
Abstract. The domains of existence and peculiarities of exact
analytic solutions of the problem of quasi-synchronous
interaction of four plane collinear monochromatic waves ë
modes in a quadratically nonlinear medium during cascade
frequency conversion are analysed. It is shown that the
unusual types of multicomponent cnoidal and solitary soliton-
like waves (of periodic and aperiodic energy-exchange
regimes) are realised. Two of the four components of the
latter are proportional to the real and imaginary parts of the
well-known Lorentzian dependence, which is commonly used
to describe the dispersion of contributions from resonance
transitions to the complex permittivity in the case of
homogeneous line broadening.

Keywords: quadratic nonlinearity, cascade quasi-synchronous fre-
quency conversion, periodic and aperiodic energy exchange, multi-
component cnoidal and solitary waves.

1. Introduction

The exact solution of the problem of quasi-synchronous
interaction of four plane collinear monochromatic waves
(the subscript i � 1ÿ 4) ë modes with frequencies o1,
o2 � o1, o3 � o1 � o2 � 2o1 and o4 � o1� o3 � 3o1,
wave vectors k1ÿ4, and complex amplitudes A1ÿ4 in a
medium with the quadratic nonlinearity during cascade
frequency conversion (simultaneous processes o1 � o2;3 !
o3;4) was presented in [1]. It was shown that the initial
system of truncated equations

dA1

dz
� ÿig1A �2A3 ÿ ig2A

�
3A4, (1a)

dA2

dz
� ÿig1A �1A3, (1b)

dA3

dz
� ÿi2g �1A1A2 ÿ i2g2A

�
1A4, (1c)

dA4

dz
� ÿi3g �2A1A3 (1d)

with the boundary conditions Ai

��
z�0 � Ai0 describing this

problem can be reduced to the closed system of two coupled
stationary nonlinear Schr�odinger equations (NSEs)

d2A1

dz 2
� ÿG�jA1j2A1 � 3

2
GÿjA3j2A1

� ÿjg1j2J1 � 3jg2j2J3
�
A1, (2a)

d2A3

dz 2
� ÿ3G�jA1j2A3 � 1

2
GÿjA3j2A3

� ÿjg1j2J1 � 3jg2j2J3
�
A3 (2b)

for the amplitudes A1;3 of two waves involved in both
nonlinear processes with the boundary conditions A1

��
z�0 �

A10; (dA1=dz)
��
z�0 � ÿig1A �20A30 ÿ ig2A

�
30A40; A3

��
z�0= A30,

(dA3=dz)
��
z�0 � ÿi2g �1A10A20 ÿ i2g2A

�
10A40. The use of Eqns

(2a) ë (2b) is equivalent to the introduction of the efécient
cubic nonlinearity describing the competition of processes
of merging and decomposition of photons. Here, the axis z
is directed along vectors ki; g1;2 are nonlinear coupling
constants for processes o1 � o2;3 ! o3;4 averaged over the
domain structure period (see [1]); G� � jg1j2 � 3jg2j2; and
J1 � I1 ÿ 2I2 ÿ I3=2 and J3 � I1 � I3=2� 2I4=3 are integrals
of system (1); Ii � AiA

�
i are variables proportional to the

intensities. It was found that system (2) can be transformed
to two identical independent NSEs, which determined its
self-consistent solutions (cnoidal waves) in a rather unusual
form as the sum and difference of two identical solutions of
the same NSE with shifted arguments. In this case,
although equations for the amplitudes A2;4 of two other
waves cannot be reduced to a system similar to (2), their
intensities I2;4 can be easily found from the relations

I2 ÿ I20 � 1
2 �I1 ÿ I10� ÿ 1

4 �I3 ÿ I30�,

I4 ÿ I40 � ÿ 3
2 �I1 ÿ I10� ÿ 3

4 �I3 ÿ I30�, (3)

which follow from the conservation laws. Here, Ii0 � Ii
��
z�0.

The analytic solutions obtained in this way in [1] completely
overlap the range of variations of boundary conditions,
allowing the optimisation of energy-exchange regimes in
any particular situation.

Below, we analyse the domains of existence and pecu-
liarities of periodic self-consistent solutions (cnoidal waves,
see references in [1]) obtained for this problem in [1] and
show that in this case an unusual new type of a multi-
component aperiodic (soliton-like) solution can be obtained.
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The two of its four components are proportional to the real
and imaginary parts of the well-known complex Lorentzian
dependence, which is commonly used to describe the
dispersion of contributions of resonance transitions to
the complex permittivity in the case of homogeneously
broadened lines.

2. Domains of existence and peculiarities
of solutions

To illustrate the type and peculiarities of the exact analytic
solutions of system (1), we consider the case when I10;20 6� 0
and I30 � I40 � 0, i.e. when the Hamiltonian H of system
(1) is zero and the phases jj of complex amplitudes Aj

introduced by the relation Aj(z) � Xj(z) exp�ijj(z)� are
constant (see [1]). Here, the real variables Xj can be both
positive and negative. In this case, two low-frequency
modes A1;2 play the role of two-component pumping used
to generate two high-frequency modes A3;4. Note that the
choice of the zero position on the z axis is conditional and
the argument of any of the solutions presented in [1] can be
arbitrarily shifted. Therefore, to satisfy the boundary
conditions chosen by us, solutions (43) and (44) from [1],
unlike other solutions, will be preliminary shifted along the
z axis by the quarter of a period.

Let us introduce the plane (e;N ) deéned by two parame-
ters e � 3jg2j2=jg1j2 ÿ 15 ÿ 1, and N � I10=I20 5 0, which
describe the relation between nonlinear coupling constants
and the role of boundary conditions for expressions (25),
(26), (32), (33), (43) ë (45) and (47) from [1]. The values of
para-meters e and N used below in calculations are indicated
in Fig. 1 by points with the numbers corresponding to
solutions from [1]. The domains of existence of the analytic
solutions listed above are limited by separatrices in this
plane (Fig. 1):

e0�N � � ÿ1=N, (4a)

e��N � � �2=N �
�
2ÿN� �2�2ÿN ��1=2	. (4b)

In reality the separatrices e�(N ) represent the two branches
of the two-valued solution of the equation N(e) �
8(e� 1)=�e 2 � 4(e� 1)� and, therefore, they are analytically
sewed together at the point (e � 0, N � 2). Because tangents
to separatrices e0(N ) and eÿ(N ) coincide at their inter-
section point (e � ÿ2=3, N � 3=2), they also continue
analytically each other. All this leads to the formation of
two resulting intersecting curves on which the modulus k of
elliptic Jacobi functions sn(x), cn(x); and dn(x) [2], through
which all the periodic solutions of interest to us are
expressed, is zero and unity, respectively (Fig. 1). The
intersection point of these curves is a singularity (see
below), and solutions (32) and (33), (43) ë (45) and (47), and
(25) and (26) from [1] are responsible for domains e > 0,
e < 0 and their interface e � 0, respectively.

Expressions (25), (32) and (43) (in the latter case, after
the shift of the argument by the quarter of a period) in [1]
are responsible for the domain where all these three
solutions can be rewritten in the uniéed form

X1

jA10j
� cn�az�

�
1ÿ

��������������
1� eN
p ÿ 1

2
��������������
1� eN
p sn2�az�

�ÿ1
, (5a)

X2

jA10j
� Nÿ1=2

�
1ÿ

��������������
1� eN
p ÿ 1�N

2
��������������
1� eN
p sn 2�az�

�

�
�
1ÿ

��������������
1� eN
p ÿ 1

2
��������������
1� eN
p sn2�az�

�ÿ1
, (5b)

X3

jA10j
�

���
2
p
�1� eN�ÿ1=4sn�az�dn�az�

�
�
1ÿ

��������������
1� eN
p ÿ 1

2
��������������
1� eN
p sn2�az�

�ÿ1
, (5c)

X4

jA10j
� 1

2

�
3N�1� e�
1� eN

�1=2
sn 2�az�

�
�
1ÿ

��������������
1� eN
p ÿ 1

2
��������������
1� eN
p sn2�az�

�ÿ1
, (5d)

k � �2�
��������������
1� eN
p ÿ 1� �N�2� e��1=2

2�1� eN�1=4
,

a �
����
2

N

r
�1� eN�1=4jg1jjA10j. (5e)

Expressions (26), (33) and (45) in [1] are responsible for the
domain located to the right of separatrices e�(N ) over the
separatrix e0(N ) for e > ÿ2=3, in which the uniéed notation

X1

jA10j
� dn�az�

�
1ÿ 2

e
2� 2e� �2� e� ��������������1� eN

p sn 2�az�
�ÿ1

,

(6a)

X2

jA10j
� Nÿ1=2

�
1ÿ 2

1� e� ��������������
1� eN
p

2� 3e� �2� e� ��������������1� eN
p sn 2�az�

�

�
�
1ÿ 2

e
2� 3e� �2� e� ��������������1� eN

p sn 2�az�
�ÿ1

, (6b)

3
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Figure 1. Gray scale map for the dependence k�e;N � for I10;20 6� 0 and
I30 � I40 � 0. In the plane �e;N � are shown straight lines e � 0 (1) and
e � ÿ1 (2) and separatrices e0�N � � ÿ1=N (6) and e��N � �
�2=N ��2ÿN� �������������������

2�2ÿN �p � (4, 5). The black and white curves corres-
pond to k � 1 and 0. Dotted curve (3) passes through the singular point
(e � ÿ2=3,N � 3=2) and corresponds to k � 1=2.
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X3

jA10j
� 2Nÿ1=2

�
2�1� ��������������

1� eN
p �

2� 3e� �2� e� ��������������1� eN
p

�1=2

� sn�az�cn�az�
1ÿ 2e

�
2� 3e� �2� e� ��������������1� eN

p �ÿ1
sn 2�az�

, (6c)

X4

jA10j
� 2Nÿ1=2

�����������������
3�1� e�p �1� ��������������

1� eN
p �

2� 3e� �2� e� ��������������1� eN
p

� sn2�az�
1ÿ 2e

�
2� 3e� �2� e� ��������������1� eN

p �ÿ1
sn 2�az�

, (6d)

k � 2

�
e
��������������
1� eN
p�

2� 3e� �2� e� ��������������1� eN
p �ÿ ��������������

1� eN
p ÿ 1

� �1=2,
a �

����
2

N

r
�1� eN�1=4

k
jg1jjA10j (6e)

can be also used.
Expressions (44) from [1], shifted by the quarter of the

period along the z axis, are responsible for the domain
located to the left of the separatrix e0(N ) under the
separatrix eÿ(N ) for e < ÿ2=3, where the corresponding
solution can be written in the form

X1

jA10j
�

cn�az�dn�az�
1��2�e�ÿ �������������

1�eNp ÿ1��2�3eÿ�2� e� ��������������1� eN
p �ÿ1

sn 2�az�,

(7a)

X2

jA10j
� Nÿ1=2

�
1� e

��������������
1� eN
p ÿ 1

2� 3eÿ �2� e� ��������������1� eN
p sn 2�az�

�

�
�
1� �2� e�

��������������
1� eN
p ÿ 1

2� 3eÿ �2� e� ��������������1� eN
p sn2�az�

�ÿ1
, (7b)

X3

jA10j
� 2Nÿ1=2

�
2� ��������������1� eN
p ÿ 1�

2� 3eÿ �2� e� ��������������1� eN
p

�1=2

� sn�az�
1��2�e�ÿ �������������

1�eNp ÿ1��2�3eÿ�2� e� ��������������1� eN
p �ÿ1

sn 2�az� ,

(7c)

X4

jA10j
� 2Nÿ1=2

�����������������
3�1� e�p ÿ ��������������

1� eN
p ÿ 1

�
2� 3eÿ �2� e� ��������������1� eN

p

� sn 2�az�
1��2�e�ÿ �������������

1�eNp ÿ1��2�3eÿ�2�e� �������������1�eNp �ÿ1
sn 2�az� ;

(7d)

k �
�ÿ

1ÿ ��������������
1� eN
p ��

2� 3e� �2� e� ��������������1� eN
p �ÿ

1� ��������������
1� eN
p ��

2� 3eÿ �2� e� ��������������1� eN
p ��1=2

,

a �
�ÿ

1� �������������
1� eN
p ��

2� 3eÿ �2� e� ��������������1� eN
p �

2eN

�1=2

jg1jjA10j:

(7e)

Expressions (47) from [1] are responsible for the domain
located below the separatrix e0(N ), in which the indicated
solution can be rewritten in the form

X1

jA10j
� 2Z

Z� 1

dn�az�
1� ��Zÿ 1�=�Z� 1��cn�az� , (8a)

X2

jA10j
� Nÿ1=2

�2� e��Z� 1� ÿ 2

�2� e��Z� 1�

� 1� ���2� e��Zÿ 1� � 2�=��2� e��Z� 1� ÿ 2�	cn�az�
1� ��Zÿ 1�=�Z� 1��cn�az� , (8b)

X3

jA10j
� Nÿ1=2

2

Z� 1

�����������
2Z

2� e

r
sn�az�

1� ��Zÿ 1�=�Z� 1��cn�az� , (8c)

X4

jA10j
� 2Nÿ1=2

�����������������
3�1� e�p

�2� e��Z� 1�

� 1ÿ cn�az�
1� ��Zÿ 1�=�Z� 1��cn�az� , (8d)

k �
�
2� �2� e��Zÿ 1�N

2�2� e�ZN
�1=2

, a �
�������������������
2�2� e�Z

p
jg1jjA10j,

Z �
�
1ÿ 8

1� e

N�2� e�2
�1=2

. (8e)

And énally, the solution at the singularity (e �
ÿ2=3,N � 3=2) can be obtained as the corresponding
limit of the expressions written above, which gives the
rather unusual aperiodic soliton-like solution

X1

jA10j
� 1

1� lz 2
, (9a)

X2

jA10j
� 1���

6
p 2ÿ lz 2

1� lz 2
, (9b)

X3

jA10j
� 2

���
l
p

z

1� lz 2
, (9c)

X4

jA10j
�

���
3

2

r
lz 2

1� lz 2
, (9d)

l � 2

3
jg1j2I10. (9e)

Note that we determined X2;4(z) in (5) ë (9) by using (3) and
took into account the sign of derivatives dA2;4=dz in the
vicinity of points X2;4 � 0.

The speciéc features of analytic solutions (5) ë (8) are
illustrated in Fig. 2, which shows the transformation of the
dependences of amplitudes X1ÿ4 (normalised to jA10j) on the
coordinate z (normalised to aÿ1) with changing parameters e
and N. These dependences correspond to expressions (25)
[expressions (5) of this paper for e � 0], (26) [(6) for e � 0],
(32) [(5) for e > 0], (33) [(6) for e > 0], (45) [(6) for e < 0],
and (47) [(8) of this paper] and to shifted solutions (43) [(5)
for e < 0] and (44) [(7) of this paper] from [1].

It is easy to verify that the most drastic changes in the
type of dependences X1ÿ4(z) occur near separatrices, which
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determined out choice of points for calculations. The
amplitude X4(z) vanishes at the boundary e � ÿ1, and
expressions (7) and (8) pass to classical analytic formulas
describing the generation of the wave A3 by waves A1;2 [3].

Note also that, although all the solutions shown in Fig. 2
are constructed by using the fundamental solutions of the
érst-order Lame equation (see [4]), apart from the period
doubling 2K! 4K, which always occurs in passing from the

(25)

a

i � 4

(33)

d

(47)2

g

(26)

b

(32)

c

(45)

e

(47)1

f
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h

(43)1

i

(44)1

k

(43)2

j
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l
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Figure 2. Evolution of X1ÿ4�z� with changing parameters e and N. The dependences correspond to expressions (25) (a), (26) (b), (32) (c), (33) (d), (45)
(e), and (47) (f ë h) and to shifted solutions (43) (i, j) and (44) (k, l) from [1]. The values of e and N for all curves are indicated in the (e, N) plane by
points with the numbers of the corresponding solutions (see Fig. 1).
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function dn (z; k) with a constant sign to functions sn (z; k)
and cn (z; k) with alternating signs, the period doubling is
also observed for alternating components. Here, K � K(k) is
the total elliptic integral of the érst kind, which determines
both the period of fundamental solutions of the érst-order
Lame equation (i.e. elliptic Jacobi functions [2]) and the
period of analytic solutions described above.

As pointed out above, the two low-frequency modes A1;2

in the case under study play the role of two-component
pumping, which is used to generate two high-frequency
modes A3;4. This means that the question on the possibility
of realisation of energy-exchange regimes with the depletion
of pump waves becomes foremost. It is easy to see that in
the case under study the intensity of at least one of the pump
components almost always vanishes. The only exception is
solution (6) for e > 0 (Fig. 2d) for which the minimal
intensities of the pump components are determined by
the expressions

Imin
1 � I10

�
1ÿ 8�e� 1�

N�e� 2�2
�
, Imin

2 � I20

�
e

2� e

�2
. (10)

The minimal intensity Imin
1 of the érst component in

solutions (6) for e4 0 and (8) for ÿ2=3 < e4 0 is deter-
mined by the same expression [see (10)] and corresponds to
the point at which I2 � 0 (Figs 2e, f). However, solution (8)
for e < ÿ2=3 has already two minima Imin

1 �
I10(eN� 1)=(eN) shifted with respect to each other, which
are located at points for which the intensities I2ÿ4 of other
modes are neither minimal nor maximal (Fig. 2g). Note also
that the dependence I3(z) has similar extrema almost for all
obtained solutions (Figs 2b ë g, i, j). In solutions (5) and (7),
we have Imin

1 � 0 because X1(z) is an alternating function in
this case (see Figs 2a, c, i ë l). The minimal intensity of the
second pump component is determined by the expression

Imin
2 � I20

�
1� eÿ ��������������

1� eN
p

e

�2
. (11)

Obviously due to the complete overlap of the domain of
possible variations of boundary conditions, the obtained
analytic solutions can provide the optimisation of the
conversion eféciency in any particular situation. For exam-
ple, the proper choice of values of e and N according to

solution (45) from [1] near the separatrix eÿ(N ) gives the
maximum conversion eféciency to the frequency o4

(Fig. 2e). As a whole, we can state that the region
corresponding to solutions (5) corresponds to the possibility
of the efécient generation of two modes A3;4. The change in
the values of parameters e and N, resulting in the passage to
the regions corresponding to solutions (6) and (7), allows
one to obtain the predominant generation of only one of the
two high-frequency modes (A4 and A3, respectively). In
solutions of type (8), the generation of three modes (A1;2;4)
occurs simultaneously.

Of special interest is unusual aperiodic soliton-like
solution (9) (Fig. 3). The two components A1;3 of this
solution [see (9a) and (9c)] are proportional to the real
and imaginary parts of the complex Lorentzian dependence,
which usually describes the dispersion of the contribution of
any resonance transition to the complex permittivity in the
case of a homogeneously broadened line. From the math-
ematical point of view, the appearance of the solution of
type (9) in the problem under study is not so unexpected
because it is known that an ordinary differential equation of
the type d2A=dz 2 � aA 3, which is quite similar to the NSE,
apart from solutions expressed in terms of elliptic integrals,
has also a particular solution A � ��������

2=a
p

(zÿ C )ÿ1, where
a � const is a parameter of the problem and C is an
arbitrary constant, which can be purely imaginary [5].
Therefore, the necessary condition for obtaining solution
of this type for system (2) is the absence of the linear term
(jg1j2J1� 3jg2j2J3 � 0) in equations (2a) and (2b), which is
reduced in our conditions to the requirement

e � 2�Nÿ1 ÿ 1�. (12)

Condition (12) is fulélled on dotted curve ( 3 ) in Fig. 1.
This curve passes, of course, through the singular point
(e � ÿ2=3,N � 3=2) at which the unusual solution is rea-
lised. However, it is much interesting that at all the other
points (e;N) in the plane, where this condition is also
fulélled, solutions (5) and (8) are realised [in regions located
to the left of separatrices e�(N ) and below the separatrix
e0(N )] for k � 1=2. In this case, solutions (5), (8), and (9)
prove to be analytically sewed together at the point
(e � ÿ2=3,N � 3=2) due to the matched variation in the
values of parameters k, a and Z in this passage to the limit.

0 2 4 6 8 l 1=2z
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ÿ10 ÿ5 0 5 l 1=2z
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ÿ0:5
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0
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Figure 3. Dependences X1ÿ4�z� at the singular point (e � ÿ2=3;N � 3=2) (a) and two components X1;3 proportional to the real and imaginary parts of
the complex Lorentzian dependence along the entire z axis (b).
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3. Conclusions

We have analysed the domains of existence and peculiarities
of analytic solutions obtained in [1] for the problem of
quasi-synchronous interaction of four plane collinear
monochromatic waves ë modes in a quadratically nonlinear
medium during the cascade frequency up-conversion. It has
been shown that unusual types of multicomponent cnoidal
waves and solitary soliton-like solutions are realised. Two
of the four components of the latter are proportional to the
real and imaginary parts of the classical Lorentzian
dependence which is commonly used to describe the
dispersion of contributions from resonance transitions to
the complex permittivity in the case of homogeneously
broadened lines.

It has been found that due to a complete overlap of the
domain of possible variations in boundary conditions, the
analytic solutions obtained in [1] can provide the optimi-
sation of the conversion eféciency in any particular
situation. Thus, the proper choice of the parameters (e,
N) of the problem in the region corresponding to solution
(5) allows the efécient generation of two high-frequency
modes A3;4. At the same time, the change in the values of
these parameters corresponding to the passage to regions
corresponding to solutions (6) and (7) allows the predom-
inant generation of only one of these modes (A4 or A3,
respectively). The solution of type (8) corresponds to the
simultaneous generation of three modes A1;2;4.
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