
Abstract. The propagation of light through subwave photonic
barriers formed by dielectric nanoélms with the refractive
indices changing across the élms according to the speciéed
law n(z) is considered. Generalised Fresnel formulae depend-
ing on the gradient and proéle curvature of the refractive
index and describing reêection and transmission of such
inhomogeneous élms are found. For the speciéed material and
thickness, the optical properties of such nanoélms can change
from total transmission to total reêection by producing a
technologically controlled proéle n(z). The obtained results
are based on exact analytic solutions of Maxwell's equations
for new multiparametric models of inhomogeneous dielectric
media. The possibility of producing new subwave dispersion
elements, whose action is based on the dependence of the
reêection and transmission spectra of gradient photonic
barriers on their local dispersion determined by the shape
and geometrical parameters of the proéle n(z), is shown. The
schemes are considered for producing such spectra in the
visible and IR regions with the help of periodic nanostructures
containing subwave photonic barriers with the normal and
anomalous nonlocal dispersion.
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1. Introduction. Nonlocal dispersion of gradient
photonic barriers

The development of nanotechnology has lead to the
creation of materials with unique optical properties, which
do not exist in nature. These materials have been attracting
attention for the last two decades due to their possible
application for controlling electromagnetic radiation at
subwave distances. A number of such problems are solved
in optics by using thin dielectric élms whose refractive index
changes across the élm (the so-called gradient photonic
barriers). In this case, special attention is paid to the
processes of reêection and transmission of the waves by
thin layers of inhomogeneous materials, whose layer dimen-
sions and the scales of inhomogeneities are comparable to

the wavelength. These processes are caused by a special
mechanism of wave dispersion in inhomogeneous dielectrics.
It is necessary to emphasise the fundamental difference of
this mechanism both from material dispersion determined
by the parameter q2n=qo2 (n is the medium index) and from
spatial dispersion of homogeneous media, which leads, as is
known from crystal optics and plasma physics [1], to small
corrections to the refractive index of the order a=l5 1 (a is
a crystal lattice period or the mean free path of particles
in the medium and l is the wavelength). Away from the
resonance frequencies of the medium such effects are slowly
accumulated as the waves propagate over distances greatly
exceeding the wavelength. Unlike this, the gradient media
are characterised by the inverse relation between the inhomo-
geneity scale d and the wavelength: l4 d [2, 3]. To fabricate
gradient dielectric nanoélms with a technologically controlled
distribution of the refractive index, a number of methods
have been developed, including etching and photolitho-
graphy [4], ionic implantation [5], molecular epitaxy [6], and
special deposition regimes [7].

The aim of this paper is to study reêection and trans-
mission of gradient photonic barriers as functions of their
thickness and refractive index proéle. These properties are
considered below by a simple example of an isotropic unab-
sorbing dielectric layer, whose refractive index smoothly
changes in one direction.

By assuming that the direction, along which the refractive
index changes, coincides with the z axis, we can represent
the medium permittivity in the form

e�z� � n 2
0U

2�z�; U�0� � 1. (1)

Here, n0 is the refractive index at the medium interface
z � 0; U is some dimensional function determining the spatial
proéle of the refractive index; the material dispersion of the
medium n0(o) and its absorption are neglected. Considering
the propagation of an electromagnetic wave incident from
vacuum perpendicular to the interface z � 0 in the direction
z > 0, we can express the wave éeld components Ex and Ey

via the auxiliary function C:

Ex � ÿ
1

c

C
qt
, Hy �

qC
qz

. (2)

The function C is determined by the wave equation, which
results from Maxwell's equations:

q2C
qz2
� n 2

0U
2�z�

c 2
q2C
qt 2
� 0. (3)
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The reêection and transmission of electromagnetic waves
in a gradient dielectric barrier with the énite thickness d are
found by using a êexible model U(z), which allows an exact
solution of (3) without any assumptions about the smallness
or slowness of changes in the éelds and medium parameters.
Below we consider a model describing a nonmonotonic
proéle U(z) [3]:

U�z� �
�
1� s1z

L1

� s2z
2

L2
2

�ÿ1
, s1 � 0, �1, s2 � 0, �1. (4)

Model (4) contains two free parameters, which denote
characteristic lengths L1 and L2. The case s1 � ÿ1, s2 � �1
correspond to a convex proéle, while at s1 � �1, s2 � ÿ1,
expression (4) describes a concave proéle (Fig. 1). Note
that the Rayleigh proéle often used in electrodynamics of
inhomogeneous media [1] is a particular case of (4) cor-
responding to s2 � 0. The lengths L1 and L2 are related to
the layer thickness d and the extreme values of the function
Um as:

Um � �1� s1y
2�ÿ1, y � L2=2L1, L2 � d�2y�ÿ1,

y2 < 1, U�0� � U�d� � 1. (5)

Model (4) makes it possible to represent the éeld inside
the barrier in a simple form by solving exactly inhomohe-
neous wave equation (3) for a monochromatic wave; this
solution can be written as a sum of forward and backward
waves

C � � exp�iqZ� �Q exp�ÿiqZ�� exp�ÿiot�����������
U�z�p . (6)

Here, the variable

Z �
� z

0

U�z1�dz1

is the phase path length;

Q � ÿexp�2id� 1ÿ is1g=2ÿ ne
1ÿ is1g=2� ne

� Q0 (7)

is the dimensionless quantity, which is determined from the
continuity condition of the éelds at the back boundary of
the barrier z � d [2] and corresponds to the contribution of
the backward wave to the éeld inside the barrier; d � qZ0;
ne � n0N.

The quantity q in (6) can be treated as a wave number of
the wave propagating in the phase space Z(z):

q � o
c
n0N, (8)

where N 2 � 1ÿ p 2c 2=o 2; p 2 � (y 2 ÿ s2)=(n
2
0L

2
2).

The parameter N is related to the nonlocal élm dis-
persion determined by the characteristic lengths L1 and L2.
Its analysis allows one to reveal the fundamental difference
between the convex and concave photonic barriers (Fig. 1).
For the convex barrier, p2 < 0, while the parameter N and
the wave number q can be expressed via some characteristic
frequency O1:

N �
���������������
1� O 2

1

o 2

s
, O1 � pc � 2cy

��������������
1ÿ y 2

p
n0d

. (9)

One can see from (9) that the wave number q remains real
at any frequencies o.

For the concave barrier, the parameter N and the
characteristic frequency O2 are given by the expressions:

N �
���������������
1ÿ O 2

2

o 2

s
, O2 �

2cy
��������������
1� y 2

p
n0d

. (10)

This frequency dependence q(o) resembles the normal
dispersion of a waveguide or a plasma-like medium with the
cutoff frequency O2: for low frequencies (o < O2) the wave
number q becomes imaginary.

The appearance of the characteristic frequencies O1 and
O2 is caused by the nonlocal dispersion of the inhomoge-
neous medium; as the scales of inhomogeneities L1 and L2

are increased, these frequencies decrease (O! 0, O2 ! 0).

2. Reêection from gradient photonic barriers
(generalised Fresnel formulae)

The classical Fresnel formulae describe the reêection of light
from the interface of homogeneous media with different
refractive indices. Unlike this case, the gradient optics con-
siders the reêection of light from the interface of the media
with continuous changes in the proéles n(z). The complex
reêectance R(o) of the wave with the frequency o incident
from the vacuum perpendicular to the interface z � 0 in the
direction z > 0 can be found by using the continuity condi-
tion of the wave éeld components Ex and Hy at the élm
interfaces z � 0 and z � d. Let us assume that at the interface
z � d, the élm is éxed on the surface of a homogeneous
substrate, whose thickness is signiécantly larger than the
pulse `length' and the refractive index is equal to n; by using
these continuity conditions, we will énd the reêectance R(o)
for the convex proéle n(z) of type (4):

R�o� �
��
n� g 2

4
ÿ n 2

e

�
t� negÿ i�nÿ 1�

�
ne ÿ

tg
2

��

�
��
nÿ g 2

4
� n 2

e

�
tÿ neg� i�nÿ 1�

�
ne ÿ

tg
2

��ÿ1
, (11)

where

ne � n0

��������������
1� u 2

p
; u � O1

o
; g � 2n0uy��������������

1ÿ y 2
p ; t � tan d;

d � l

��������������
1� 1

u 2

r
; l � arctan

�
2y

��������������
1ÿ y 2

p
1ÿ 2y 2

�
.

(12)

Figure 1. Concave ( 1 ) and convex ( 2 ) profiles U(z) of type (4); z=d is the
normalised coordinate.
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Similarly, we will énd the reêectance for the concave
proéle n(z):

R�o� �
��
n� g 2

4
ÿ n 2

e

�
tÿ negÿ i�nÿ 1�

�
ne ÿ

tg
2

��

�
��
nÿ g 2

4
� n 2

e

�
t� neg� i�n� 1�

�
ne ÿ

tg
2

��ÿ1
. (13)

Unlike (11), the quantities ne, g, and t in (13) are determined
by the expressions

ne � n0

��������������
1ÿ u 2

p
, g � 2n0uy��������������

1� y 2
p , t � tan d, (14)

where

u � O2

o
< 1; d � l

��������������
1

u 2
ÿ 1

r
; l � ln

�
y�
yÿ

�
;

y� �
�������������
1� y2

q
� y.

Expressions (10) and (12) determine the reêectance of
the gradient élm deposited on a homogeneous substrate
with the refractive index n. By placing m homogeneous
transparent layers between the élm and the substrate, we
can select their thicknesses and refractive indices so that for
some frequency all this structure (m layers and a substrate)
will not affect the reêection from the gradient élm [4]; this
structure is optically equivalent to a medium with n � 1. We
will reveal the properties of the reêection spectra inherent in
the gradient élms themselves by considering expressions (11)
and (13) with n � 1.

(i) The power reêectances jR(o)j2 in the visible and near-
IR regions for photonic barriers consisting of one gradient
élm are shown in Fig. 2 for concave and convex élms. At
equal barrier thicknesses d, equal refractive indices n0 of the
initial materials, and equal characteristic lengths L1 and L2,
the difference in the nonlocal dispersion of the élms studied
leads to the difference in their reêection spectra.

(ii) The gradient nanoélms with the proéle n(z) of type
(4) are characterised by two free parameters L1 and L2. At
éxed L1 and L2, we can produce structures with new reêec-
tion spectra by using periodic nanostructures comprising m
similar nanoélms. By using successively expressions (11) and
(13) to calculate the reêectance between adjacent nanoélms,

we can easily show that reêection of such a periodic nano-
structure is also described by expressions (11) ë (14), when
the quantity d is replaced by md. The reêection spectra of
such nanostructures depend, at constant n0 for all élms, on
the gradient jumps and the proéle curvatures n(z) at the
interfaces of adjacent élms.

Consider érst reêection from simple structures consisting
of pairs of equal concave (Fig. 3a) or convex (Fig. 3b)
gradient photonic barriers in which the values of d, n0, and
Um (5) are equal. Reêection from the interface of adjacent
barriers is caused by the break of the gradient U(z). Thus,
for concave proéles U(z), the values of gradU expressed in
normalised coordinates x � z=d experience a jump at the
interface x � 1 from dU=dxj1ÿ0 � 4y2 to dU=dxj1�0 � ÿ4y2.
In this case, the curvature of both proéles retains a constant
value: K1 � K2 � 8y 2(4y 2 � 1) (1� 16y 4)ÿ3=2. Figure 4a
presents the difference in radiation reêection from the
pair (m � 2) of analogues barriers (concave and convex).
The double-hump reêection spectrum of the pair of concave
barriers (Fig. 3a) describes the reêectionless transmission
[jR(o)j2 � 0] in the frequency range where reêection from
the pair of convex photonic barriers (Fig. 3b) is maximal.

(iii) Unlike identical barriers (Figs 3a, b), a periodic
nanostructure can be produced by pairs of alternating
gradient barriers with convex and concave proéles U(z),
which have similar thicknesses and the values of n0 (Fig. 3c).
To provide under these conditions a smooth contact of the
proéles at the interface U � 1, their characteristic lengths L1

should be equal; in this case, the deviation of the maximum
(Umax) and minimum (Umin) of these proéles from the
interface value U � 1 are different: Umax ÿ 1 6� 1ÿUmin.
The values of the parameter y for both proéles coincide and
the maximum and minimum of the proéle U(z) are related
by the expression

Figure 2. Reêection spectra of single gradient photonic barriers (n0 � 1:8,
y � 0:45, d � 120 nm) in the visible and near-IR region; curves ( 1 ) and
( 2 ) correspond to concave and convex profiles of type (4).

Figure 3. Systems of adjacent photonic barriers of type (4) with a con-
tinuous change in the refractive index U(z) and breaks of the gradients
and curvatures of the proéle U(z) at the interface between the barriers
z=d; U(d) � 1. Shown are the break of the gradient for a concave
(y 2 � 1=3) (a) and convex (y 2 � 1=5) (b) proéles U(z) as well as proéles
with a continuous value of gradU ( y 2

1 � y 2
2 � 1=3, d1 � d2) (c) and a

break in the curvature values at the interface between the barriers

[ y 2
1 � 1=3, y 2

2 � 0:2025, d2 � �y2=y1�2d1] (d).
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Umax

Umin

�
�
1� y 2

1ÿ y 2

�1=2

. (15)

Unlike the structure shown in Figs 3a and b, the gradients
of the convex and concave proéles at the interface x � 1 are
continuous (gradU1 � gradU2 � 4y2) and the reêection at
this interface appears because of the break in the values of
the curvatures of concave (K1) and convex (K2) proéles:
K1;2 � 8y 2(4y 2 � 1) (1� 16y 4)ÿ3=2.

A periodic structure can be produced by another pair of
élms containing concave [curve ( 1 )] and convex [convex ( 2 )]
proéles, which are characterised by equal deviations 1ÿUmin �
Umax ÿ 1 (Fig. 3d). In this case, the élm thicknesses d1 and
d2 and the parameters y1 and y2 are related by the condition
of smooth contact of the proéles U(z) at the interface z � d :

d2
d1
�
�
y2
y1

�2

. (16)

Figure 4b illustrates the reêection spectra of such
gradient nanostructures in the visible and IR regions caused
by the difference in curvatures of refractive index proéles at
the barrier interface. The minima and maxima of the spectral
dependences jR (o)j2 for the structures shown in Fig. 3a are
displaced with respect to analogous points for the structure
in Fig. 3b; the maxima jR (o)j2 are different in height. Note
that the mentioned difference in the reêection appears at
smooth proéles n(z) characterised by a continuous change in
n and grad n at the contact point.

3. Resonance tunnelling of light through
dielectric nanoélms

In analysing gradient photonic barriers with a normal disper-
sion of the waves, we pointed out a peculiarity inherent
in such barriers ë appearance of the cutoff frequency O2

determined by the nonlocal dispersion of the dielectric
nanoélm. At low frequencies (o < O2), the éeld inside the
barrier is determined instead of (6) by the function Ct and
the imaginary wave number q � ip :

Ct �
� exp�ÿpZ� �Q0 exp�pZ�� exp�ÿiot�����������

U�z�p , (17)

where

p � o
c
Nÿ; Nÿ �

��������������
u 2 ÿ 1

p
; u � O2

o
5 1.

By replacing q � ip in the expression for R(o) (13), we will
énd the complex reêectance for low frequencies:

R � �n� g 2=4� n 2
e �tÿ gne ÿ i�nÿ 1��ne ÿ gt=2�

�nÿ g 2=4ÿ n 2
e �t� gne � i�n� 1��ne ÿ gt=2� , (18)

where

t � tanh d; d � l

��������������
1ÿ 1

u 2

r
; n 2

e � n 2
0 �u 2 ÿ 1�. (19)

The quantity l in expression (19) was determined in (14). By
using the expression for R (18), we can calculate the barrier
transmittance with respect to power jT j2:

jT j2 � 1ÿ jR j2. (20)

As is known, transmission of a homogeneous rectan-
gular photonic barrier for the wave with the frequency
smaller than the cutoff frequency (for example, transmission
of a homogeneous plasma layer for the transverse wave
whose frequency is smaller than the plasma frequency)
decreases exponentially with the barrier width [1]; in this
case, the reêectivity jR j approaches unity. However, an
opposite situation is possible for some gradient photonic
barriers, when the interference of the forward and backward
waves inside the barrier results in disappearance of reêection
(R � 0) and total transmission of the energy êow of the
tunnelling wave (jT j � 1). This situation appears for a
system of m gradient barriers with a concave proéle of
the refractive index. The condition for the appearance of the
resonance reêectionless tunnelling regime can be found by
equating the expression for R (18) to zero and assuming
n � 1 there for simplicity:

tanh�mpZ0� �
gne

1� g 2=4� n 2
e

. (21)

The reêectionless tunnelling emission spectra (Fig. 5)
show that depending on the barrier parameters the total
transmission regime (T � 1) can appear both in the reso-
nance region near the cutoff frequency (Fig. 5a, u � 1:02)
and outside this region (Fig. 5c, u � 1:46).

The concept of resonance light tunnelling through thin
élms of nanostructured metamaterials with free carriers was
considered in papers [8 ë 11] in connection with tunnelling of
narrow-band radiation through a metal foil near the plasma
frequency of metal. Unlike this, the mechanism of wave

Figure 4. Reêectances with respect to power jRj2 from adjacent gradient
photonic barriers (n0 � 2) presented in Fig. 3: reêection from the point
corresponding to the break of the gradient U(z), spectra ( 1 ) and ( 2 )
correspond to profiles in Figs 3a and b (a), and reflection from the point

corresponding to the break in the curvature values U(z), spectra ( 1 ) and
( 2 ) correspond to profiles in Figs 3c and d (b).

Figure 5. Transmission spectra with respect to power jT j2 in the case
of reêectionless tunnelling through gradient photonic barriers with the
parameters y � 0:577, m � 3 at n0 � 2:216 (a) and n0 � 3:529 (b); the
dimensionless variable u is determined in (12).
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tunnelling based on nonlocal dispersion in a dielectric has
a number of peculiarities.

(i) Tunnelling of waves in a single-dimensional inho-
mogeneous structure with the refractive index n(z) is possible
not only in the frequency region, where n 2 < 0, but also in
the region, where n 2 > 0 but dn 2=dz < 0.

(ii) Tunnelling of light through gradient dielectric élms
does not result from the presence of free carriers, which
broadens the range of materials promising for gradient
nanooptics.

(iii) Reêectionless tunnelling of waves through gradient
élms is possible in a broad spectral region determined by
technologically controlled parameters of the élms.

4. Conclusions

The control of light êuxes with the help of gradient
photonic barriers is of interest in designing dispersion
elements ë photonic crystals. Synthesis of such elements
opens up new opportunities for optimising processes of
energy transfer by the waves of different spectral regions.

(i) The dispersion of waves in a gradient layer depends
not only on the spatial scale of the inhomogeneity but also
on the gradient and curvature of the spatial proéle n. The
effects of this nonlocal dispersion, which accumulate at a
distance of the order of wavelength, can completely change
the reêection and transmission spectra of the layer, leading,
for example, to the appearance of the cutoff frequency O
in the layer of the weakly dispersive material (the cutoff
frequency is controlled by the inhomogeneity parameters)
and to the appearance of the tunnelling regime for the
frequencies o < O.

(ii) It is possible to select such a material and proéle n(z)
for the given spectral range that the effect of nonlocal
dispersion will be concentrated in the frequency band that is
away from the absorption band of the material. The dynamics
of the waves in such media is described by exact analytic
solutions of Maxwell's equations constructed without any
assumptions about the smallness or slowness of changes in
the parameters of the medium or the éeld [12].

(iii) Reêection from the system of gradient dielectric
élms is caused not only by the contrast of the refractive
index n(z) between adjacent élms but also by the contrast
of gradients and the curvature n(z) at the interfaces. The
combined action of these effects allows one to change sub-
stantially reêection and transmission of gradient photonic
barriers even in the case of their subwave thickness.

We have considered in this paper nonmagnetic media
(m � 1). The combined change in distributions e(z) and m(z)
caused by the transition of these distributions through a
zero can result in a resonance ampliécation of the elec-
tric éeld [13].
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