
Abstract. Formulas are derived for evaluating the diffusion
coefécient and size of gas molecules from transient coherent
anti-Stokes Raman scattering measurements. Numerical
estimates are presented for hydrogen.
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1. Introduction

In 1981 S.A. Ahkmanov formulated the problem of
theoretical analysis of transient coherent anti-Stokes
Raman scattering (CARS) in gases. By that time, fre-
quency-tunable picosecond lasers had already been created,
and the érst time-resolved CARS measurements had been
carried out in hydrogen [1]. To interpret the data obtained,
it was proposed to use the random frequency modulation
model, well known in statistical radiophysics [2]. The idea
was realised by D'yakov et al. [3], who managed to
determine the collisional dephasing time and thermal
velocity correlation time in molecular hydrogen. In sub-
sequent years, time-resolved CARS measurements were
made in a number of molecular and atomic gases [4 ë 11],
and related theoretical studies were performed [12 ë 17]. The
advent of femtosecond lasers led to the development of
impulsive stimulated scattering spectroscopy [18], an
effective approach for measuring not only the amplitude
but also the phase of coherent molecular vibrations.

This paper presents formulas for evaluating the diffusion
coefécient and size of gas molecules from transient CARS
experiments.

2. Transient CARS in gases

Transient CARS spectroscopy involves impulsive laser
excitation of Raman-active modes in molecules and anti-
Stokes scattering of a laser pulse that probes the medium at
probe delay t. The energy of the scattered anti-Stokes pulse,
Wa, is measured as a function of time delay t. The data

carry information about molecular vibration dephasing
processes in the medium [19, 20]. Such processes may be
caused by the thermal motion of molecules (Doppler
dephasing), molecular collisions (collisional dephasing),
rotational splitting of vibrational levels (rotational dephas-
ing) and other factors. The function f (t) �Wa(t) is
referred to as the impulse response function. In what
follows, this function is calculated under the assumption
that molecular vibration dephasing is caused only by the
thermal motion of molecules in the gas.

2.1 Excitation of coherent molecular vibrations

Basic to Raman scattering is the dependence of the
electronic polarisability, a, of a molecule on its internuclear
distance. This dependence can be represented in the form
a(q) � a0 � a 0q, where q is the internuclear coordinate
measured from the equilibrium position of the nuclei;
a0 � a(q � 0); and a 0 is the derivative of the electronic
polarisability with respect to the internuclear coordinate at
the equilibrium position of the nuclei. A simpliéed
procedure for estimating it was described previously [21].
The dipole moment of a molecule in an external electric
éeld E is p � aE. The potential energy of a molecule in an
external electric éeld is the sum of the potential energies of
its constituent ions: P �Pi Pi. The differential potential
energy element for an ion in an external éeld is
dPi � ÿEqidri, where qi is the charge on the ion and ri
is its radius vector. Therefore, dP � ÿEdp, where
p �Pi qiri. Consequently, we have in the linear approxi-
mation dP � ÿaEdE and P � ÿaE 2=2. The force
F � ÿqP=qq exerted by the éeld on a molecular oscillator
is then F � a 0E 2=2. With damping neglected, the equation
of molecular vibrations can be written in the form �q�
o 2

0 q � F=m, where o0 is the natural frequency of molecular
vibrations; m is the reduced mass of the oscillator; and the
double dot denotes the second time derivative. The above
formulas indicate that molecular vibrations in a medium
can be resonantly excited via two-frequency laser pumping.
To this end, the Raman resonance condition must be
fulélled: o1 ÿ o2 � o0, where o1 and o2 are the component
pump frequencies. In transient CARS spectroscopy, such
excitation is provided by picosecond laser pulses, which are
focused into a cuvette élled with the gas.

A two-frequency pump pulse ensures impulsive excita-
tion of molecular vibrations q(t) � q0 cos�o0(tÿ z0=c)�,
where q0 is the vibration amplitude; t is time; z0 is the
coordinate of the molecule along the direction of the laser
beams at the instant in time when it is exposed to the
excitation pulse; and c is the speed of light. Excited in this
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way, the medium is capable of effectively scattering laser
radiation, which is employed to generate a scattered anti-
Stokes pulse.

2.2 Probing of a moving vibrationally excited molecule

Molecular vibrations are probed by a laser pulse delayed
with respect to the pump pulse by time t. During this time,
a vibrationally excited molecule diffuses a distance z along
the axis of the laser beams as a result of thermal motion.
The probe éeld acting on the molecule is Ep(t) �
Ep0(t) cosfop�tÿ (z0 � z)=c�g, where op is the probe fre-
quency. In the alternating éeld of the probe wave, the
dipole moment of a vibrating molecule has a component
that oscillates at the anti-Stokes frequency, oa � op � o0,
namely, pa(t) � pa0 cos�oa(tÿ z0=c)� o0tÿ opz=c� is the
oscillation amplitude of the dipole moment. A dipole with
an alternating dipole moment generates an anti-Stokes
wave with a far-éeld electric vector given by [20]

Ea�r; t� �
1

c 2r

�
n;

�
n;�pa

�
tÿ r

c

���
;

where r is the radius vector from the dipole to the
observation point; n � r=r is a unit vector along r; and r is
the distance from the dipole to the observation point. Since
the dipole moment oscillates at the anti-Stokes frequency,
we have �pa(t) � ÿo 2

a pa(t). If the receiver of the anti-Stokes
radiation is located on the z axis, then �n; �n; pa(tÿ r=c)�� �
ÿpa(tÿ r=c) because the polarisation vector of the probe
wave, ep � Ep0=Ep0 is normal to the wave propagation
direction (z axis) and, hence, the n and p vectors are
mutually perpendicular. From the above relations, the anti-
Stokes éeld has the form

Ea�r; t� �
o 2

a

c 2r
pa

�
tÿ r

c

�
or

Ea�r; t� � Ea0 cos

�
oa

�
tÿ r

c
ÿ z0

c

�
� o0tÿ op

z

c

�
;

where

Ea0 �
o 2

a

c 2r
pa0

is the amplitude of the anti-Stokes wave. Let za be the z
coordinate of the receiver of the anti-Stokes radiation. The
distance between the probed molecule and the receiver is
then r � za ÿ (z0 � z), and the éeld of the anti-Stokes wave
incident on it is given by

Ea�za; t� � Ea0 cos

�
oa

�
tÿ za

c

�
� o0t� o0

z

c

�
:

As seen from this formula, the anti-Stokes éeld is
independent of the coordinate of the molecule at the
instant in time when it is exposed to the two-frequency
pump pulse, z0. At the same time, this éeld depends on the
displacement z due to thermal motion during the time delay
between the pump and probe pulses. Clearly, z is a random
function of time. The above expression must be averaged
over the thermal velocity distribution of the molecules.

2.3 Impulse response of the gas
Using Euler's formula and averaging the anti-Stokes éeld
over the ensemble of gas molecules, we obtain

Ea�za; t� �
1

2
Ea0 exp

�
i

�
oa

�
tÿ za

c

�
� o0t

��
h�t�+c.c.,

where h(t) � hexp�ik0z(t)�i and k0 � o0=c is the wave
number of the molecular vibrations. The displacement z
can be represented as the time integral of the Cartesian
component of the thermal velocity of a gas molecule:
z(t) � � t0 vz(y)dy. The molecules have a Maxwellian velocity
distribution, w(vz) � (sv

������
2p
p

)ÿ1 exp (ÿ v 2
z =2s

2
v ), where s 2

v
� kT=m is the variance of the thermal velocity; m is the mass
of the molecules; T is the absolute temperature of the gas; and
k is the Boltzmann constant. At a constant temperature of the
gas, the velocity of a gas molecule, vz(t), can be thought of as
a Gaussian stationary random function of time with zero
average and variance s 2

v . It is known from the theory of
random processes [22] that if a process is Gaussian it remains
so under any linear transformation, in particular under time
integration. Therefore, the probability density distribution for
the z(t) coordinate of a molecule has the form w(z; t) �
�s(t) ������

2p
p �ÿ1 exp (ÿ z 2=2s 2(t)), where s 2(t) � hz 2(t)i is the

variance of the molecule displacement during time t. The
average in question,

h�t� �
��1
ÿ1

exp�ik0z�t���z; t�dz � exp

�
ÿ 1

2
k 2
0 hz 2�t�i

�

is a real value. Consequently, the anti-Stokes éeld has the
form Ea(za; t) � Ea0h(t) cos�(oa(tÿ za=c)� o0t�. Because
the energy of the anti-Stokes pulse is proportional to the
square of the éeld amplitude, we obtain for the impulse
response function

f �t� � h 2�t� � exp�ÿk 2
0 hz 2�t�i�: (1)

Therefore, to calculate the impulse response of the gas by
Eqn (1), it remains to énd the variance of the gas molecule
displacement as a function of time. In addition, the function
hz 2(t)i determines the diffusion coefécient of molecules in
the gas.

3. Diffusion coefécient

The function w(z; t) satisées the one-dimensional diffusion
equation

qw
qt
� D

q2w
qz 2

;

where

D � 1

2

d

dt
s 2�t� � 1

2

d

dt
hz 2�t�i

is the diffusion coefécient of molecules in the gas. There-
fore, the diffusion coefécient can be deéned as the time
derivative of the variance of the molecule displacement.
Using the relation z(t) � � t0 vz(y)dy, the variance of the
molecule displacement can be represented in the form
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hz 2�t�i �
� t

0

� t

0

hvz�y1�vz�y2�idy1dy2
or

hz 2�t�i �
� t

0

� t

0

B�y1 ÿ y2�dy1dy2;

where B(t) � hvz(t)vz(t� t)i is the thermal velocity corre-
lation function for a molecule. Correlation functions are
known to be even functions [22]. Therefore, hz 2(t)i can be
transformed to the form (see, e.g., [23]) hz 2(t)i � 2

� t
0 (tÿ t)

�B(t)dt. Substituting this expression into the formula for
the diffusion coefécient and then differentiating with
respect to time, we obtain

D �
� t

0

B�t�dt: (2)

Thus, the diffusion coefécient is expressed through the
thermal velocity correlation function for a gas molecule. As
shown previously [17], the thermal velocity correlation
function for a gas molecule is an exponential function,
B(t) � B(0) exp (ÿ jtj=tv), where B(0) � s 2

v , and the ther-
mal velocity correlation time is three times the mean free
path time of the molecule: tv � 3tc. Therefore, the variance
of the gas molecule displacement is given by

hz 2�t�i � 2s 2t 2

�
t

t
ÿ 1� exp

�
ÿ t

t

��

and the diffusion coefécient is

D � B(0)tv

�
1ÿ exp

�
ÿ t

tv

��
or

D � D1

�
1ÿ exp

�
ÿ t

tv

��
,

where D1 � s 2
v tv is the asymptotic value of the diffusion

coefécient. The physical meaning of the variation of the
diffusion coefécient on a time scale much shorter than the
mean free path time of the molecule is that, on this time
scale, its motion is uniform and rectilinear. The coordinate
of the molecule is then a linear function of time, and the
variance of its displacement is proportional to the square of
time.

4. Numerical estimates

Using transient CARS spectroscopy, D'yakov et al. [3]
determined the thermal velocity correlation time in
molecular hydrogen. According to their results, tv � b=r,
where b � 0:13� 10ÿ9 s, r � N=N0 is the density of the gas
in Amagat units; N is the molecular concentration; and N0

is the molecular concentration under normal conditions
(Loschmidt constant). In molecular physics, the mean free
path time of a gas molecule, tc, and its diameter, d, are
related by tÿ1c � N

���
2
p hvipd 2 [24]. Here,

���
2
p hvi is the mean

relative velocity of two gas molecules and
hvi � (8kT=pm)1=2 is the mean magnitude of the molecular
velocity. It follows from the formulas above that

d � �4 ���
p
p

N0svb=3�ÿ1=2: (3)

This formula can be used to determine the molecular size.
Let us estimate it for a hydrogen molecule with sv �
1:1� 105 cm sÿ1 at room temperature. From Eqn (3), we
obtain d � 3:3� 10ÿ8 cm. For comparison, the molecular
diameter of hydrogen evaluated from thermal conductivity
measurements is d � 2:74� 10ÿ8 cm [24]. The diffusion
(self-diffusion) coefécient of hydrogen molecules under
normal conditions is then D1 � s 2

v tv � 1:6 cm2 sÿ1. For
comparison, the self-diffusion coefécient of hydrogen was
reported to be D � 1:28 cm2 sÿ1 [25].

5. Conclusions

Ultrashort laser pulses enable studies of fast processes, in
particular, gas-phase diffusion when a nonequilibrium
concentration is produced in a very small volume. One
way of producing a local nonequilibrium concentration of
particles is vibrational excitation of molecules by focused
laser pulses. In the case of Raman transitions, such a
possibility is offered by transient CARS. This method
enables measurements of gas parameters such as the
variance and correlation time of the thermal velocity of
molecules. In this work, relations were derived between
these parameters and the diffusion coefécient and size of
gas molecules. Numerical estimates were made for molec-
ular hydrogen.
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