
Abstract. Sum-frequency generation from the surface of an
isotropic gyrotropic medium by two normally incident
homogeneously elliptically polarised Gaussian beams is
studied theoretically. Analytic expressions, completely
describing the transverse spatial distribution of the intensity
and polarisation in the cross section of the reêected beam at
the sum frequency, were derived taking into account both the
local and nonlocal contributions of the quadratic nonlinearity
of the medium thicknesses and the nonlinear contribution of
its surface. It is shown that a special selection of the
parameters of the fundamental waves allows one to determine
components of the surface susceptibility tensor.

Keywords: sum-frequency generation, surface, elliptical polarisa-
tion, gyrotropy, spatial dispersion.

1. Introduction

A rapid development of nonlinear optics, which opened to
the world a variety of unusually beautiful physical
phenomena, érst overshadowed for some time the analysis
of changes in polarisations of waves interacting in a
medium (the history of the discovery and investigations of
main nonlinear optical effects is presented in papers [1 ë 3]).
It was assumed initially that the states of their polarisations
can produce only an insigniécant inêuence on classical
effects of nonlinear optics and, hence, a rather time-
consuming theoretical investigation involving the solution
of at least twice as many coupled nonlinear differential
equations than in the approximation that the polarisation
of light remains constant during light propagation, is hardly
justiéed and is of academic interest only. Moreover, such
studies were not stimulated experimentally. The estimates
showed that some polarisation effects could be observed
only at laser radiation intensities quite large for mid-1960s.

Sergey Aleksandrovich Akhmanov never doubted the
importance of constructing nonlinear polarisation optics.
Together with V.I. Zharikov he predicted in 1967 the effect
of nonlinear optical activity [4] ë intensity-dependent
rotation of the polarisation plane of linearly polarised light
falling on a medium with a spatial dispersion of the cubic
nonlinearity. This work stimulated subsequent development
of nonlinear polarised optics at the Moscow State Uni-
versity (researches of N.I. Zheludev, V.A. Makarov and
their disciples) and then at other scientiéc centres [2].

Theoretical and experimental investigations performed
to date make it possible to assert deénitely that the effects of
polarisation self-action and interaction of waves belong to
delicate but widespread effects of nonlinear optics. The use
of the approximation of polarisation wave invariance during
the propagation in theoretical calculations is hardly justiéed
and represents only the érst step to the subsequent
description of nonlinear optical phenomena. A wave in
quantum electronic devices is always elliptically polarised,
the degree of its ellipticity and the inclination angle of the
principal axis of the polarisation ellipse changing during the
propagation through nonlinear crystals because of re-
reêections from smooth surfaces and also because of
resonator effects. Moreover, when waves interact in non-
linear media, their polarisation can change differently at
different points of the light beam cross section [5 ë 7]. In a
number of cases, an elliptically polarised pulse can split into
separate parts, the modulus of the degree of the electric éeld
ellipticity in each part being close to unity. In this case, the
rotation direction of the electric éeld vector in the pulse
centre is opposite to the rotation direction in side parts [8].

The name of S.A. Akhmanov is also associated with the
active application of ideas and methods of nonlinear optics
in laser spectroscopic diagnostics of matter [9]. The exten-
sive list of spectroscopic schemes proposed by Akhmanov
and his disciples involves methods based on the use of
intensity-dependent variations in light polarisation. Being
one of the most advanced, the method for polarisation
measurements [10] allows one to detect rather weak changes
in the degree of ellipticity and the rotation angle of the
principal axis of the polarisation ellipse of the signal wave
and, hence, to obtain spectroscopic data on the matter,
which are unavailable with the help of other investigation
techniques. Additional possibilities are related to the use of
elliptically polarised fundamental waves. The latter, accord-
ing to S.A. Akhmanov, makes it possible to increase the
number of `degrees of freedom'. In other words, one can
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change the degree of ellipticity, the mutual orientation of the
principal axes of polarisation ellipses and other parameters
of the fundamental waves and, thereby to emphasise or
suppress the contribution of local, nonlocal and (in prob-
lems related to the light reêection) surface nonlinear
susceptibilities to the intensity and polarisation of a signal
wave.

The sum-frequency generation (SFG), since the moment
of discovery of this phenomenon, has been one of the most
efécient and widely used investigation methods of surface
properties. At present, the SFG is used in spectroscopy
[11 ë 13], microscopy [14 ë 16], in excitation of surface waves
[17] as well as in studying the order of molecules [18, 19] and
molecular clusters on the medium surface or in a thin élm
deposited on a substrate. The SFG has been recently
actively employed in problems related to the spectroscopy
of vibrational spectra, thus stimulating the development of
different models of radiation interaction with molecules
[18, 20].

The SFG is an effective tool of spectroscopy and
diagnostics of the surface of isotropic gyrotropic media.
Unlike ordinary isotropic media (whose symmetry is
11m), these media consist of chaotically oriented chiral
molecules, have the symmetry group 11, and, therefore,
have a local quadratic susceptibility. In this case, the spatial
dispersion of the quadratic response of the medium volume
(related to the nonlocality of the medium response) and the
quadratic nonlinearity of the surface also provide for the
SFG. Note that the latter two SFG mechanisms will also
take place in an ordinary isotropic medium.

In theoretical papers devoted to the SFG from the
surface of an isotropic chiral medium, various attempts
were made to take into account the effect of the spatial
dispersion of the nonlinear optical response of the matter
[21 ë 28] and the inhomogeneity of the optical properties of
the surface layer [26 ë 28] as well as to show the means of the
experimental separation of contributions to the signal wave,
caused by the surface and the matter volume [26 ë 28].
Calculations, as a rule, were performed in the plane-wave
approximation and the wave vectors of interacting funda-
mental waves lay in one plane of incidence.

The authors of theoretical papers [29, 30] studied for the
érst time the inêuence of the spatial limitation of an incident
elliptically polarised light beam on the second harmonic
generation (SHG), which is a degenerate case of the SFG,
from the surface of an isotropic gyrotropic medium. In [29],
the speciéc properties of SHG were discussed in the case of
the oblique incidence of a two-dimensional (slit) Gaussian
beam, while the authors of [30] solved the SHG problem in
the case of normal incidence of a three-dimensional
Gaussian beam. In both papers special attention was
paid to the accurate consideration of the nonlinear response
of the matter surface (for this purpose modiéed boundary
conditions were used [31, 32]) and the nonlocality of the
nonlinear response of the medium volume.

It was shown in [29] that in the case of the oblique
incidence of a two dimensional beam, its spatial limitation
introduces only a small (proportional to the angle of its
divergence) correction to the expression for the radiation
éeld strength at the doubled frequency, which was obtained
in the plane-wave approximation. It was established later
[33] that in most cases the same can be said about a three-
dimensional Gaussian beam falling at an arbitrary angle on
a nonlinear medium with the parameters varying in a rather

broad range. However, in the case of the normal incidence,
the sum-frequency signal reêected from the surface of the
isotropic chiral medium can emerge only due to the non-
collinear interaction of spatial Fourier components of the
beam [28, 30] (in the plane-wave approximation the SFG is
impossible).

Spectroscopic schemes, in which the SHG is used in
surface diagnostics in the case of normal incidence of
elliptically polarised fundamental waves, allows one to
obtain, with respect to the measured polarisation distribu-
tion in the plane of the transverse signal beam cross section,
separate components of the tensors of nonlocal and surface
nonlinear susceptibilities of the medium. This can be done
[6] by éxing the polarisation states of radiation on specially
selected straight lines in the plane of the reêected beam cross
section at the doubled frequency. We can expect that in the
case of the SFG it will be possible to acquire more data on
the medium.

In this paper, we studied the speciéc character of the
formation of an inhomogeneous polarisation distribution in
the cross section of a sum-frequency beam appearing due to
reêection of two normally incident coaxial elliptically
polarised Gaussian fundamental beams from the surface
of an isotropic gyrotropic medium (the11 symmetry). We
pay special attention to transverse polarisation distribu-
tions, which make it possible to extract spectroscopic
information on the chiral medium or its surface.

2. Method for énding the electric éeld strength
in the reêected sum-frequency wave and solution
of the problem in quadratures

A reêected beam at the sum frequency o3 � o1 � o2

emerges due to nonlinear optical responses of the surface of
a medium and its volume caused by monochromatic waves
at frequencies o1;2. The érst of them is related to the
difference in the symmetry of the surface layer of the
isotropic gyrotropic medium (group1 ) from the symmetry
of its thickness (group 11 ). We will describe it by using
the modiéed boundary conditions for the electromagnetic
éeld [31]. They are obtained by solving Maxwell's equations
in the surface layer of the medium with the effective
thickness d0.

Let us couple the coordinate system with the surface of
the medium under study so that the z axis be directed
perpendicular to the surface inside the medium and axes x
and y be on the surface. In the érst approximation in the
small parameter m ' d0=lm, where lm � 2pc=om and
m � 1; 2; 3, these conditions relating the vector components
of the strength E and inductions D Ë B of the electric and
magnetic éelds at the frequency om in vacuum (the super-
script `v') and in matter (the superscript `t') with the
nonlocality of the nonlinear optical response have the
form at the interface z � 0 [31]:

E �v�tan�om� ÿ E �t�tan�om� �
4p
iom

gradtanin�om�;

D �v�n �om� ÿD �t�n �om� �
4p
iom

div itan�om�; (1)

B �v��om� ÿ B �t��om� �
4p
c
�n� itan�om��:
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Here, n is the surface-perpendicular unit vector directed
opposite to the z axis from the medium to the vacuum; c is
the velocity of light; subscripts `tan' and `n' denote
tangential and normal components of the vectors E, D,
B Ë i. The latter can be interpreted as a surface current
density of coupled charges [31, 32] and in the general case
in the érst approximation in the parameter m it can be
represented in the form of expansion in powers E �v�:

i � k̂ �1�E �v� � k̂ �2� : E �v�E �v� � k̂ �3� �: E �v�E �v�E �v� � :::; (2)

where the material tensors k̂ �n� characterise the surface
response of the nonlinear medium to external electro-
magnetic éeld. The reêected sum-frequency signal caused
by the thin surface layer is related to the second term in this
sum:

ii�o3� � k �2�ikl �o3;o1;o2�E �v�k �o1�E �v�l �o2�: (3)

To énd the nonlinear optical response of the medium
thickness caused by monochromatic waves at frequencies
o1;2, we will use the phenomenological approach and will
write the expression for the nonlinear polarisation at the
frequency o3 in the form:

PNL
i �o3� � w �2�ijk �o3;o1;o2�E �t�j �o1�E �t�k �o2�

� g �2�1ijkl �o3;o1;o2�
qE �t�k �o1�

qxj
E
�t�
l �o2�

� g �2�2ijkl �o3;o1;o2�E �t�k �o1�
qE �t�l �o2�

qxj
: (4)

Here, ŵ �2� is the tensor of the local quadratic susceptibility
of the medium volume; ĝ �2� is the tensor describing weak
spatial dispersion appearing due to the nonlocality of the
quadratic response of the medium volume. The consid-
eration of the spatial dispersion and determination of the
material tensor ĝ �2� describing it at a small (compared to
the length of the propagating wave) scale of the optical
response nonlocality is described in detail in [27 ë 30]. Note
that, unlike ŵ �2�, tensors ĝ �2�1;2 describing the spatial
dispersion of the quadratic nonlinearity are nonsymmetric
with respect to the permutation of two last subscripts with a
simultaneous permutation of frequency arguments.

Consider weakly diverging monochromatic fundamental
beams (having the common symmetry axis, which coincides
with the z axis) with arbitrary intensity and polarisation
distributions, which fall collinearly on the surface of the
isotropic gyrotropic medium. By assuming that the char-
acteristic changes in the electric éeld strength in the cross
section planes of incident, reêected and refracted beams
occur at distances much larger than lm, we will represent
E �v;t�(om; r; z � 0), by using the Fourier integral, in the
form of superposition of monochromatic plane waves:

E �v;t��om; r; z � 0� �
� �

~E �v;t��om; km?� exp�ikm?r�dkm?, (5)

where km? is the component of the wave vector lying in the
xy plane. We will assume below that absorption is absent in
the medium and all the spatial Fourier components
~E �t�(om; k1;2?) have real wave vectors. Taking into account
the smallness of the angular divergence of the fundamental

beams, in determining the éeld we will allow only for linear
terms in k1;2;3? and in exponents (where they are absent) ë
quadratic terms. ~E �v�(o1;2; k1;2?) and ~E �t�(o1;2; k1;2?) ente-
ring (5) can be readily expressed via Fourier transforms of
the éelds of incident waves ~E?(o1;2; k1;2?) by setting
i(o1;2) � 0 in (1) [in this case, conditions (1) become
conventional boundary conditions] and passing in them to
spatial Fourier components. As a result, by neglecting
PNL
i (o1;2), we obtain the relations:

~E �v�? �o1;2; k1;2?� � ~E �t�? �o1;2; k1;2?�

� 2

1� n1;2
~E?�o1;2; k1;2?�; (6)

~E �v�z �o1;2; k1;2?� � e1;2 ~E �t�z �o1;2; k1;2?�

� ÿe1;2
2

�1� n1;2�n1;2k1;2
k1;2? ~E?�o1;2; k1;2?�; (7)

where e1;2 is the dielectric constant of the medium at
frequencies o1;2 respectively; n1;2 � �������e1;2

p
are the refractive

indices; ~E(o1;2; k1;2?) are spatial Fourier components of the
electric éelds of fundamental beams falling on the medium.
Recall that ~E �v�(o1;2; k1;2?) � ~E(o1;2; k1;2?)� ~E �r�(o1;2; k1;2?),
where the superscript `r' corresponds to the reêected wave.
Knowing the latter and representing polarisation PNL

i (o3)
and current i(o3) similarly to (5), in the form of Fourier
integrals and also taking into account that the wave vector
component lying in the xy plane is k3? � k1? � k2?, we can
énd the expressions for the spatial Fourier components of
polarisation ~P �NL�(o3; k3?) and current ~i(o3; k3?):

~ij�o3; k3?� �
� �

k �2�jkl �o3;o1;o2�

� ~E
�v�
k �o1; k1?� ~E �v�l �o2; k3? ÿ k1?�dk1?; (8)

~P
�NL�
i �o3; k3?� � w �2�ijk �o3;o1;o2�

�
� �

~E
�t�
j �o1; k1?� ~E �t�k �o2; k3? ÿ k1?�dk1?

� g �2�1ijkl �o3;o1;o2�
� �

k1j ~E
�t�
k �o1; k1?� (9)

� ~E
�t�
l �o2; k3? ÿ k1?�dk1? � g �2�2ijkl �o3;o1;o2�

�
� �
�k1j ÿ k3j� ~E �t�k �o1; k1?� ~E �t�l �o2; k3? ÿ k1?�dk1?:

One can see that expressions (8) and (9) represent
convolutions of spatial Fourier éeld components of the
waves incident on the medium, which are calculated by
integration with respect to all possible values of k1? and
k2? (their sum is equal to k3?).

To calculate the spatial Fourier components of the
electric éeld strength of the reêected wave at the sum
frequency ~E �r�(o3; k3?), it is necessary to substitute into
modiéed boundary conditions (1) spatial Fourier compo-
nents (8) of the surface current density of coupled charges
~i(o3; k3?) and the electric éeld induction
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~D �t��o3; k3?� � e3 ~E �t��o3; k3?� � 4p ~P �NL��o3; k3?�; (10)

satisfying the equation div ~D �t�(o3; k3?) � 0 and then to
solve the derived system of algebraic equations. In (10), e3 is
the dielectric constant of the medium at the frequency o3.
To énd ~D �t�(o3; k3?), it is necessary to know the spatial
Fourier components ~E �t�(o3; k3?), which can be determined
by solving in the éxed-éeld approximation the wave
equation with nonlinear polarisation (9) in the right-hand
side. As a result, we obtain expressions for spatial Fourier
components constituting the electric éeld strengths of the
reêected sum-frequency wave near the medium surface:

~E �r�? �k3?� � ÿ
4p
n3

�
1

c

�
~i? �

n3k3?
k
�r�
3

~iz

�

� o3

n1o1 � n2o2 � n3o3

�
~P �NL�
? � k3?

n3k
�r�
3

~PNL
z

��
; (11)

~E �r�z �o3; k3?� �
1

k
�r�
3

�k3? ~E �r�? �o3; k3?��; (12)

where n3 � ����
e3
p

, Â k
�r�
3 � o3=c. One can see from the

expressions derived that the longitudinal component
~E �r�z (o3; k3?) has a higher order of smallness with respect
to the angular divergence of the beam than the transverse
components ~E �r�? (k3?). By substituting ~E �r�? (k3?) and
~E �r�z (o3; k3?) into (5) and performing integration, we can
énd in quadratures the intensity and polarisation distribu-
tion in the plane of the reêected beam cross section at the
sum frequency near the medium surface. It is pertinent to
note that it can be done for any distributions of the electric
éeld strengths of the fundamental beams with a small
angular divergence.

3. Case of incidence of homogeneously
elliptically polarised Gaussian beams
on the medium

Consider two medium-incident fundamental beams with the
Gaussian intensity proéle

E�o1;2; x; y; z� �
�
e1;2 �

i

k
�r�
1;2

ez�e1;2H�
�

� E01;02

b1;2�z�
exp

�
ÿ x 2 � y 2

w 2
1;2b1;2�z�

ÿ io1;2t� ik1;2z

�
: (13)

which are homogeneously elliptically polarised in the plane
of the cross section. Here, je1;2j2 � 1 are complex unit
vectors of polarisation (their concrete form will be
determined below); b1;2(z) � 1ÿ iz=l1;2; l1;2 � k1;2w

2
1;2=2

are diffraction lengths; E01;02 are the amplitudes, o1;2 are
the frequencies, w1;2 are the half-widths of the beams of
fundamental radiation; k1;2 � o1;2=c are the corresponding
wave numbers. Expression (13) contains a longitudinal
component of the electric éeld strength in the form for
which in the érst approximation in the parameter l1;2=w1;2

(the angles of divergence of incident beams are assumed
small, w1;2 4 l1;2) in vacuum the necessary condition

divE�o1;2� � 0 (14)

is fulélled. Note that the planes of beam waists given by
expression (13) coincide with the plane z � 0.

Elliptically polarised radiation is completely character-
ised by two complex or four real parameters. One can select
circularly polarised éeld components Em� � Ex(om)�
iEy(om) or Stokes parameters. However, in our problem
it is convenient to use the following four parameters: the
intensity Im � (jEm�j2 � jEmÿj2)=2, the degree of ellipticity
Mm � (jEm�j2 ÿ jEmÿj2)=(jEm�j2 � jEmÿj2), the rotation
angle of the principal axis of the polarisation ellipse
Cm � 1

2
argfEm�E

�
mÿg and the angle specifying the orienta-

tion of the electric éeld vector at a éxed instant of time,
Fm � argfEm� � E �mÿg. In homogeneously polarised beams,
M, F and C are independent of transverse coordinates.
Recall that M changes from ÿ1 (left-hand circular polar-
isation) to �1 (right-hand circular polarisation) by passing
through zero (linear polarisation), while C ë from 0 to p
(the states 0 and p are equivalent).

It is easy to show that in this case, unit vectors em
entering (13), without the loss of generality and assuming
that F(o1;2) � 0, can be written in the form:

em � ��1ÿM0m�1=2 exp�ÿiCm�e�

� �1�M0m�1=2 exp�iCm�eÿ�=
���
2
p

; (15)

where je�j2 � jeÿj2 � 1 and (e�e
�
ÿ� � 0; M01 and M02 are

the degrees of ellipticity of radiation in homogeneously
polarised beams incident on the medium; the angles C1 and
C2 are given by the orientation of the principal axes of their
polarisation ellipses.

After calculating, using (13), the spatial Fourier com-
ponents of the electric éeld strengths of incident beams and
deriving with their help expressions for ~i and ~P �NL�, we will
write the expression for ~E �r��k3?� by using (11) and (12).
After integrating it in all possible values of k3?, we will énd
the éeld of the reêected beam at the frequency o3 in the
form:

E
�r�
� �o3; r;j; z� � ÿD�r; z�fexp��ij���C0� ÿ C2���

� ��1�M01��1�M02��1=2 exp��i�C1 ÿC2��

� �C0� ÿ C1�)��1�M01��1�M02��1=2 exp��i�C1 ÿC2���

ÿ exp��ij��C1� � C2�� ��1�M01��1�M02��1=2

� exp��i�C1 �C2��g; (16)

where x � r cosj; y � r sinj; r and j are the polar radius
and angle;

D�r; z� � 8
���
2
p

piE01E02

�1� n1��1� n2��1� n3�o3w 2
3

r

b 2
3 �z�

� exp

�
ÿ r 2

w 2
3 b3�z�

ÿ i�k3z� o3t�
�
; (17)

w 2
3 � w 2

1w
2
2 =�w 2

1 � w 2
2 �; b3�z� � 1ÿ iz=l3; l3 � k3w

2
3 =2;

k3 � o3=c. The coefécients C0�, C1� and C2� in expression
(16) depend on the medium parameters, on o1=o2, w1=w2

and have the form

C0� � n3b1 � i�n3b7 � xow=n3� � ixo��w 2
2 g1 � w 2

1 g2�
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��w 2
1 � w 2

2 �ÿ1 � �n1o1g1 � n2o2g2�=n3o3�;

C1� � �l3=l1�fn1b4 � i�n1b6 � xow=n1� � ixog4
(18)

� ��n2l2 ÿ n1l1�=n2l2��n2o2=n1o3�g;

C2� � �l3=l2�fn2b3 � i�n2b5 � xow=n2� ÿ ixog3

� ��n2l2 ÿ n1l1�=n1l1��n1o1=n2o3�g:

Here, xo � o3=(n1o1 � n2o2 � n3o3); w is the constant
determining all nonzero tensor components of the quadratic
response of the medium thickness w �2�ijk � (w=c)eijk; eijk is the
Levi ëCivita symbol. Expression (18) contains six out of
seven independent tensor components of the quadratic
response of the medium surface k̂ �2�(o3): b1 � k �2�zxx � k �2�zyy,
b2 � k �2�zzz , b3 � k �2�yyz � k �2�xxz, b4 � k �2�xzx � k �2�yzy, b5 � k �2�xyz �
ÿk �2�yxz; b6 � k �2�yzx � ÿk �2�xzy, and b7 � k �2�zxy � ÿk �2�zyx. These
components are speciéed in the crystal-physical coordinate
system coinciding with xyz (because the medium itself and
its surface layer are isotropic, an arbitrary choice of
directions of x and y axes is possible). The same expression
includes tensor components multiplied by o3, which
characterise the spatial dispersion of the quadratic optical
response of the medium volume: g1;2 � o3g

�2�1;2
xxyy ,

g3 � o3g
�2�1
xyxy and g4 � o3g

�2�2
xyyx. Let us emphasise that

expressions (16) ë (18) also contain terms found in the
érst approximation with respect to the parameter lm=wm.

If ĝ �2�1 � ĝ �2�2 � 0, then C0;1;2� � C �0;1;2ÿ. In this case, if
the polarisation of incident waves is linear, the sum-
frequency signal is also linearly polarised at all the points
of the reêected beam cross section.

In the case of equal degrees of ellipticity of incident
beams and n1l1 � n2l2, expression (16) is considerably
simpliéed. It is easy to notice that in this case the sum-
frequency signal is independent of the tensor ŵ �2� at equal
orientations of principal axes of polarisation ellipses of
incident waves C1 and C2. If jC1 ÿC2j � p=2, i.e. the
principal axes of these ellipses are mutually perpendicular,
the sum-frequency éeld is independent of the tensor
components ĝ �2�1;2.

The latter circumstance allows one to distinguish the
response of the medium surface from the response of its
volume. For example, if ŵ �2� � 0, due to the presence of the
symmetry centre, the absence of dispersion in the frequency
rage employed or other reasons, the choice of C1 and C2,
satisfying the condition jC1 ÿC2j � p=2, guarantees the
complete absence of the contribution of the medium volume
to reêected radiation at the sum frequency.

Expression (16) allows one to calculate the intensity
I3(r;j; z), the degree of ellipticity M3(r;j; z) and the
rotation angle of the principal axes of the polarisation
ellipse C3(r;j; z) of radiation at the sum frequency. If the
beams incident on the medium are circularly polarised in
opposite directions (M01 � ÿM02 � �1), then M3 � ~M3,
where the constant

~M3 � �jC2�j2 � jC1�j2 � �C1�C
�
0� � c:c:�

��C2�C
�
0� � c:c:��2jC0�j2 � jC2�j2 � jC1�j2

ÿ�C1�C
�
0� � c:c:� ÿ �C2�C

�
0� � c:c:��ÿ1; (19)

and the rotation angle of the principal axis of the
polarisation ellipse C3 differs from j by the constant:

C3 � j� 0:5arg�jC0�j2 ÿ C2�C
�
0�

ÿC0�C
�
1� � C2�C

�
1��: (20)

Figure 1 illustrates this case when each ellipse contains
information on the electromagnetic éeld at the point of the
beam cross section corresponding to the centre of the
depicted ellipse. The radiation intensity in it is proportional
to the sum of squares of lengths of its semiaxes, and M3

and C3 coincide with analogous parameters of the ellipse in
the égure. The points at its boundary indicate the direction
of the electric éeld vector at the ellipse centre at the instant
t � k

�r�
3 z1=o3. In the case depicted in Fig. 1, the electric éeld

vector rotates counterclockwise along the ellipses.
The electromagnetic éeld distribution in Fig. 1 can

change rather strongly with varying o1=o2 and w1=w2,
which is shown in Fig. 2. This égure presents the depend-
ences of ~M3 on o1=o3 and w1=w2. One can see that with
increasing o1=o3, ~M3 can change from ÿ1 to �1. If
k̂ �2�(o3) � 0 and n1l1 � n2l2, ~M3 � 0, and C3 � j. In this
case, the sum-frequency beam is radially polarised (Fig. 3).
This distribution of the intensity and polarisation appears in
some other particular cases.

Analysis of the dependence M3(j) shows that the
equation M3(j) � 0 is quadratic with respect to tanj. If
C1 � C2 � 0 and M01 �M02 � 0, its érst root is j01 � p=2,
and the second root j02, is given by the expression

j02 � ÿ arctanf���w 2
2 g1 � w 2

1 g2�=�w 2
1 � w 2

2 �

� �n1o1g1 � n2o2g2�=n3o2 � l3�n2l2 ÿ n1l1��

� �n1o1g3 ÿ n2o2g4�=n1n2l1l2o3��n2b5=l2 ÿ n1b6=l1�

ÿ1:5 ÿ1:0 ÿ0:5 0 0.5 1.0 x=w3

ÿ1:0

ÿ0:5

0

0.5

1.0

y=w3

Figure 1. Intensity and polarisation distribution in a sum-frequency
beam for the following parameters of incident radiation and nonlinear
medium: M01 � 1, M02 � ÿ1, b1 � b3=3 � b4 � b5 � ÿb6=2 � 2b7, g1 �
2g2=3 � 5g3=6 � 4g4=5 � b1; w � b1, n1 � 1:26, n2 � 1:3, n3 � 1:34, o1 �
0:4o3, w1=w2 � 2.
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�o3 w�n1l1 ÿ n2l2�=�n1o1 � n2o2 � n3o3�n1n2l1l2��

� ���w 2
2 g1 � w 2

1 g2�=�w 2
1 � w 2

2 � � �n1o1g1

� n2o2g2�=n3o3��n1b4=l1 � n2b3=l2� ÿ n3b1

��n1l1 ÿ n2l2��n1o1g3 ÿ n2o2g4�=n1n2l1l2o3�ÿ1g: (21)
Figure 4a shows the intensity and polarisation distribu-

tion corresponding to this case in the plane of the reêected
beam cross section at the sum frequency. One can clearly see
four sectors obtained due to intersection of straight lines
j � j01 and j � j02 at the point with the coordinates
(0; 0; z). Radiation within each of them is elliptically
polarised and at the boundaries ë linearly polarised. In
this case, the rotation directions of the electric éeld vectors
at the points lying in adjacent sectors are different (white
and black ellipses).

The values of b3, b4, b5 and b6 can be found by realising
the sum-frequency generation from the thin layer of chiral
molecules deposited on the isotropic substrate (ŵ �2� � 0), the
spatial dispersion of the quadratic nonlinearity of the
material can be neglected. Consider érst incident beams
that are uniformly linearly polarised in the cross section
plane with parallel polarisation planes (C1 � C2 � 0 and
M01 �M02 � 0). In this case, M3(j) � 0 and the distribu-
tion of the rotation angles of the principal axes of the

polarisation ellipses at the sum frequency has a number of
features (see Fig. 4b). In particular, two straight lines,
j � p=2 and j � j � exist in the beam cross section, where

j � � arctan��n1o2w
2
2 b6 ÿ n2o1w

2
1 b5�

� �n1o2w
2
2 b4 ÿ n2o1w

2
1 b3�ÿ1�: (22)

The electric éeld vector on these straight lines is collinear to
them. n1=n2 and o1=o2 being invariable, a special choice of
the ratio w1=w2 achieved by focusing the incident beams
allows one to realise the situation, when j � � arctan (b6=b4)
(at w 2

1 5w 2
2 ) or when j � � ÿ arctan (b5=b3) (at w

2
1 4 w 2

2 ).
If now we change the polarisation of the incident beams
into the circular one with the same handedness of the
rotation direction of the electric éeld vector, other
parameters being the same, the intensity I3(r;j; z) will
have the form

I3�r; z1� � 2jD�r; z�j2�o3w
2
3 �2f�n2b3=�o2w

2
2 �

� n1b4=�o1w
2
1 ��2 � �n2b5=�o2w

2
2 � ÿ n1b6=�o1w

2
1 ��2g: (23)

If w 2
1 5w 2, I3 depends only on the components b4 and b6:

I3�r; z� � 2jD�r; z1�j2n 2
1 �o 2

3 =o
2
1 ��b 2

4 � b 2
6 �: (24)

a b

~M3

ÿ1:0
ÿ0:5

0

0.5

0 1 2 w 2
1 =w

2
2

~M3

ÿ1:0
ÿ0:5

0

0.5

0 0.25 0.50 o1=o3

Figure 2. Dependences of ~M3(o1=o3) at w1=w2 � 0:5 (a) and
~M3(w

2
1 =w

2
2 ) at o1=o3 � 0:4 (b); M01 � 1, M02 � ÿ1, b1 � b3=3 �

b4 � b5 � ÿb6=2 � 2b7, g1 � 2g2=3 � 5g3=6 � 4g4=5 � b1; w � b1, n1 �
1:26, n2 � 1:3, n3 � 1:34:

ÿ1:5 ÿ1:0 ÿ0:5 0 0.5 1.0 x=w3

ÿ1:0

ÿ0:5

0

0.5

1.0

y=w3

Figure 3. Intensity and polarisation distribution in a sum-frequency
beam at M01 � 1, M02 � ÿ1, b1;2;3;:::;7 � 0, g1 � 2g2=3 � 5g3=6 �
4g4=5 � b1; n1 � 1:26, n2 � 1:3, n3 � 1:34, o1 � 0:4o3, w 2

1 =w
2
2 �

n2o2=(n1o1) � 1:548.

y=w3

ÿ1:5 ÿ1:0 ÿ0:5 0 0.5 1.0 x=w3

ÿ1:0

y=w3

ÿ0:5

0

0.5

1.0

ÿ1:5 ÿ1:0 ÿ0:5 0 0.5 1.0 x=w3

ÿ1:0

ÿ0:5
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0.5

1.0

a

b

Figure 4. Intensity and polarisation distribution in a sum-frequency
beam plotted for w 2

1 =w
2
2 � n2o2=n1o1 � 1:548, w � b1, b5 � b1 �

g1 � 2g2=3 � 5g3=6 � 4g4=5 (a) and b5 � 2b1, g1;2;3;4 � 0, w � 0,
w1=w2 � 0:1 (b); M01 �M02 � 0; C1 � C2 � 0, b1 � b3 � b4=2 �
ÿb6=2 � 2b7, n1 � 1:26, n2 � 1:3, n3 � 1:34, o1=o3 � 0:4, g1 � 2g2=3 �
5g3=6 � 4g4=5 � b1.
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Figure 4b was plotted for these parameters. Otherwise,
when w 2

1 4w 2
2 , the intensity I3 has the form

I3�r; z� � 2jD�r; z1�j2n 2
1 �o 2

3 =o
2
1 ��b 2

3 � b 2
5 �; (25)

i.e. depends only on b3 and b5.
Thus, by using érst linearly and then circularly polarised

incident beams, i.e. experimentally determining the angle
j � � arctan (b6=b4) [or j � � ÿ arctan (b5=b3)] and I3 for
different o1;2, we can directly estimate the tensor compo-
nents of the surface quadratic nonlinearity of the isotropic
gyrotropic medium b3, b4, b5 and b6.

4. Conclusions

In this paper we have derived analytically expressions
describing the intensity and polarisation distribution in the
cross section of a sum-frequency beam reêected from the
surface of an isotropic gyrotropic medium in the case of the
normal incidence of elliptically polarised Gaussian funda-
mental beams. In calculations we have taken into account
both the local and nonlocal contributions of the quadratic
nonlinearity of the medium thickness and the nonlinear
contribution of its surface in the generated signal. The
corresponding selection of polarisations of fundamental
waves makes it possible to distinguish the contribution of
the medium surface from the contribution of its volume.
The peculiarities of the polarisation distribution appearing
in this case in the cross section plane of the signal beam
allow one to draw conclusion about the character of the
nonlinear response of the medium and in a number of cases
extract quantitative information about tensor components
characterising the quadratic nonlinearity of the surface.

We should keep in mind that the polarisation distribu-
tion in the sum-frequency beam can rather strongly vary in a
small range. This, on the one hand, can complicate
interpretation of experimental results (the discussion of
the possibility to observe transverse intensity and polar-
isation distributions similar to that described in this paper is
presented in [5, 6]) and, on the other hand, makes it possible
to speak about the possible vistas of the effect considered
from the point of view of formation of nonuniformly
polarised light beams.
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