equal to the frequency o0 of the exciton transition, i.e. the
line centre is not shifted from the resonance.

Note that expression (23) can be derived in a different
way. Namely, assuming that the éeld structure of polariton
modes will weakly differ from that in the unperturbed
electromagnetic mode [see (17), (18), and Fig. 3], we can
énd their spectrum by using the solution of the known
problem of the excitation of the resonator by the given
polarisation sources [23]. In this approach, the éelds in the
resonator will have the form

E � e�t�Em�r�,
(25)

H � h�t�Hm�r�,
where Em(r) and Hm(r) are spatial mode structures of the
unperturbed resonator, and the excitons will be the
polarisation sources exciting the resonator, the polarisation
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amplitude being proportional to the electric éeld of the
mode. By substituting éelds (25) and the polarisation
exciting them in Maxwell's equation, we can easily obtain
an equation for the coefécients e (t) and h (t), which leads to
the equation for the frequencies of the polariton modes, o:

o 2
m ÿ o 2 � ÿ xo 2o 2

c l

e�o 2
0 ÿ o 2 ÿ 2io=T2�

. (26)

Here, om is the complex frequency of the unperturbed
electromagnetic mode and

x �
�
E 2dS�
E 2dV

� 1

H
, (27)

where integration in the numerator is performed over the
exciton layer surface and in the denominator ë over the
entire volume of the resonator.

The imaginary part of the electromagnetic mode fre-
quency Imom is caused by its decay:

Imom � ÿ
2pisS

e
. (28)

The difference betwen the real part of the electromagnetic
mode frequency Reom and exciton resonance frequency o0

plays the role of a spectral parameter and can be expressed
through the shift dkt of the real part of the tangential wave
number Re kt assuming the wave number kn éxed and using
dispersion equation (9) for the partial electromagnetic mode
with o � om:

Reom ÿ o0 �
c 2kt
eo0

dkt � 2bdkt. (29)

Here, again b � c 2 �kt=(2eo0), and the reference point for
Re kt is selected at Reom � o0. Solving equation (26) in the
vicinity of the frequency o0 with allowance for the above
said, we obtain the dkt dependence of the polariton mode
frequencies:

do � ÿi 1

2T2

ÿ i
p
e
sS � bdkt

� i

��
1

2T2

ÿ p
e
sS ÿ ibdkt

�2
� o 2

c lx
e

�1=2
. (30)

This dependence coincides in its form with (23) and
describes the same effects, when the coefécient x is replaced
by z=(2Cn). These coefécients are always close in quantity
and identical in the case of ideal reêection from the trap
surface.

For deéniteness, we will analyse different particular
cases by using general expression (23). In the absence of
losses (n2 � 0, Rs � 1, jbTE � 0), we easily énd the incre-
ment in the line centre

G �
�
o 2

c lz
2eCn

�1=2
�
�
o 2

c l

2eH

�1=2
and the generation region with respect to the tangential
wave numbers

fdk 2
t < 2

o 2
c o

2
0 lze

k 2
t c

4Cn

.

Taking into account the exciton polarisation and éeld
dissipation in the case of practical interest sS 4 oc

��������
l=H

p
,

eTÿ12 , i.e. in the case of large losses on the emission of the
modes through the side face of the trap (class D laser), the
generation region is broadened:

b 2fdk 2
t <

psS
e

�
o 2

c lzT2

4pCnsS
ÿ 1

�1=2
,

and the highest increment decreases down to

G � ÿTÿ12 �
o 2

c lz
4psSCn

.

In this case, it is easy to show that for superdimensional
traps with D4 l and j lnRsj � 1, due to the inequality
sSoD

2=c 2 4 1, the imaginary part of the mode frequency
always exceeds the intermode frequency interval, except a
narrow vicinity of the instability threshold.

Finally, in the general case the instability condition has
the form

o 2
c T2

4psS

l

H
5

Cn

H

1

z
, (31)

where the quantity on the right is in the order of unity.
Note that this condition is similar to the instability
condition in a conducting homogeneous two-level medium
(see, for example, [25, 26]) and differs from the latter by the
multiplier of the order of l=H, which takes into account the
relative resonator volume élled with excitons.

Substituting numerical values in expression (31) gives a
complete quantitative correspondence with Fig. 4. Note that
the difference in the instability boundaries for TE0 and TE1

modes results from the fact that these modes have different
initial wave numbers kn, kt and, correspondingly, different
parameters z, Cn, etc.

Similar results, in particular, the expression for the
increment G and instability condition (31), are obtained
for the TM modes by substituting

Cn !
���� q
q�kn

sinjTM

����,
z!

�k 2
n sin��knh� jbTM� sin��knh� jTE�

�k 2
n � �k 2

t

�
�k 2
t cos��knh� jbTM� cos��knh� jTE�

�k 2
n � �k 2

t
.

6. Instability threshold and Bose condensation

In experiment [9], the threshold density Ns corresponding to
the possible onset of generation proved equal to
� 1010 ÿ 1011 cmÿ2. The squares of the cooperative fre-
quency o 2

c � 1026 ÿ 1027 sÿ2 correspond to these values (in
calculating with the help of the above method with the use
of the lifetime T1 � 2 ns). If the polarisation relaxation time
T2 is limited from above by 4 ps, which is determined by
the linewidth of spontaneous emission of the excitons, and
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the reêection coefécients from the side face surface of the
trap Rs is estimated at 0.5 and the éeld absorption in the
substrate is neglected, the quantity in the left-hand side of
instability condition (31) will be equal to � 0:08ÿ 0:8,
while the instability of the modes requires values higher
than unity.

In other words, the instability of the modes should not
be manifested yet in this case (which is obviously seen from
Fig. 4). Nevertheless, in a real experiment, the values of T1,
Rs, and especially of T2, which are different from those
presented above, are possible. The estimate of T2 based on
the linewidth of the observed spontaneous emission is only a
rough approximation from above to the real time T2

determining the polarisation relaxation time of the excitons
participating in the formation of polariton modes. One can
see from the presented estimates that increasing T2 by
several times only is sufécient to start lasing at above
exciton densities and reêection coefécients from the side
faces of the traps.

Moreover, during the Bose condensation, it is natural to
expect the narrowing of the exciton distribution in energies,
i.e. a drastic increase in T2, perhaps, by two ë three orders of
magnitude up to T2 � T1=2 � 1 ns. Therefore, during the
condensation of the excitons, the system can, at once,
proceed to the unstable region and lasing will develop in
the trap. In this case, the excitation of polariton modes and,
hence, the appearance of predominant polarisation and
spatial coherence of recombination radiation similar to
those observed in papers [9 ë 12] can indicate the condensa-
tion of the excitons. If the limiting case T2 � T1=2 � 1 ns is
indeed realised in the Bose condensation of the excitons with
the density Ns � 1010 ÿ 1011 cmÿ2, the low reêection coefé-
cient from the side faces of the trap (Rs 5 1) and the
reêection coefécient from the substrate Rb � 0:1, i.e. rather
small substrate conductivity (jebj � 20), prove sufécient for
laser generation of the polariton modes. This scope of
problems, including the peculiarities of broadband sponta-
neous and resonance scattered emission, requires further
detailed investigations both theoretical and experimental.

7. Conclusions

The performed analytical and numerical investigation of
polariton modes in the trap for dipolar excitons taking into
account the polarisation relaxation and possible emission of
the modes through the trap boundaries shows that some of
them are high-Q modes, which become unstable under
conditions typical of the experiments on the Bose con-
densation of the excitons. Thus, the threshold observed in
experiments [9 ë 12] in the dependence of the luminescence
power on the pump power and temperature approximately
corresponds to the instability threshold of the polariton
modes, especially if the Bose condensation of the excitons
starts at these parameters.

When the instability threshold is exceeded, the modes
will be in the lasing regime whose investigation and
elucidation of its relation with the parameters of radiation
emerging from the trap and with the properties and
dynamics of formation of the exciton condensate is the
subject of further studies. An important circumstance here is
the énite lifetime of the excitons (from few to tens of
nanoseconds) supplied by the optical pump. Due to this, the
condensate is constantly renewed and metastable, which
gives a unique opportunity to obtain lasing due to induced

radiation during recombination of both condensed and non-
condensed excitons. This possibility allows one, obviously,
to implement intracavity laser spectroscopy of different
fractions of the excitons and to perform dynamic diag-
nostics of the Bose ë Einstein condensate formation, which is
an urgent problem in the éeld of both Bose-condensation
physics and laser physics.
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