
Abstract. Taking into account the temperature dependences
of the heat conductivity, the refractive index, and the thermal
expansion coefécient, we calculated the temperature, elastic
stresses, a thermally induced lens and depolarisation of a
beam in a cryogenic disk ampliéer (an Yb :YAG disk placed
between a copper cylinder and a sapphire disk cooled by
liquid nitrogen). When the active element (the thickness is
0.6 mm, the orientation is [001], the atomic concentration of
Yb is 10%) is pumped by radiation from a diode laser (the
beam diameter is 6 mm), the temperature does not exceed
140 K for the heat release power of 100 W. In this case,
elastic stresses in the active element are six times lower than
the maximum permissible value. The focal distance of the
thermally induced lens is 5.5 m and the depolarisation rate is
0.038% per two passes through the active element. Although
the heat conductivity of the active element rapidly decreases
with temperature, the thermal load can be increased by 1.5 ë 2
times when the dimensions of the active element remain
constant.

Keywords: cryogenic disk laser, nonlinear heat conduction equation,
thermal lens, depolarisation, photoelastic effect, method of énite
elements.

1. Introduction

At present, solid-state lasers with high peak and average
powers and the close-to-diffraction beam quality are being
actively developed all over the world. A rapid increase in
the output power of solid-state lasers became possible due
to a wide spread of diode pumping, application of active
ions with a small quantum defect, and the development of
fabrication technologies of optical materials.

In designing high-average-power lasers, one of the main
problems is parasitic thermal effects in optical elements.
They include the increase in the volume-averaged temper-
ature, thermally induced elastic stresses, phase and
polarisation distortions of the beam [1, 2]. In elements
made of laser ceramics, these effects also involve a thermally
induced small-scale spatial modulation of the beam polar-

isation and phase [3, 4]. The increase in the average
temperature of the active element leads, as a rule, to an
undesirable change in its physical properties: a decrease in
the heat conductivity, an increase in the thermal expansion
coefécient and the thermooptic coefécient, a decrease in the
stimulated emission cross section at the lasing transition,
etc. On the contrary, cooling atoms down to liquid nitrogen
temperatures allows one to improve signiécantly the proper-
ties of the medium [5, 6]. However, at a large heat release,
the temperature substantially exceeds 77 K and the heat
conduction problem becomes nonlinear.

The temperature gradient in the active element leads to
the appearance of elastic stresses. When they exceed some
limiting value, the sample is damaged [7]. The decrease in
the thermal expansion coefécient during cooling results in a
decrease in the elastic stresses and phase distortions. The
latter appear due to a change in the sample length resulting
from the thermal expansion, temperature dependence of the
refractive index and the photoelastic effect [1, 8]. The
photoelastic effect also causes a change in the polarisation
of radiation propagating through the medium.

Heat release in the active element of a solid-state laser is
associated with the quantum defect as well as the absorption
of laser radiation by ions in the excited state, up conversion
and cross relaxation [9]. To reduce the heat release, it is
necessary to select active ions with a small quantum defect
where the mentioned parasitic processes are absent. One of
the best candidates is the Yb 3� ion [10]. As an active
element matrix it is desirable to use a substance with a high
heat conductivity and resistance. For Yb 3� ions, the suitable
matrix is the YAG crystal.

To decrease the temperature and its gradient, active
elements having a special geometry with a large surface area
through which heat is released, are actively used. The
example is a thin end-pumped disk, end coupling in/
coupling out of radiation and end-face cooling with the
help of heatsinks made of materials with a high heat
conductivity [11, 12]. It was noted in [13] that the proximity
of atomic radii of Yb and Y makes it possible to fabricate
active Yb :YAG elements with a high doping level (atomic
concentration is tens of percents), which allows one to avoid
multipass schemes while designing thin disk lasers.

This work is devoted to the study of thermally induced
distortions in a disk Yb :YAG laser ampliéer cooled by
liquid nitrogen. We solved the nonlinear stationary problem
of heat conduction for a system consisting of an active disk
and heatsinks, the stationary elasticity problem for an active
disk, and calculated the thermally induced distortions of the
laser beam.
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2. Solution of the heat conduction problem

First of all, it is necessary to énd the temperature dis-
tribution in a system consisting of three coaxial cylindrical
bodies: active Yb :YAG element placed between two
heatsinks (Fig. 1) ë a copper cylinder and a disk made
of an optically transparent material. The disk can be
manufactured, for example, from sapphire, diamond or
undoped YAG (below, we will call it a sapphire disk).

We will assume, unless otherwise speciéed, that the
coordinate axis z is local for each of three bodies in the
system (the axes are directed from left to right, the origins of
the coordinates coincide with the left end faces of these
bodies) and the Z axis ë global and coincides with the z axis
of the active element.

2.1 General formulation of the heat conduction problem

Let an axially symmetric pump beam with the spatial
proéle f(r) be incident on the system from the side of the
sapphire disk. Radiation is absorbed in the active element
during its propagation, reêected from the mirror coated on
the crystal, and propagates through the disk in the
backward direction, thus experiencing further absorption,
and then is coupled out from the system. By assuming
absorption in the medium to be independent of the
temperature and radiation intensity and the heat release
power to be proportional to the absorbed power, we obtain
the density of the heat release power in the active element

Q�r; z� � Q0 f�r�g�z�,
(1)

g�z� � exp�ÿaabsz� � exp
�
aabs
ÿ
zÿ 2LY

��
,

where aabs is the coefécient of linear radiation absorption
by the medium; LY is the active element thickness; Q0 is the
proportionality coefécient.

We will assume for simplicity that both heatsinks are
cooled directly and axially symmetric by liquid nitrogen, the
anisotropy of the thermal conductivity tensor of sapphire
being neglected. Within the framework of simplifying
assumptions, the heat conduction problem becomes axially
symmetric.

Analytic approximation of the temperature dependence
of the YAG heat conductivity was borrowed from paper [6].
However, the heat conductivity depends on the dopant
concentration, which is substantial for highly doped active
elements (tens of percent). The dependence of the Yb :YAG
heat conductivity on the atomic concentration of active ions
at room temperature is presented in paper [13]. Because the
data on the temperature dependence of the heat conduc-
tivity of doped Yb :YAG crystals is insufécient, it was
suggested that doping decreases thermal conductivity to the
same extent in the entire temperature region of interest
(77 Kë 350 K).

The stationary heat conduction equation has the from

div�K�T�HT � �Q�r� � 0, (2)

where T is the temperature; K(T ) is the heat conductivity.
We will write the boundary conditions in the form

K�T� qT
qn

����
G
� g�Text ÿ T�jG, (3)

where G is the boundary surface (the derivative of the
temperature is taken along the direction of the external
normal n to it); g is the coefécient of the heat transfer
through the surface of the thermal contact; Text is the
temperature of the body in contact with this along the
surface G.

A plastic thermal interface is usually present on the
surfaces of the thermal contact between the active element
and the heatsinks. By élling the gaps between the bodies, it
improves the heat transfer through the contact, i.e. increases
g. Thus, an indium élm or thermal grease is applied on the
boundary with copper. The eféciencies of different thermal
interfaces are compared in paper [14].

In the linear approximation, system (2), (3) allows the
analytic solution, which will be discussed in section 2.2. In
the nonlinear case, only the numerical solution presented in
section 2.3 is possible.

2.2 Analytic solution of the heat conduction problem

To solve analytically the heat conduction problem, we will
use the method of Green's functions. For a cylindrical body
(04 r4R, 04 z4L), the solution of the Poisson
equation [equation (2) at K � const] with inhomogeneous
boundary conditions of the third kind (3) at any point can
be represented as a sum of integrals in volume and surface
sources. The coolant temperature will be assumed the same
for both heatsinks and independent of the coordinates. In
this case, due to the linearity of the problem, the tem-
perature can be measured from the coolant temperature
and the latter can be added to the solution at the énal stage.
Then, the expressions for temperatures of the bodies in the
system can be written in the form [15]

TY�r; z� �
X
m;s
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ÿ
~mYmr
�
hYs �z�

NY
ms
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Figure 1. Scheme of cooling active element ( 1 ) with the help of copper
( 2 ) and sapphire ( 3 ) heatsinks. White arrows show cooling by liquid
nitrogen; KY, KC, and K S are the heat conductivitys of Yb :YAG,
copper, and sapphire, respectively; g1 ÿ g6 are the coefécients of the
heat transfer through the corresponding surfaces.
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~mC
mr
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hCs �z�
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s �0�

(4)

�
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�
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�
,
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X
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mr
�
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ms

�lS2h
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�
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�
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RY
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~mS
mx
�
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�
,

where J0 and J1 are the zero- and érst-order Bessel
functions of the érst kind; the superscripts Y, C, and S
denote the belonging of the quantity to the active element,
copper, and sapphire, respectively;

�lC1 �
2pg5
KY

; �lS1 �
2pg1
KY

; �lC2 �
2pg5
KC

; �lS2 �
2pg1
KS

; f11�
2pQ0

KY
;

Fm �
� RY

0

J0
ÿ
~mYmx

�
f �x�xdx; Gs �

� LY

0

hYs �z�g�z�dz;
(5)

Nms �
pR 2

2

�
J 2
0 �~mmR� � J 2

1 �~mmR�
��

1� ~m 2
m

l 2
s

�

�
�ÿ
l 2
s � k 2

2

�� k3

l 2
s � k 2

3

� L

�
� k2

�
; (6)

hs�z� � cos�lsz� �
k2
ls

sin�lsz�; (7)

~mm and ls are nonnegative roots of transcendental
equations

~mmJ1�~mmR� � k1J0�~mmR�,
tan�lsL�

ls
� k2 � k3

l 2
s ÿ k2k3

; (8)

fk1; k2; k3;L;Rg

�
f0; g1=KY; g5=KY;LY;RYg for YAG : Yb;

fg3=KC; g5=K
C; g2=K

C;LC;RCg for copper;
fg4=KS; 0; g1=K

S;LS;RS for sapphire:

8><>: (9)

The summation indices m and s in (4) change, strictly
speaking, from 1 to 1, but in practical calculations it is
necessary to leave a énite number of terms in all the series.
Let us explain the meaning of underlying the set of
multipliers in (4). The method of Green's functions does
not allow one to énd a reliable solution at the interfaces of
bodies with an inhomogeneous boundary condition, i.e. at
those interfaces where the thermal contact between the
bodies takes place. The behaviour of the solution mainly
resembles that of the Fourier series near the point of the
discontinuity of the érst kind. Because of truncation of
series in (4), the solution is incorrect in the region with the
dimension of the order of the oscillation period of the érst
neglected term and in the rest of the body it acquires an
undesirable modulation. In the theory of Fourier series this
effect is called the Gibbs phenomenon. Because the acquir-
ing of the reliable solution plays an important role for

solving the problem of the thermal contact between the
bodies, these artefacts should be eliminated.

Solution (4) was corrected by using the following
algorithm. First, to eliminate the Gibbs phenomenon, we
used the NL-fold (NL ' 2ÿ 3) Lanczos smoothing [16]
along the coordinate axes r and z. Second, the solution
in the near-boundary region was obtained with the help of
the polynomial extrapolation by the least squares method of
the solution in the region more remote from the boundary,
which after smoothing can be assumed valid. We can show
that these procedures do not change the scheme of the
solution and only lead to transformation of the functions
underlined in (4):

J0�~mmr� � ~lNL
m J0�~mmr�,

hs�z� � lNL
s

�
K �0N�s hs�D� �

XN
j�1

K �jN�s

1

j !

�
zÿ D
d

�j

� 1

l j
s

d jhs�z�
dz j

����
z�D

�
at 04 z < D,

hs�z� � lNL
s hs�z� at D4 z4Lÿ D, (10)

hs�z� � lNL
s

�
K �0N�s hs�Lÿ D� �

XN
j�1

K � jN�s
1

j !

�
D� zÿ L

d

�j

� 1

l j
s

d jhs�z�
dz j

����
z�LÿD

�
at Lÿ D < z4L.

Here, d is the half-period of the érst neglected harmonic in
the series with respect to s in (4); D is the distance equal to
two ë three periods of the same harmonic; N ' 1ÿ 3 is the
major degree of the extrapolating polynomial étted
experimentally; in the case of extrapolation by the linear
function, which proved the most efécient, the coefécients

K �01�s � ls, K �11�s � 3
ls ÿ cos�lsd�

lsd
; (11)

~lm �
sin�~mm~d�

~mm~d
, ls �

sin�lsd�
lsd

(12)

are the smoothing Lanczos factors along the r and z axes,
respectively; ~d is half the quasi-period of the érst neglected
term in the series with respect to m in (4).

By using expression (4), for temperatures at Z � 0 and
Z � LY we can write the closed system of equations

Ŷ�r� �
� Rmax

0

X
m

F̂m�r�Ĉm�x�Ŷ�x�xdx� f̂�r�, (13)

where

Ŷ�r� �
T S�r;LS�
TY�r; 0�
TY�r;LY�
T C�r; 0�

0BBB@
1CCCA; f̂ �r� � f11

0X
m
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ÿ
~mYmr
�

~Q �0�mX
m

J0
ÿ
~mYmr
�

~Q �1�m

0

0BBBBBBB@

1CCCCCCCA;
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F̂m�r� �

J0
ÿ
~mS
mr
�

0 0 0

0 J0
ÿ
~mYmr
�

0 0

0 0 J0
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~mYmr
�

0
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mr
�

0BBBB@
1CCCCA;(14)

l̂�a;b��x� � 1; x 2 �a; b�;
0; x 2= �a; b�;

�
Rmax � max

ÿ
RC;R S

�
;

~R �00�m �
X
s

hYs �0�hYs �0�
NY

ms

; ~R �01�m �
X
s

hYs �0�hYs �LY�
NY

ms

;

~R �10�m �
X
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hYs �LY�hYs �0�
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ms

; ~R �11�m �
X
s
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ms
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~R S
m �

X
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hS
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NS

ms

; ~RC
m �

X
s

hCs �0�hCs �0�
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ms

;

(15)

~Q �0�m � Fm

X
s

hYs �0�Gs

NY
ms

; ~Q �1�m � Fm

X
s

hYs �LY�Gs

NY
ms

.

Equation (13) represents a matrix generalisation of the
Fredholm integral equation of the second kind with the
degenerate kernel, which, with the help of the standard
substitution, is reduced to the linear algebraic system of
equations [17] solved by using standard methods [18]. Thus,
the temperature distribution in the active element and
heatsinks can be found.

2.3 Numerical solution of the heat conduction problem

If the heat conductivity depends on temperature, equation
(2) takes the from

K�T�
�
q 2T

qr 2
� 1

r

qT
qr
� q 2T

qz 2

�

� qK
qT

��
qT
qr

�2
�
�
qT
qz

�2 �
�Q�r; z� � 0. (16)

In this case, the problem was solved numerically. To obtain
the difference schemes, we used the method of énite
differences (which is simpler mathematically but leads to
less speciéed schemes compared to variation ë difference
methods). Because the dimensions of the heatsinks signié-
cantly exceed (by 5 ë 100 times in thickness) the dimensions
of the active element, it is necessary to specify a nonuniform
grid in the heatsinks, which has a small step near the
Yb :YAG disk and increases away from it.

To solve the obtained algebraic system, we used the
effective iteration schemes based on reducing the initial N-
dimensional problem (in this case, two-dimensional) to a
sequence of one-dimensional subproblems requiring the

solution of linearised algebraic systems with three-diagonal
matrices, which, in turn, can be solved by the sweep method.
This scheme, called the method of alternating directions, is
described, for example, in [19]. To solve the formulated
problem, a small modiécation was required, which allowed
one to obtain, for one dimensional subproblems, convergent

systems of equations when homogeneous boundary con-
ditions of the second kind are speciéed at both ends of the
interval [expression (3) at g � 0].

Compared to the simple iteration method and the Seidel
method, which are the easiest for programming, this
technique makes it possible to increase substantially the
calculation speed. In the case of the model problem of the
direct contact of the coolant with the active element, the
calculation speed increases by 20 times; for the initial
problem this increase is lower (two ë three times) but it is
still signiécant. This scheme differs from other effective
schemes by a relative simplicity of programming and an
efécient use of the speciéc matrix features of the linearlised
system of the N-dimensional problem.

The comparison of the numerical solution and the
solution obtained with the help of the method of Green's
functions showed that they coincide fairly well in the case of
the linear problem (the difference is no more than 1%). The
numerical solution requires more computer time but its
algorithm is modiéed much simpler. The method of Green's
functions does not allow one to take into account the
temperature dependence of the heat conductivity but the
solution obtained by this method in the linear approxima-
tion can be used as a seed value for a énite difference
numerical scheme, which accelerates the calculation process.

2.4 Analysis of the solution of the heat conduction
problem

In calculations we used the following parameters: the
thickness of the Yb :YAG disk was 0.6 mm, its diameter ë
10 mm, the atomic concentration ë 10%, and the
orientation ë [001]; the diameter of the copper heatsink
was 70 mm, its thickness ë 60 mm; the diameter of the
sapphire disk was 30 mm and its thickness ë 3 mm. The
diameter of the pump beam was 6 mm. The heat release
power

Pheat � Q0

� RY

0

f�r�rdr
� LY

0

g�z�dz (17)

was � 100 W (� 350 W cmÿ2 per unit cross section of the
beam).

Figure 2 demonstrates the dependences of the temper-
atures maximum and average in the beam region on Pheat

upon cooling by one (copper) and two (copper and
sapphire) heatsinks. This égure also shows the dependences
corresponding to the intermediate regime at which the
sapphire disk is not in contact with the coolant. In this
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case, the gain in the temperature with respect to the scheme
with one heatsink is explained by the fact that a part of heat
released by the active element to sapphire spreads along the
radius in it and is transferred via the active element to the
copper heatsink outside the beam region. This regime is less
efécient than that with two heatsinks but does not require
additional efforts to provide heat removal from the sap-
phire.

At the heat power Pheat � 100 W, the nonlinear effects
substantially inêuence the solution because the heat con-
ductivity of YAG decreases two-fold when the temperature
changes from 77 K to 107 K [6]. Thus, when the active
element is cooled only from one end, the maximum temper-
ature in the crystal exceeds 150 K already at Pheat � 60 W.
The use of the second heatsink makes it possible to increase
the power up to 110 W at the same maximum temperature
and at Pheat � 100 W, the temperature does not exceed
140 K.

Thus, for the ampliéer parameters under consideration,
the temperature of the active element can be restrained
within 150 K at Pheat � 100 W.

3. Solution of the elasticity problem

In the linear approximation (Hooke law) the tensor of
elastic stresses ŝ is related to the strain tensor û and
temperature T by the expression

sij � lijkl

�
ukl ÿ

� T

T0

akl�T 0�dT 0
�
, (18)

where l̂ is the elastic stiffness tensor; â is the thermal
expansion tensor; T0 is the initial temperature at which the
body in the absence of stresses is assumed unstrained.
Hereafter, we imply summation in the recurrent indices
from 1 to 3 and the subscripts i, j also take values from 1 to
3 [8].

When the external volume forces are neglected, the
conditions for the equilibrium of the strained body in
the internal region have the from

qsij
qxj
� 0 , (19)

the conditions on the free boundary imply the equality to
zero of normal and shear stresses on the sample surface
[20]:

sijnjjG � 0, (20)

where G is the body surface; nj are the vector components
of the external normal to it.

The YAG crystal is cubic but we will assume it to be
isotropic. This simplifying assumption allows us to reduce
the problem to two coordinate one in the coordinate system
r, z. In this case, at small deformations the tensor û has the
following nonzero components [20]:

urr �
qUr

qr
, uff �

Ur

r
, uzz �

qUz

qz
, urz�

1

2

�
qUr

qz
� qUz

qr

�
, (21)

where Ur and Uz are the components of the shear vector; f
is the polar angle. The system of equations (18) ë (21)
represents a closed boundary problem for these compo-
nents.

The temperature dependence of the thermal expansion
coefécient is presented in [6]. The author of paper [6] speaks
about a weak temperature dependence of the tensor
components of the elastic stiffness (the difference in the
components at T � 100 K and 300 K is no more than 10%),
which we will neglect.

To solve the elasticity problem, a énite element numer-
ical code was written. The solution was found by using the
method of alternating directions discussed above. The order
of approximation of differential operators by difference
operators was equal to 2 on the entire grid.

At Pheat � 100 W in the case of cooling by two
heatsinks, the components of the deformation tensor do
not exceed 3:2� 10ÿ4 in the absolute value, which conérms
the applicability of the Hooke law and expressions (21), and
the elastic stresses in the crystal do not exceed 3:4� 107 Pa,
which is six times lower than the maximum admissible
values for the undoped YAG [2].

4. Calculation of thermally induced beam
distortions

When calculating the thermally induced beam distortions,
we took into account the change in the shape of the active
element (together with the dielectric mirror coated on it),
the temperature dependence of the refractive index, the
electronic change in the refractive index (the change in the
refractive index as a function of the populations of the of
active ion levels) [21], and the photoelastic effect. The
expression

dLm �
�
�n0 ÿ 1�uzz � �n�T� ÿ n0�

� 2p
9n0
�n 2

0 � 2�2DpDNÿ n 3
0

2
DBmm

�
dz (22)
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Figure 2. Dependences of the maximal (dashed curves) Yb :YAG tem-
perature and the Yb :YAG temperature averaged over the beam region
(solid curves) on the heat release power and absorbed pump radiation
power upon cooling by one copper heatsink (&), a copper heatsink and a
sapphire disk (*), and two heatsinks (&). Dotted lines are the linear
approximation of the top and bottom curves. The coolant temperature is
77 K.
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can be written for a change in the optical length upon the
beam propagation through the element dz. Here n0 � n (T0)
is the unperturbed refractive index; Dp is the difference in
polarisations of the Yb 3� ion in the ground state and at the
upper working level; DN in the case of the operation in
accordance with the four-level scheme is equal to the
difference in populations of working laser levels; DB̂ is the
change in the dielectric impermeability tensor*, caused by
the photoelastic effect:

DBij � pijklskl; (23)

p̂ is the tensor of piezooptic coefécients. Expression (22) is
valid for radiation polarised along two mutually perpen-
dicular axes m � m and v for which DBmn � 0. These
directions at each point of the crystal are different in the
general case. We neglected the deviation of the beam rays
from direct ones, parallel to the z axis. The four terms in
braces describe the change in the element length, temper-
ature and electronic changes in the refractive index, and the
photoelastic effect, respectively.

If intrinsic polarisations (along the axes m and v) are
independent of z, by integrating (22) in z we obtain the
change in the optical length of the path per two passes of
radiation (with relection from the mirror). In the general
case, to take into account the anisotropy caused by the
photoelastic effect, we will use the formalism of Jones
matrices [22].

We introduce the Cartesian coordinates x, y in the plane
of the beam cross section. Let radiation incident on the
active disk be linearly polarised along the x axis (x0 and y0
are the unit vectors of x and y axes, respectively). The
polarisation vector n of the éeld at the crystal output (after
two passes) can be found by multiplying the Jones matrices
for the elements of the medium with centres in the grid
nodes used for the énite element approximation of the
elasticity problem. In the Jones matrices we took into
account only the phase difference of intrinsic polarisations,
while the average phase was calculated separately. In this
case, the expression for n contains also, apart from
information on polarisation, the astigmatic component of
the phase. Then, the expression for the phase incursion of
the propagated wave component, which is polarised long the
x axis, has the from

Dj�x; y� � 2k0

�
�ÿ�n0 ÿ 1�Uzjz�0 � n0Uzjz�LY �

�
� LY

0

�n�T� ÿ n0�dz�
2p
9n0
�n 2

0 � 2�2Dp
� LY

0

DNdz

ÿ n 3
0

2

� LY

0

DBxx � DByy

2
dz

�
� arctan

Im�nx0�
Re�nx0�

, (24)

where k0 is the wave number in the free space. Expression
(24) allows one to calculate the focal distance of the
thermally induced lens and its aberrations. The local (Gd)
and integral (gd) depolarisation rates for the nongyrotropic
medium are expressed as

Gd�x; y� � jny0j2, gd �
��

GdjEinj2dxdy�� jEinj2dxdy
, (25)

where Ein is the éeld intensity of incident radiation;
integration is performed over the beam cross section.

It is easy to show that for radiation polarised along the y
axis, the depolarisation rate will be the same, and the
expression for the phase incursion will differ from (24)
by the sign in front of the last term. By using the produced
numerical code, the depolarisation degree and the phase
incursion were calculated for a crystal with an arbitrary
orientation of crystallophysic axes. The method implied is
described in [3, 23].

Figure 3 presents stigmatic and astigmatic components
of the phase incursion and the proéle of the depolarisation
rate of the beam, which were calculated for a crystal with the
[001] orientation in the minimum of the integral depolarisa-
tion rate (input radiation is linearly polarised at the angle
458 to the crystallophysic axis) at Pheat � 100 W in the case
of cooling the active element by two heatsinks. The temper-
ature dependence n(T) for YAG was borrowed from [6] and
the value of Dp ë from [21]. We also took into account the
contribution to the formation of the thermal lens caused by
the n(T) dependence for the sapphire.

In Fig. 3, the negative phase corresponds to the positive
lens and vice versa. The main contribution to the formation
of the thermally induced lens is made by the curvature of the
mirror coated on the crystal surface. This convex mirror
produces the resultant negative lens, although the term in
(22) responsible for the temperature change in the refractive
index makes a positive contribution. The contribution of the
photoelastic effect is positive in the polarisation plane and
negative in the plane perpendicular to it.

The beam distortions at Pheat � 100 W are small: the
focal distance of the thermally induced lens is less than
5.5 m in the beam region in the absolute value; the
maximum values of Gd lie outside the beam region and
the integral depolarisation rate is gd � 3:8� 10ÿ4.

The mirror becomes signiécantly convex (the displace-
ment of its surface along the z axis can be up to 1 mm) and,
hence, the loss of the thermal contact with the copper
heatsink is possible in the beam region, which will result in
an additional increase in the temperature. This fact should
be taken into account in performing experiments.

5. Conclusions

Taking into account the temperature dependences of the
medium parameters, we have calculated the thermally
induced beam distortions in a disk Yb :YAG laser ampliéer
with a high average power in the stationary regime. We
have shown that the use of cryogenic cooling makes it
possible to obtain high-quality output radiation at thermal
loads � 350 W cmÿ2. If the heat release power is 13% of
the absorbed radiation power and the conversion eféciency
of the stored energy into the energy of output radiation is
approximately 70%, the increment of the laser radiation
intensity at the output of one ampliéer will be
�1750 W cmÿ2.

The increase in the power is restricted by the heat
conductivity of the active element, which rapidly decreases
with increasing temperature, but the increase in the thermal
load by 1.5 ë 2 times, when the dimensions of the active
element remain invariable, is admissible. On this basis the

*The dielectric impermeability tensor is a tensor inverse to the dielectric
constant tensor.
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use of active media with small thermal losses makes it
possible to design compact lasers with the average power of
� 1 kW.

At present, experiments on studying ampliécation in
cryogenic Yb disks for the pump power up to 600 W (the
beam diameter is 3 mm and the power density is
6.1 kW cmÿ2) are being performed at the Institute of
Applied Physics, RAS. The experimental results achieved
in [24] well agree with the presented calculations.
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Figure 3. Thermally induced distortions of the laser beam per two passes through the ampliéer: the stigmatic component of the phase incursion (^),
including geometrical distortion (&), temperature variations of the refractive index in Yb :YAG (~) and sapphire (~), electronic change in the
refractive index in Yb :YAG (*), and photoelastic distortions (&) (a) as well as the astigmatic component of the phase incursion (b) and the local rate
of depolarisation (c). In Figs 3b and c radiation is polarised long the x axis and white dashed circles show the regions of the pump beam.
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