
Abstract. Coherent summation of ébre laser beams, which
can be scaled to a relatively large number of elements, is
simulated by using the stochastic parallel gradient descent
(SPGD) algorithm. The applicability of this algorithm for
coherent summation is analysed and its optimisaton param-
eters and bandwidth limitations are studied.
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1. Introduction

Coherent summation of radiation from lasers/ampliéers in
a phased array conéguration can increase the overall output
laser power while maintaining a good beam quality, which
is an important research area for laser communication, laser
radar and energy delivering system [1]. In coherent
summation, all the laser elements operate with the same
spectrum and the relative phases are controlled to maintain
the constructive interference increasing the intensity. Fibre
lasers/ampliéers are especially well-suited for beam sum-
mation because of their inherent compact size [2]. Several
approaches have been demonstrated to scale up the output
power by summing radiations of multiple lasers. Stable
coherent summation of beams from several ébre lasers has
been demonstrated in [3 ë 5]. Multi-core phase-locked ébre
lasers [3] employing the evanescent coupling between
multiple cores to achieve coherent summation signiécantly
reduce nonlinear processes within the ébre core; however,
the maximum power is still limited by the available pump
power and brightness of pump laser diodes as in the single-
core ébre system.

Coupling schemes with a single ébre output [4] are
probably not suitable for high power scaling. The problem is
that the nonlinear effects within the ébre cannot be
eliminated. Coherent summation of beams from ébre lasers
with a master oscillator ë power ampliéer (MOPA) coné-
guration solves the problem of power limitation. To obtain

stable constructive interference, phase control is required to
compensate for the phase noise based on the heterodyne-
detecting method in the present MOPA conéguration. To
the best of our knowledge, the highest power in the MOPA
conéguration is achieved by using the active phase control
[5]. Besides, in high-power beam systems, heterodyne-
detecting cannot be applied not only because of the presence
of the sophisticated phase control system but also due to the
partial coherence of such beams [6, 7].

To solve these challenging problems and to scale the
MOPA powers to a higher-power level, coherent beam
summation with the help of the stochastic parallel gradient
descent (SPGD) algorithm without phase-detecting compo-
nents was proposed and demonstrated by Liu [8, 9] and
Kansky [2]. The SPGD algorithm was érst used in the
adaptive optics [10, 11]. If coherent summation of the beams
from ébre lasers is considered as the compensation for
piston-type phase aberrations for a single large beam in a
monolithic optical system, it is possible to apply straightfor-
ward the SPGD algorithm to solve this problem. By now, 48
collimated micro-beams have been coherently summed with
the phase control by using the SPGD algorithm [2].

In this paper, we present an extensive study of coherent
summation of a relatively large number of laser beams using
the SPGD algorithm.

2. Formulation of the problem

2.1 System setup

Consider a coherent beam summation system with N
channels of elementary beams (see Fig. 1 showing only two
beams as an example). The laser beam from the master
oscillator is split into N channels and is coupled to the
phase modulators. The laser beams from the phase
modulators are then delivered to the ébre ampliéers and
optical isolators and then to ébre collimators. Note that for
high-power applications, multi-stage ébre ampliéers are
usually required. The beam array is coupled out to free
space via the collimators. The collimated output beams are
split by a beamsplitter. After the beamsplitter, a part of the
beams is incident on a focusing lens which images the far-
éeld pattern onto the detector. The cost function J � J(u)
obtained or calculated from the signal collected by the
detector, is a function of the control parameters u �
fu1, . . . , uNg, which are typically voltages applied to the
phase modulators. At each iteration cycle of the SPDG
algorithm, the phase control signal is applied to the phase
modulators via the analogue-to-digital converter and the
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control circuit. The other part of the beam after the
beamsplitter is the desired coherent summed beam array.
The object of coherent beam summation is to maximise the
energy in the central lobe, i.e. maximise the cost function J
by using the SPGD algorithm .

2.2 Theory of the SPGD Algorithm

The theory of the SPGD algorithm can be brieêy described
as follows [8]. The cost function is expressed as J �
Jfu1, u2, . . . , ung, where ui are the control voltages (i �
1, . . . , n) generated by the computer. Each iteration cycle
has the following stages:

(i) the statistically independent random perturbations
du1, du2, . . . , dun are generated, where all jdunj are small
values which are typically chosen as statistically independent
variables with the zero mean and equal dispersions: hduki�0,
hdukduli � s 2dkl, where dkl is the Kronecker symbol;

(ii) the control voltages with the positive perturbations
are applied and the cost function J�� J(u1 � du1,
u2 � du2, . . . , un � dun) is evaluated, then the control vol-
tages with the negative perturbations are applied and the
cost function, Jÿ � J(u1 ÿ du1, u2 ÿ du2, . . . , un ÿ dun) is
again evaluated;

(iii) the difference between two evaluations of the cost
function is calculated: dJ � J� ÿ Jÿ;

(iv) the control voltages ui � ui � gduidJ are updated,
where g is the correction coefécient, g > 0 corresponding to
the minimisation procedure and g < 0 ë to the maximisation
procedure.

2.3 Cost function

A set of image quality metrics referred as sharpness
functions or sharpness metrics is used as cost functions
in adaptive optics with the SPGD algorithm [10]. These cost
functions require the time-consuming calculations of
matrices computation and are hardly suitable for real-
time applications. The image quality parameter proposed in
[11, 12] can be measured in real time using an analogue
coherent optoelectronic processor. The radiation power
propagated through the target pinhole is used as the cost
function in [8]. Both these parameters can be measured in
real time. For the simplicity of the whole system, the
radiation power propagated through the target pinhole is

used in this paper as the cost function for coherent sum-
mation of radiation from ébre lasers.

3. Simulation and analysis

3.1 Feasibility validation

Because the perturbation signal in practice varies with time,
the performance of the whole system will depend on the
perturbations. The laser array has the form of two rings
with 6 lasers and 12 lasers in the inner and outer rings,
respectively. We used the following parameters for the
whole laser array: w0 � 1 cm is the beam waist of a single
laser and d � 3 cm is the distance between the neighbouring
lasers. The rms value of the phase error for the laser array is
3p. The correction coefécient was chosen equal to 4 after
analysing many results of numerical calculations. Figure 2
shows the average result of 100 numerical simulations. One
can see from Fig. 2 that the SPGD algorithm can converge
to the extremum of the metric. The concept of coherent
summation using the SPGD algorithm is feasible.
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Figure 1. System setup for coherent beam summation with the help of the SPGD algorithm.
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Figure 2. Dependences of the normalised cost functions on the iteration
number for different initial perturbations. The insets show the examples
of the far-éeld intensity distribution before (on the left) and after (on the
right) application of the SPGD algorithm.
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3.2 Optimisation of parameters
3.2.1 Perturbations
One of the key components in implementing the SPGD
algorithm is the perturbations. Basically, there are four
kinds of probability density distributions for generating
perturbations with zero mean and equal dispersions: the
Bernoulli distribution, segmented-uniform, uniform and
normal distributions.

The convergence curve for different kinds of probability
density distributions is shown in Fig. 3a, all the parameters
used in calculation being the same as those in Fig. 2. One
can see that the Bernoulli perturbations result in the fastest
convergence rate. Taking into account that these Bernoulli
perturbations can be generated easily by the hardware, they
should be applied in the coherent beam summation.
Another parameter of the perturbations is their amplitudes.
The evolution curves for different perturbation amplitudes
are presented in Fig. 3b. One can see from Fig. 3b that
perturbations with a smaller amplitude will decelerate the
convergence rate of the evolution curve while perturbations
with a larger amplitude will bring instability to the coherent
summation effect. Therefore, we can conclude that there
exists an optimal perturbation amplitude for coherent beam
summation.

3.2.2 Correction coefécient
One of main drawbacks limiting the potential applications
of this or that optimisation method is their convergence
rate [13]. It was shown that when applied to the adaptive

optics problems, the convergence rate of the SPGD
algorithm is proportional to N 1=2 [14]. To accelerate the
convergence rate of the evolution curves, the adaptive
SPGD algorithm with a modiéed correction coefécient can
be used. In the adaptive SPGD algorithm, the parameter g
can take adaptive values according to the expression g �
g0J0=J, where J0 is the ideal value of the power propagated
through the target pinhole, which can be calculated once
after the coherent beam summation system is speciéed. The
evolution curves of the cost functions calculated for
constant and adaptive correction coefécients are plotted
in Fig. 4. One can see that the adaptive correction
coefécients can provide a faster convergence rate. Further
statistical calculations with a large number of simulations
reveal that using the adaptive correction coefécient can
increase the convergence rate, at least, by 15%.

3.2.3 Bandwidth analysis
The formal analysis indicates that the convergence rate
typically increases at least as N in adaptive optics, where N
is the number of elementary beams [14]. We studied
coherent summation of the beams from ébre ampliéers
using the SPGD algorithm for different laser beam arrays
(i.e. laser arrays containing 37 or 61 lasers). The depend-
ence of the convergence rate on the number of elementary
beams is presented in Fig. 5. One can see that in coherent
summation of N laser beam, the convergence rate depends
linearly on N. This circumstance signiécantly complicates
the application of the SPGD algorithm for coherent
summation of a relatively large number of beams from
high power ébre ampliéers. Besides, the question as to how
rapidly the phase noise worsens with increasing the power
at the ébre output remains open [15].

Thus, when scaling the ébre laser to a kilo-watt power
level, the bandwidth of the phase control system should be
improved. This means that the effective control bandwidth
of the coherent beam summation system based on the
SPGD algorithm decreases with increasing the laser beam
power and the number of elementary beams. We believe that
this problem can be solved in three stages. Firstly, a more
advanced SPGD controller with a faster update rate should
be used. Secondly, the corresponding countermeasures
should be taken to suppress the inêuence of phase dis-
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Figure 3. Dependences of the normalised cost functions on the iteration
number for different distributions of the probability density (a) and
perturbation amplitudes du (b).
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tortions. Thirdly, the SPGD algorithm should be modiéed
to accelerate the convergence rate when increasing the
number of lasers.

4. Conclusions

We have shown the possible application of the SPGD
algorithm for coherent summation of the beams from ébre
ampliéers. We have found that the quality of the coherent
beam summation system can be improved by optimising the
parameters of the algorithm. In this case, the Bernoulli
perturbations with a proper amplitude and adaptive
correction coefécient should be used. Application of this
method for a large number of lasers is limited by the
bandwidth of the algorithm. Nevertheless, the advantage of
beam summation with the help of the SPGD algorithm
makes this algorithm so attractive that there are already
several projects in this direction [16, 17]. We believe that the
algorithm has a considerable potential for the development
of a new architecture of high energy laser systems.
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Figure 5. Calculated dependence of the number of steps necessary to
implement the convergence criterion on the number of lasers (points) and
its linear approximation (straight line).
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