
Abstract. The conditions of existence of surface electro-
magnetic waves with negative and zero group velocities
propagating in a thin metal élm bounded by dielectric media
with different refractive indices are found. Analytic expres-
sions are derived to determine the group velocities of such
waves, which are of interest for calculating and optimising
optical systems of insulator ëmetal ë insulator type.

Keywords: surface plasmon ë polaritons, plasmonics, zero group
velocity, backward waves.

1. Introduction

It is well known that the dispersion relation for surface
plasmon ë polaritons (SPPs) at the interface of two semi-
inénite media has one branch, i.e. the only value of the
frequency o corresponds to each value of the wave vector
kx [1 ë 3]. However, if we consider the élms of énite
thickness, which are bounded from two sides by the media
with other values of the refractive index, the shape of the
dependence o(kx) for SPPs substantially changes. The
dispersion relation for SPPs propagating in thin metal élms
is decomposed into two branches [1 ë 4]. Below, we will
denote these branches by o� and oÿ. The high-frequency
branch o� corresponds to the antisymmetric mode, while
the low-frequency branch oÿ ë to the symmetric mode. By
the antisymmetric mode is meant the mode for which the
component of the electric éeld, parallel to the élm surface,
changes the sign as a function of the transverse coordinate.
If the élm is thin enough, i.e. the product kpd is rather small
(d is the élm thickness; kp � op=c; op �

����������������������
4pnee 2=me

p
is the

plasma frequency; ne is the electron density; e is the electron
charge; me is the electron mass; c is the velocity of light in
vacuum), the group velocity for the antisymmetric mode
can be positive, zero or negative [5, 6] at the corresponding
values of kx. Note that the presence of such modes for a

number of plasma waveguides [7, 8] and composite wave-
guides with the negative refractive index is typical [9].

In this paper, we analyse in detail the dispersion relation
for SPPs in insulator ë thin metal élm ë insulator (IMI)
structures with the following exposure of conditions under
which the SPP group velocity for such a thin-élm waveguide
is positive, negative or zero. We consider the general case,
when the dielectric media bounding the thin metal élm can
have different refractive indices. Based on the derived
theoretical relations, we perform calculations for a silver
thin-élm waveguide. We restrict our considerations to the
lossless model, which is done to reveal the typical pecu-
liarities of the dispersion relation and expressions for the
SPP group velocity. In addition, if the path length of SPPs is
not taken into account, this model well describes other
metals used in plasmonics, for example gold, and allows one
to achieve rather accurate numerical results.

2. Dispersion equation for SPPs in IMI
structures

The dispersion relation for SPPs propagating along the
smooth interface of two semiinénite media with the
dielectric constants e1 and e2 has the form k1e2 � ÿk2e1
[2], where

ki �
����������������������������
k 2
x ÿ �o=c�2ei

q
(1)

is the decay constant (i � 1; 2). Within the Drude model
e1(o) � er ÿ o 2

p=o
2 (here, er is the constant taking into

account the interband transition in a metal), and at large kx
we obtain that o tends to osp � op(er � e2)

ÿ1=2. In this case,
the group velocity vg � do=dkx is positive for all values of
kx.

Consider the dispersion relation for a élm of énite
thickness bounded from two sides by media with different,
in the general case, refractive indices. We will apply the
geometry of the problem shown in Fig. 1, where a � d=2 is
half the élm thickness. The dielectric constant of the metal is
e1 < 0. The dielectric constants e2 and e3 of nonconducting
media bounding the élm will be assumed positive and
weakly dependent on the frequency. In the Cartesian
coordinate system (Fig. 1) all the éelds will be sought for
in the form of generalised plane waves of type
V � V exp (ÿ iot� ikxx� ikzz) ([10], Ch. 1). The disper-
sion equation for SPPs propagating in a thin élm is written
in the form [1 ë 4]
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exp�ÿ4k1a� �
k1e2 � k2e1
k1e2 ÿ k2e1

k1e3 � k3e1
k1e3 ÿ k3e1

; (2)

where the decay constants ki are found from (1).
For the case e2 � e3 expression (2) can be simpliéed and

represented in the form of two equations for two branches.
The érst equation corresponds to the antisymmetric mode
o�;

tanh�k1a� � ÿ
k2e1
k1e2

; (3)

and the second equation describes the symmetric mode oÿ;

tanh�k1a� � ÿ
k1e2
k2e1

: (4)

In this case, two values of the frequency o correspond at
once to each value of kx.

It is obvious that exp(ÿ4k1a ) ' 0 for a rather thick élm
and equation (2) is equivalent to the expression (k1e2�
k2e1) (k1e3 � k3e1) � 0. In this case, the dispersion equation
describes two independent branches: the érst one corre-
sponds to the SPPs at the interface of two semiinénite media
with the dielectric constants e1 and e2, while the second one
ë to the interface of media with e1 and e3, i.e. SPPs excited
at the lower and upper boundaries of the élm are not
coupled with each other.

Let us analyse dispersion relation (2) at large kx. For the
case e2 � e3 at kx !1 we obtain that o! osp, and at
e2 6� e3 we have o! o�sp � op�er� max (e2; e3)�ÿ1=2 for the
branch o� and o! oÿsp � op�er� min (e2; e3)�ÿ1=2 for the
branch oÿ (Fig. 2). Note that the case er � 1 is well
described, for example, in review [3]. For rather thick
élms the limiting values of o at kx !1 are the same,
which is obviously equivalent to the following assumption:
at large kx the éelds of surface waves at both interfaces are
not overlapped, i.e. the penetration depth of the electro-
magnetic éeld into the élm is much smaller than its width.

Consider the coordinate plane kx, o (Fig. 2). Of interest
is only the region, where o < op=

����
er
p

(i.e. e1 < 0). For

convenience we assume below that e2 < e3. For all points in
region I, the decay constants k2 and k3 [see (1)] take only the
imaginary values, which corresponds to waves propagating
from the élm, and, hence, only radiation modes, which are
of no interest to us, lie in this region. In region II, k2 is a real
quantity, while k3 is imaginary, i.e. in this case, radiation
into the half-space with the dielectric constant e3 takes place.
Guided (nonradiative) modes, which present interest, lie in
region III, where the decay constants k2 and k3 are real
quantities.

Therefore, guided modes can be excited by using the
scheme, similar to the Otto scheme (or the three-layer
Kretchmann scheme) (Fig. 3); in this case, the dielectric
constant of the prism should satisfy the condition epr >
max (e2; e3), because the fulélment of this condition makes it
possible to enter region III of the plane kx, o with the
guided modes. The thickness s of the layer in such experi-
ments should be of the order of the wavelength in a medium
with the dielectric constant e2. Note at the same time that at
a rather large thickness of the élms it is possible to assume
that guided modes will already lie in region II. This is

e3

e2

e1

0 Ex

0 x

z

a

ÿa
AS

S

Figure 1. Scheme of a waveguide IMI structure. Dashed and dash-and-
dot curves show the spatial distribution of the éeld Ex (S ë for a
symmetric mode and AS ë for an antisymmetric mode).
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Figure 2. Dispersion dependences of SPPs for a thin metal élm (see the
description of regions I, II, III in the text).
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Figure 3. Scheme of excitation of SPPs on a thin metal élm.
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explained by a small penetration depth of SPP éelds, excited
at each interface, into the élm compared to its thickness.

Solving Maxwell's equations for the conéguration
depicted in Fig. 1, we énd the spatial éeld distribution of
SPPs propagating in thin metal élms. We merely consider
TM waves (p polarisation) because surface waves exist only
for them. The complex amplitude of the magnetic éeld is
written in the form

Hy � A exp�ÿk3z� exp�ikxx� (5)

for z5 a,

Hy �
k1e3 ÿ k3e1

2k1e3
A exp�ÿ�k3 � k1�a� exp�k1z� exp�ikxx�

� k1e3 � k3e1
2k1e3

A exp��k1 ÿ k3�a� exp�ÿk1z� exp�ikxx� (6)

for ÿa4 z < a,

Hy �
k1e3 � k3e1
k1e2 ÿ k2e3

e2
e3
A exp��k2 ÿ k3 ÿ 2k1�a�

� exp�k2z� exp�ikxx� (7)

for z < ÿa.
The éelds Ex and Ez can be easily found from Maxwell's

equations. In these equations and everywhere below ki are
determined from (1) and k � o=c is used to reduce the
notation. One can see from (5) that the quantity A means
the magnetic éeld amplitude Hy at x � a multiplied by
exp (k3a).

3. Conditions of existence of surface
electromagnetic waves with negative and zero
group velocities

As was shown in [5, 6, 8], backward surface waves, whose
energy transfer rate is directed opposite to the phase one,
are excited in IMI structures. Let us establish the conditions
of existence of backward waves and waves with the zero
group velocity in the system presented in Fig. 1. The
expression for the x component of the Umov ë Poynting
vector in the complex form is written as

Sx � ÿ
c

8p
EzH

�
y : (8)

The value of the ordinary Umov ëPoynting vector averaged
per oscillation period has the form

�Sx � Re�Sx�: (9)

The group velocity is negative if the general energy êux is
directed opposite to the phase velocity, which can be
written in the form:� �1

ÿ1
�Sxdz < 0; (10)

and equal to zero, if the general energy êux is equal to zero,
i.e.

� �1
ÿ1

�Sxdz � 0: (11)

Recall that only guided modes are of interest (and it means
that the component of the energy êux along the z axis is
equal to zero) and that the inêuence of the losses is
negligibly small. Conditions (10) and (11) can be fulélled
because �Sx / ki=(ek) in insulators is a positive quantity and
in a metal, at o < op=

����
er
p

, ë negative. Thus, to satisfy
relation (10), it is required that the component of the energy
êux in the élm along the x axis should exceed that in
insulators in the absolute value. Using relations (5) ë (7), we
obtain that this condition is equivalent to the inequality:

1

2je1j
�
sinh�2k1a�

k1

��
k1e3 ÿ k3e1

k1e3

�2
exp�ÿ2k1a�

�
�
k1e3 � k3e1

k1e3

�2
exp�2k1a�

�
� 4a

k 2
1 e

2
3 ÿ k 2

3 e
2
1

k 2
1 e

2
3

�

>
1

k3e3
� e2
k2e 23

�
k1e3 � k3e1
k1e2 ÿ k2e1

�2
exp�4k1a�: (12)

This cumbersome expression can be signiécantly sim-
pliéed for the case e2 � e1. Indeed, in this case dispersion
equation (3) for the branch o� allows one to establish a
one-value relation between k1e2 and k2e1 via the function of
only k1a. The amplitudes of the magnetic éled Hy(z) and the
electric éeld Ez(z), Ex(z) at z < ÿa stop depending on the
parameters k1; e1, related to the élm material. In addition
Hy(z) � Hy(ÿz), Ez(z) � Ez(ÿz), Ex(z) � ÿEx(ÿz) at
jzj5 a. Expressions for the éelds in the élm in accordance
with (3) become the functions only of k1a, multiplied by
exp (ÿ k2a), and Hy(z) � Hy(ÿz), Ez(z) � Ez(ÿz), Ex(z) �
ÿEx(ÿz) at jzj < a. Thus, the symmetry with respect to the
plane z � 0 appears. Finally, we obtain

tanh�k1a�
�

tanh�k1a� �
k1a

cosh2�k1a�

�
>

e 21
e 22
: (13)

The particular expression for the case e2 � e3 � 1 can be
found in [8] (Ch. 10).

The convenience of relation (13) consists in the fact that
each part of this inequality is a function of only one
variable: on the left ë only k1a, while on the right ë
only o. By performing similar transformations for the
branch oÿ to which relation (4) corresponds, one can easily
see that the low-frequency branch does not allow the
existence of zero and negative group velocities ë for any
kx the group velocity is positive and the dispersion curve,
corresponding to (4) lies below osp. This result can be
qualitatively explained as follows: the éeld amplitude Ex(z)
for the symmetric mode in the élm is signiécantly higher,
while Ez(z) is signiécantly lower than the same quantities for
the antisymmetric mode and the component of the energy
êux along the x axis cannot already exceed the energy êux in
insulators with respect to the absolute value.

While deriving relation (12), (13), we restricted ourselves
to consideration of guided modes and made no suggestions
about the type of the dependence e1(o) except for the fact
that we neglected losses and assumed e1 to be negative.
Therefore, relations (12), (13) remain also valid, for exam-
ple, for surface phonon ë polaritons in the case of an
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isotropic crystal with one dispersion oscillator {e1(o) �
e1 ÿ (e0 ÿ e1)o

2
to(o

2 ÿ o 2
to)
ÿ1, where e1 and e0 are the

high-frequency and static dielectric constants; wto is the
frequency of long wavelength optical phonons [2]}.

Similar results can be obtained for the condition of the
zero group velocity. It is enough to change the signs `>' into
`=' in expressions (12), (13) and we obtain the resonance
condition. Then, a detailed analysis requires the consid-
eration of complex kx in the general case of allowance for
the losses; however, this problem will be considered else-
where. Note that if we manage to create conditions under
which the losses will not be too large, the system under study
will represent a high-Q resonator in which éelds are strongly
ampliéed [11, 12].

4. Expressions for determining the group
velocity

From the conditions of existence (12), (13) we can pass to
the quantitative description of the group velocity. Accor-
ding to the variation theorem proposed by Bers ([8], Ch. 7),
at real kx and o we have

ug �
qo
qkx
�
� �1
ÿ1

�Sxdz

�� �1
ÿ1

wdz, (14)

where w is the time-averaged bulk energy density. The
numerator in (14) is a time-averaged energy êux over the
entire cross section per unit width of the élm (unity y) and
the denominator ë a time-averaged energy corresponding
to the unit length (unity x) per unit width of the élm. The
integrals in the numerator and denominator in the right-
hand side of equality (14) can be calculated by using
expressions (5) ë (9):��1

ÿ1
�Sxdz �

c

16p
kx
k
jAj2 exp�ÿ2k3a�

�
�

1

k3e3
� e2
k2e 23

�
k1e3 � k3e1
k1e2 ÿ k2e1

�2
exp�4k1a�

� 1

2e1

�
sinh�2k1a�

k1

��
k1e3 ÿ k3e1

k1e3

�2
exp�ÿ2k1a�

�
�
k1e3 � k3e1

k1e3

�2
exp�2k1a�

�
� 4a

k 2
1 e

2
3 ÿ k 2

3 e
2
1

k 2
1 e

2
3

��
; (15)

� �1
ÿ1

w dz � 1

16p
1

k2
jAj2 exp�ÿ2k3a�

�
�

k2x
e3k3
� k2xe2

e3k2

�
k1e3 � k3e1
k1e2 ÿ k2e1

�2
exp�4k1a�

� 2ere1k
2 � 2�er ÿ e1�k 2

1

2e 21

sinh�2k1a�
k1

�
��

k1e3 ÿ k3e1
k1e3

�
2 exp�ÿ2k1a� �

�
k1e3 � k3e1

k1e3

�2

� exp�2k1a�
�
� k2

k 2
1 e

2
3 ÿ k 2

3 e
2
1

k 2
1 e

2
3

�
1� e1
e1

��
: (16)

By simplifying these expression for the branch o� in the
case, when e2 � e3, we obtain

��1
ÿ1

�Sxdz �
c

8p
kx
k
jAj2 exp�ÿ2k2a�

�
�

1

k2e2
� 1

k1e1

�
tanh�k1a� �

k1a

cosh2�k1a�

��
; (17)

� �1
ÿ1

wdz � 1

8p
1

k2
jAj2 exp�ÿ2k2a�

�
�

k 2
x

k2e2
� ere1k

2 � �er ÿ e1�k 2
1

k1e 21
tanh�k1a�

� erk
2

k1e1

k1a

cosh2�k1a�

�
: (18)

Note that we can derive similarly expressions for the group
velocity of the branch oÿ, but we will not consider this
problem because, as was mentioned above, only in the case
of o�, the group velocity can be positive, zero, and
negative. The group velocity can be also calculated by using
the method of numerical differentiation of dispersion
relations (2) ë (4). However, this method is rather cumber-
some, for example: the dispersion relations are given in the
implicit form, which complicates differentiation; it is needed
to énd, with a high degree of accuracy, the points of the
plane kx, o satisfying the dispersion relation, the points
lying in the small vicinity of the point under study.

Expression (14) supplemented with relations (15), (16)
allows one to calculate the group velocities at the point
satisfying the dispersion relation only if its coordinates on
the plane kx, o are known. Note that expressions (16) ë (18)
are derived for a particular model. However, necessary
assumptions and additional computations having been
made, one can obtain analogous expressions for other
models, for example, surface phonon ë polaritons in the
case of an isotropic crystal with one dispersion oscillator.

5. Discussion of the results

Let us demonstrate the possible use of the derived relations
for the analysis of backward waves and waves with the zero
group velocity in IMI waveguides by the example of speciéc
materials employed in plasmonics. We will mainly discuss
the possibilities of practical applications of the results
obtained in the paper.

Consider a thin silver élm in the conéguration illustrated
in Fig. 1. We will restrict our consideration to the frequency
range corresponding to the wavelengths of light in vacuum,
i.e. 300 ë 600 nm. The frequency dependence of the dielectric
constant of silver in this particular frequency range can be
determined by the relation e1(o) � 6:0ÿ (1:43� 1016)2=o 2,
which was obtained within the Drude model taking into
account the correction for interband transitions in metal
that was made by using the experimental data [13]. This
relation makes it possible to describe approximately the
dielectric constant of silver at room temperature (the
collision frequency of electrons is ge � 7:7� 1013 sÿ1 and,
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hence, o;op 4 ge) and to describe, virtually without any
errors, the dielectric constants of high-purity silver samples
at liquid helium temperature (ge < 1012 cÿ1) [14].

Figure 4 presents the dispersion dependences for the
waveguide structures Al2O3 ëAg ë vacuum, Al2O3 ëAg ë
Al2O3, Al2O3 ëAg ë SiO2 and Al2O3 ëAg ëZrO2, which
demonstrate that the slope of the high-frequency branch
is positive at small kx and, when kx increases, it smoothly
changes into negative. The point that the dispersion depend-
ence of SPPs for the high-frequency branch originates not
from zero at e2 6� e3 is explained by the fact than only guided
modes are being considered. The obtained dispersion
dependences make it possible to estimate the SPP group
velocity; however, they do not allow one to calculate its
exact value and to determine the shape of the dependence on
different parameters of the IMI structure under study. This
problem is solved with the help of relation (14) supple-
mented with expressions (15), (16).

The example of this calculation is the dependence of the
group velocity on the waveguide vector of SPPs shown in
Fig. 5 for four IMI structures. This dependence is charac-
terised by the presence of a minimum for the group velocity.
In addition, Fig. 5 clearly demonstrates that the SPP group
velocity depends on the dielectric constants of the media
surrounding the metal élm. Relations (14) ë (16) allow one
to establish this dependence.

Figure 6 presents the dependence of the SPP group
velocity on the dielectric constant e3 of one of the media
surrounding a silver élm under the assumption that the
quantities e2, d and kx are éxed. The group velocity has a
minimum for the high-frequency branch at e3 � 3:2 and a
weak dependence on e3 for the low-frequency branch.
Obtained relations (12), (14) ë (16) can be used to solve
the computation problems and to optimise the waveguide
structures of the IMI type.

6. Conclusions

In this paper, we have derived relations for determining
certain conditions of existence of backward waves and
waves with the zero group velocity as well as the SPP group
velocity in IMI structures in the general case, when the
media surrounding a metal élm can have different dielectric
constants. We have presented the calculations and analysis
of the dependence of the SPP group velocity on different
parameters of particular structures.

Note that as was shown in [6], due to the existence of
backward waves in IMI structures one should expect
negative refraction of SPPs at the interface of two layered
structures [15]. The relations obtained in this paper make it
possible to predict negative refraction in the given structure
and to optimise the parameters of the device, for example, to
solve the problem of search for a layered structure with a
minimum group velocity or with a speciéed group velocity.
They can also be used as a theoretical basis for designing a
number of plasmonic devices based on the backward waves.
The condition of existence of a wave with zero group
velocities can be employed for designing high-Q plasmon
resonators.
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Figure 4. Dispersion dependences of SPPs for waveguide structures
Al2O3 ëAg ë vacuum, Al2O3 ëAg ë SiO2, Al2O3 ëAg ëAl2O3 and
Al2O3 ëAg ëZrO2. The thickness of the silver élm is d � 10 nm, the
dielectric constants are e � 2:84 (Al2O3), 2.2 (SiO2) Ë 5.5 (ZrO2).
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Figure 5. Dependences of the group velocity on the wave vector for the
structures shown in Fig. 4.
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Figure 6. Dependences of the group velocity on e3; the dielectric constant
is e2 � 2:84 (Al2O3), the élm thickness is d � 10 nm, the wave vector is
kx � 7� 105 cmÿ1. The inset shows the high-frequency branch.
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