
Abstract. The self-organisation of the surface-relief nano-
structures in solids under the action of energy and particle
êuxes is interpreted as the instability of defect-deformation
(DD) gratings produced by quasi-static Lamb and Rayleigh
waves and defect-concentration waves. The allowance for the
nonlocality in the defects ë lattice atom interaction with a
simultaneous account for both (normal and longitudinal)
defect-induced forces bending the surface layer leads to the
appearance of two maxima in the dependence of the
instability growth rate of DD waves on the wave number.
Three-wave interactions of quasi-static coupled DD waves
(second harmonic generation and wave vector mixing) are
considered for the érst time, which are similar to three-wave
interactions in nonlinear optics and acoustics and lead to the
enrichment of the spectrum of surface-relief harmonics.
Computer processing of experimental data on laser-induced
generation of micro- and nanostructures of the surface relief
reveals the presence of effects responsible for the second
harmonic generation and wave vector mixing.

Keywords: surface defect-deformation waves, generation of harmo-
nics, wave vector mixing, laser-induced nano- and microstructures.

1. Introduction

Nonlinear interactions of three waves with frequencies o1,
o2, o3 [second harmonic generation (SHG): o3 � o1 � o2

(o1 � o2) and frequency mixing: o3 � o1 � o2] are clas-
sical phenomena in nonlinear optics [1] and nonlinear
acoustics [2]. In this paper, we show for the érst time that
there exist analogues of these nonlinear wave effects
involving waves of a new type: surface quasi-static (with
the zero frequency) defect-deformation (DD) waves excited
during the interaction of laser radiation with solids. These
effects include SHG of a surface relief: q3 � q1 � q2 (q1 �
q2) and wave vector mixing of DD gratings (q3 � q1 � q2).
If the electronic anharmonicity is responsible for nonlinear-
optical effects [1] and deformation anharmonicity is
responsible for nonlinear-acoustic effects [2], the nonlinear
interaction of DD waves considered in this paper can be

explained by the DD anharmonicity caused by the inter-
action of defects with the self-consistent deformation éeld.

These new nonlinear laser-induced effects have not been
studied experimentally so far; however computer processing
of experimental data on laser-induced generation of micro-
and nanostructures of the surface relief performed in this
paper reveals the presence of effects, which can be inter-
preted as a SHG and wave vector mixing of DD waves.

A number of self-organisation processes of nano- and
microstructures on the surfaces of solids are accompanied
by the formation of a nanometre- or micrometre-thick layer
saturated with mobile point defects: interstices, vacancies,
electron ë hole pairs and doping atoms. This situation
appears, for example, when an ensemble of nanodots is
produced due to the exposure of semiconductors and metals
to laser and ion beams (see review [3]). The defect-saturated
surface layer appearing due to irradiation has a grating
constant, which differs from the grating constant of the low-
lying crystal layer (`the substrate'). This leads to the
appearance of mechanic stresses in the surface layer.

It is known that if the plane stressed (stretched) surface
layer of thickness h is saturated with mobile point defects,
then, when the critical concentration of defects is exceeded,
the plane state becomes unstable and the layer undergoes a
transition to the periodically bending state with a simulta-
neous accumulation of defects in the relief extrema [4 ë 6]. In
this case, the displacements of the medium inside the layer
are given as in the case of the bending Lamb wave, while the
displacements in the substrate are given as in the case of the
Rayleigh wave [6, 7]. Coupled static Lamb ëRayleigh defor-
mations in the layer and substrate produced due to the
development of this DD instability, are maintained by the
self-consistent distribution of point defects deforming the
elastic continuum. This deformed state of the layer and
substrate represents a static analogue of a dynamic Lamb ë
Rayleigh wave propagating in a thin surface layer with the
density exceeding the substrate density [8].

The appearance of the periodic surface relief is accom-
panied by the accumulation of defects in its extrema. In this
case, interstices are accumulated in the relief projections,
while vacancies ë in its hollows. This periodic modulation of
the surface relief and the coupled grating of defect clusters
compose a surface DD wave (grating), which is charac-
terised by the wave vector q [6]. During the development of
the DD instability the amplitudes of DD gratings increase in
time as exp (lqt), where lq is the growth rate. The value of
q � qm, at which the growth rate maximum is achieved,
determines the period of dominating gratings Lm � 2p=qm
found in the Fourier spectrum of the surface relief. The
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allowance for the nonlocality in the interaction of defects
with lattice atoms in the expansion of the core of interaction
operators to the terms of the fourth order inclusively with a
simultaneous account for both (normal and longitudinal)
defect-induced forces bending the layer leads, at a rather
large excess over the instability threshold (at large enough
excess of the critical concentration of defects), to the
appearance of the second growth rate maximum lq for
q � qc � p=h [7] to which dominating gratings with the
period Lc � 2p=qc � 2h correspond.

Superposition of dominating surface DD gratings with
the vectors q different in value and direction produces a
cellular seed DD structure on the isotropic surface [3]. The
characteristic scale of inhomogeneities in it is determined by
the period Lm (or Lc). In the case of autoselection of
directions of wave vectors q (due to the crystal or induced
anisotropy of elastic moduli and diffusion coefécients or due
to the processes of angular self-organisation on the isotropic
surface [9]) on the surface, we deal either with two mutually
perpendicular directions of vectors q (a rectangular grating
[5]) or three directions oriented at angles 608 to each other (a
hexagonal grating [9]). Therefore, depending on the thresh-
old excess, either one DD wave with the wave vector qm or
two waves with the wave vectors qm and qc are excited along
the selected directions. Due to the nonlinear three-wave
interaction between them, the SHG effects of the surface
relief and wave vector mixing are possible during the
development of the DD instability. Thus, this paper is
devoted to the description of these effects and their
observation in experimental data.

In the case of a rather intense laser or ion action, the
seed DD structure (cellular, rectangular or hexagonal) is
subjected to `etching', the regions of defect clusters being
etched with the velocity differing from the etching velocity
of other regions. Etching `visualises' the seed latent DD
structure, which, in this manner, `imposes' its periodicity
and symmetry on the resultant permanent surface relief [3].
Due to this, it becomes possible, by using the Fourier
transform of optical or AFM photographs of the surface
with the reliefs produced upon irradiation, to reveal the
effects of SHG and wave vector mixing of DD gratings,
which was done for the érst time in this paper.

2. Basic equations describing the DD instability
of a stressed layer with mobile defects

Let the crystal surface layer of thickness h exposed to a
laser or ion beam generate point defects with the
concentration nd (d � v for vacancies, d � i for interstices).
The plane z � 0 coincides with the free surface of the
sample and the z axis is directed from the surface inside the
sample. We will write the defect concentration distribution
in the layer in the form

nd�x; y; z; t� � Nd�x; y; t� f �z�, (1)

where Nd (x , y, t) is the concentration of defects on the
surface z � 0; the function f (z) specifying the defect
distribution along the normal to the layer will be deéned
below [see expression (6)].

The equation for Nd has the form [7]

qNd

qt
� DdDNd ÿ

Ddyd
kBT

div�NdH�x� l 2dDx� L 4
dD

2x��j z�0, (2)

where

D � q 2

qx 2 �
q 2

qy 2 ; H � êx
q
qx
� êy

q
qy

; divA � qAx

qx
� qAy

qy
;

êx and êy are the unit vectors along the axes x and y,
respectively; yd � OdK is the deformation potential of the
defect; Od is the change in the medium volume, when a
defect is produced; K is the elasticity modulus;
x � x(x , y, z) � div u is the deformation in the layer;
u � u(x , y, z, t) is the vector of the medium displacement
in the layer; Dd is the surface diffusion coefécient; T is the
surface temperature. The parameters l 2d and L 4

d describe the
nonlocality of the defect ë lattice atom interactions and are
assumed speciéed parameters.

The élm deformation x is described by the expression
[10]

x�x; y; z; t� � ÿv
�
zÿ h

2

�
Dz�x; y; t�, (3)

where v � (1ÿ 2sP)=(1ÿ 2sP); sP is the Poisson coefécient
of the élm; z is the bending coordinate of the élm (the
displacement of points of the median plane along the z
axis). The linear sign-alternating dependence of the
deformation in the layer on the coordinate z (3) is a
speciéc feature of the Lamb wave in the plates [8].

For the coordinate z, we will write the linear equation,
which is obtained by generalising the ordinary equation of
the free élm bending from [10]:

q 2z
qt 2
� l 20 c

2D 2zÿ sk
rf

Dz

� ÿ
X
d

�
ÿ yd
rfh

� h

0

qnd
qz

dz� vyd
rfh

� h

0

�
zÿ h

2

�
Dnd dz

�
, (4)

where c 2 � Ef=�rf (1ÿ s 2
P)� is the élm rigidity coefécient; Ef

is the Young coefécient; l 20 � h 2=12; sk and rf is the
longitudinal stress and élm density. Note that the bending
rigidity of the élm (the coefécient in front of D 2z) depends
on its thickness h, which plays the role of a scale parameter
speciéc for the DD instability of the élm.

In the left-hand side of (4) the term proportional to sk
takes into account the effect of the isotropic longitudinal
stress in the élm appearing due to the mismatch of the
grating parameters in the élm and the substrate and (or) due
to generation of defects in the surface layer. By assuming
that sk > 0, i.e. the élm is experiencing the tensile stress,
which is believed to be speciéed. The second term in the
right-hand side of (4) takes into account the defect-induced
bending force acting along the normal to the élm surface
and appearing due to the inhomogeneous distribution of
defects along the z axis, and the third term in the right-hand
side of (4) ë the defect-induced bending longitudinal force
appearing due to the inhomogeneous distribution of defects
along the élm. Note that in a more complete formulation of
the problem it is necessary to take into account that the élm
bending results in the appearance of the displacement vector
u in the substrate, which is given by the vector displacement
components in the quasi-Rayleigh wave [7].

The allowance for the substrate reaction shows that this
reaction can be neglected if the condition
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sk > ms

�
Lm

1ÿ bs
ph

�
(5)

is fulélled, where bs � c 2tr=c
2
lt ; clt and ctr are the longitudinal

and transverse sound speed in the substrate; ms is the shear
modulus in the substrate at the élmë substrate interface.
This condition can be fulélled if the effective shear modulus
at the interface is ms ! 0, for example, in the case of
generation of misét dislocations [11, 12] or due to the
formation of vacancy clusters below the surface layer in the
case of laser irradiation as a result of deformation-induced
pumping of vacancies from the surface inside the medium
[3]. Assuming this condition to be fulélled, we will consider
here the simplest model of a free élm, i.e. the substrate
reaction will be neglected.

In this case, the system of equations (2) ë (4) and (1), if
f (z) is speciéed, is a closed system describing the DD
instability of the stressed thin surface layer with mobile
defects.

3. Equations for Fourier amplitudes;
two maxima of the DD instability growth rate
as functions of the wave number

It can be shown that because h < Lm, nd is rapidly adjusted
to the distribution of the bending deformation with respect
to z (3) and is an asymmetric (with respect to the point
z � h=2) function of z:

nd�x; y; z; t� �
2

h

�
h

2
ÿ z

�
Nd�x; y; t�. (6)

It follows from (6) that

nd�z � 0� � ÿnd�z � h� � Nd. (7)

By substituting (6) into the right-hand side of (4) and
calculating integrals taking (7) into account and by assum-
ing that the deformation is adiabatically adjusted to the
defect subsystem (q 2z=qt 2 � 0), we obtain

D 2zÿ 1

l 2k
Dz �ÿ

X
d

�
ÿ Ad ÿ

2vyd
rfc

2h
D
�
Nd, (8)

where Ad � 2yd=(hl
2
0 rfc

2) and the characteristic scale
parameter is lk � h�rfc 2=(12sk)�1=2.

By using the Fourier expansion, we obtain

z�r; t� �
X
q

zq exp�iqr� lqt�,
(9)

Nd�r; t� �
X
q

Nd�q� exp�iqr� lqt�.

Expressions (9) specify the superposition DD structure
composed of coupled two-dimensional (cellular) DD
gratings of the surface relief and defect concentration. In
fact, each DD grating with the wave vector q is a bending
static Lamb wave with the wavelength L � 2p=q main-
tained by the self-consistent distribution of defects. It is
possible to show that when the substrate reaction is taken
into account, each quasi-static Lamb wave is related to the
quasi-static Rayleigh wave in the substrate with the same
wave vector q [6, 7]. The Fourier amplitudes of each DD
grating with the wave vector q increase in time with the
growth rate lq. Summation in superpositions (9) is

performed both over the directions and the modulus of
vectors q. In this case, summation over the modulus jqj � q
is fulélled within q1 4 q4 qc, where q1 � p=L is the wave
number of the érst bending mode; L is the longitudinal
surface dimension of the region with mobile defects;
qc � p=h is the wave number of the limiting bending
mode [6].

By using (9), we obtain from expression (8) the linear
coupling between Nd�q) and zq in the DD grating with the
wave vector q:

zq � ÿ
X
d

2yd
rfc

2hl 20

ÿ
1� vl 20 q

2
�ÿ
q 4 � lÿ2k q 2

�ÿ1
Nd�q�. (10)

For simplicity, we retain in (10) the contribution of defects
of only one type. By performing Fourier transform (2) and
substituting (4), (10) into it, we obtain the equation for the
Fourier amplitude:

qNd�q�
qt

� lqNd�q� �Dd

1

Ncr

�
X
q1

qq1
1� vl 20 q

2
1

1� l 2k q
2
1

N�q1�N�qÿ q1�, (11)

where we set ld � 0 and Ld � 0 in the linear term. The
growth rate of the DD grating is

lq � ÿDdq
2 �Ddq

2 Nd0

Ncr

ÿ
1� vl 20 q

2�ÿ1ÿ l 2d q
2 � L 4

d q
4�

1� l 2k q
2 , (12)

where Nd0 � Nd (q � 0) and the critical defect concentration
Ncr � skkBT=(vy

2
d ) is introduced.

To study dependence (12) numerically, it is convenient to
pass to dimensionless variables X � lkq and lX � lql

2
k =Dd,

parameters a � l 20 =l
2
k , b � l 2d =l

2
k , g � L 4

d =l
4
k and to introduce

the governing parameter e � Nd0=Ncr. Using these notation,
we have

lX � ÿX 2 � X 2e
ÿ
1� avX 2

� 1ÿ bX 2 � gX 4

1� X 2
. (13)

The dependences of the growth rate lX on X for two
governing parameters (e � 5 and 10) are presented in Fig. 1.
While plotting the dependences we used dimensionless

lX
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Xc
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Figure 1. Dependences of the dimensionless growth rate l0X of the
Fourier amplitude of the DD grating on the dimensionless wave number
X for the control parameter e � 5 (dashed curve) and 10 (solid curve);
Xc � lkqc is the reduced wave number of the limiting bending mode.
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parameters a � 1:4� 10ÿ2, b � 1:5� 10ÿ2 and g � 1:8�
10ÿ3, which can be obtained, for example, at the following
physical parameters typical for the nanostructure formation:
h � 10ÿ6 cm, rfc

2 � 7� 1011 erg cmÿ3, sk � 1010 erg cmÿ3,
ld � 3� 10ÿ7 cm and Ld � 5� 10ÿ7 cm.

One can see from Fig. 1 that at the defect concentration
exceeding the threshold value, the growth rate érst has one
positive maximum at q � qm (the period of the DD grating
corresponding to it is L � Lm � 2p=qm) and in the case of
larger concentrations, apart from the maximum at L � Lm,
there appears an additional positive maximum in the short-
wavelength region at

jqcj � p=h (L � Lc � 2h). (14)

Thus, two DD gratings with the wave vectors q � qm and
q � qc have the maximum growth rate.

The long-wavelength maximum of the growth rate at
L � Lm (for q � qm) can be described analytically if we
neglect the nonlocality of the DD interaction in (12) by
setting ld � Ld � 0 and, in addition, neglect the longitudinal
bending force (vl 20 q

2 < 1). Then, we obtain from (12)

lq � ÿDdq
2 �Ddq

2 Nd0

Ncr

1

1� l 2k q
2
. (15)

The growth rate lq achieves the maximum value lm at
q � qm. In this case,

qm �
1

lk

��
Nd0

Ncr

�1=2
ÿ 1

�1=2
, (16)

lm � Ddq
2
m

��
Nd0

Ncr

�1=2
ÿ 1

�

� Dd

l 2k

��
Nd0

Ncr

�1=2
ÿ 1

�2
sign

��
Nd0

Ncr

�1=2
ÿ 1

�
. (17)

One can see from (16), (17) that when the critical
concentration of defects (Nd0=Ncr > 1) is exceeded, the
value of qm becomes real and simultaneously the growth
rate lm becomes positive. At T � 300 K, sk �
1010 erg cmÿ3, yd � 102 eV, v � 0:5, we obtain from (12)
the estimate of the critical concentration: Ncr �
2� 1016 cmÿ3.

4. Thee-wave interactions of DD gratings

4.1 Equations of three-wave DD interactions

Consider now the nonlinear regime. We will restrict
ourselves to the interaction of three DD gratings with
the collinear wave vectors q1 � qc, q2 � qm and q3 � ÿ(qc�
qm). In particular, as wave vectors qc and qm, we can use
wave vectors given by expressions (14) and (16) for which
the growth rate maximum lq is achieved.

Expressions for the Fourier amplitudes of interacting
gratings follow from (11) and assume the form

qN�qm�
qt

� lqmN�qm� �Dd

Am

Ncr

N�qc � qm�N�ÿqc�,

qN�qc�
qt

� lqcN�qc� �Dd

Ac

Ncr

N�qc � qm�N�ÿqm�,
(18)

qN�qc � qm�
qt

� lqc�qmN�qc � qm�

�Dd

Acm

Ncr

N�qc�N�qm�,

where the coefécients of the three-wave DD interaction are

Am � ÿqcqm
1� vl 20 q

2
c

1� l 2k q
2
c

� �qc � qm�qm
1� vl 20 �qc � qm�2
1� l 2k �qc � qm�2

,

Ac � ÿqmqc
1� vl 20 q

2
m

1� l 2k q
2
m

� �qc � qm�qc
1� vl 20 �qc � qm�2
1� l 2k �qc � qm�2

,

Acm � qm�qc � qm�
1� vl 20 q

2
m

1� l 2k q
2
m

(18 0)

� qc�qc � qm�
1� vl 20 q

2
c

1� l 2k q
2
c

.

By passing in (18) to real variables Nj � nj exp (ijj), we
have a system of three equations for the real amplitudes nj
( j � c, m, cm) and the equation for the phase difference
F � jc � jm ÿ jcm:

qnm
qt
� lmnm �DdAm

ncncm
Ncr

cosF ,

qnc
qt
� lcnc �DdAc

nmncm
Ncr

cosF , (19)

qncm
qt
� lcmncm �DdAmc

nmnc
Ncr

cosF ,

qF
qt
� ÿ Dd

Ncr

�
Am

ncncm
nm
� Ac

nmncm
nc

� Amc

nmnc
ncm

�
sinF.

(20)

Expression (20) describes the phase relaxation: F! 0.
One can see from the comparison of expressions (20) and
(19) that the ratio of the characteristic relaxation time of
phases to the characteristic time of the defect transfer from
one DD grating to others is tph=t0 � nj=Ncr � nj=Nd0 5 1.
Therefore, in considering nonlinear transformation of DD
gratings in (19), we can set F � 0.

4.2 Second harmonic generation of the surface relief

Consider one of the DD gratings. When the DD instability
threshold is slightly exceeded and the growth rate of DD
gratings has only one maximum, this will be the DD grating
with the wave vector qm (16). We will show that due to
three-wave interactions, summation of two identical wave
numbers is possible: qmm � ÿqm ÿ qm. As a result, one
more DD grating with the wave number 2qm is generated
on the surface of the initial grating with qm. This case
corresponds to the optical SHG process in a nonlinear
crystal, if the exact phase-matching conditions are fulélled.
Expressions for coupling coefécients (18 0) in this case have
the form:

Am � q 2
m

1ÿ 2l 2k q
2
m

�1� l 2k q
2
m��1� 4l 2k q

2
m�

, Amm �
4q 2

m

1� l 2k q
2
m

.
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To solve system (19) numerically, we will pass to
dimensionless time t 0 � lmt, amplitudes n 0j � nj=Ncr and
parameters A 0j � Aj l

2
k and l 0q � lq l

2
k =Dd as well as set

F � 0. Then, for the SHG under study, the system of
equations (19) takes the form

qn 0m
qt 0
� n 0m �

A 0m
l 0m

n 0mn
0
mm,

(21)
qn 0mm

qt 0
� l 0mm

l 0m
n 0mm �

A 0mm

l 0m
n 0mn

0
m.

The results of the numerical solution of this system for the
initial conditions n 0m(t � 0) � 0:5, n 0mm(t � 0) � 10ÿ5 are
presented in Fig. 2a. The values of growth rates l 0m and
l 0mm are calculated by using expression (13) for
a � 1:4� 10ÿ2, b � 4� 10ÿ5, g � 10ÿ8, e � 10, and
v � 0:5. The coupling coefécients A 0m � ÿ 0:22,
A 0mm � 2:8 are calculated by using expression (18 0). One
can see that during the time exceeding the characteristic
time of the linear amplitude growth of the érst harmonic
(1=l 0m), the amplitude of the second harmonic due to SHG
starts exceeding the amplitude of the érst harmonic (the
linear amplitude growth of the second harmonic at this l 0mm

can be neglected because l 0m=l
0
mm � 11:5 for the parameters

used).

4.3 Wave vector mixing

Let us have initially two collinear DD gratings with the
wave vectors q1 � qm and q2 � qc � 2qm. Consider the

process of the wave vector mixing due to which there
appears a grating with the wave number
q3 � qcm � ÿ(q1 � q2) � ÿ3qm. In this case, in dimension-
less variables and at F � 0, system (19) assumes the form

qn 0m
qt 0
� n 0m �

A 0m
l 0m

n 0cn
0
cm,

qn 0c
qt 0
� l 0c

l 0m
n 0c �

A 0c
l 0m

n 0mn
0
cm,

(22)
qn 0cm
qt 0
� l 0cm

l 0m
n 0cm �

A 0cm
l 0m

n 0mn
0
c.

The results of the numerical solution of the system of
equations (22) at l 0cm=l

0
m � ÿ2, l 0m=l 0c � 11:5 are shown in

Fig. 2b for initial conditions n 0m(t�0)�0:25, n 0c(t�0)�1,
n 0cm(t�0) � 10ÿ5. The growth rates are calculated by using
(13) at a � 1:4� 10ÿ2, b � 4� 10ÿ5, g � 10ÿ8, e � 10, and
v � 0:5. The coupling coefécients A 0m � ÿ0:12, A 0c � ÿ0:7
and A 0cm � 3:5 are calculated by using (18 0). One can see
that even in the case of the negative growth rate of the third
harmonic, we observe a signiécant increase in its amplitude
due to the nonlinear transformation.

5. Comparison of the theory with experimental
results

In paper [13] the surface of the (100) crystalline silicon was
irradiated by linear polarised millisecond pulses from a
neodymium laser with the energy density near the melting
threshold. Irradiation in the case of the normal incidence of
laser radiation on the sample resulted in the formation of a
two-dimensional crystallographically oriented grating of the
surface relief with a micrometre period, whose character-
istics are described by the theory of the surface DD
instability [5, 13]. At the angle of incidence 308, the relief
had a more complicated shape, which did not allow such an
unambiguous interpretation (Fig. 3). Large-scale (� 30 mm)
crystallographically oriented blocks are interpreted in paper
[14] as a result of the development of a thermal-
deformation instability and, in this case, present no interest.

Of interest is a comparatively small-scale (micrometre)
relief. The Fourier transform of this relief (Fig. 3) shows
that this complex micrometre relief is produced by the
superposition of three gratings. One grating with the wave
vector parallel to the éeld strength vector E of the exciting
radiation and with the period depending on the angle of
incidence is produced due to the development of the
interference instability [15]. Two other crystallographically
oriented gratings with the period 3.5 mm and the wave
vectors qm along the mutually perpendicular directions of
type [100] are produced due to the development of the
surface DD instability [5, 13]. The period of these DD
gratings is independent of the angle of radiation incidence.
In addition, intense crystallographically oriented maxima,
corresponding to two mutually perpendicular relief gratings
with the wave numbers 2jqmj, can be clearly seen, which
indicates the SHG of the relief. A more detailed study of the
photograph shows that the DD grating consists of two
periodically repeated dark lines and a grey line between
them. It is this pattern that is obtained in computer
simulations of a two-dimensional image of the surface relief
in the presence of the érst and second harmonics (Figs 4b
and d).

In paper [16], when Ge was irradiated by tp � 1-ms, 0.53-
mm laser pulses, the laser scanning regime was used inside
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Figure 2. Amplitudes of the érst (n 0m) and second (n 0mm) harmonics
calculated by expressions (21) for the parameters speciéed in the text (a)
and amplitudes of the érst (n 0m), second (n 0c) and third (n 0cm) harmonics of
the surface relief calculated by expressions (22) for the parameters
speciéed in the text (b) as functions of dimensionless time t 0.
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the rectangular regions of size 3� 5 mm. Inside each
scanning region the densities of the incident energy F
were éxed at the constant number of radiation pulses falling

on each point of the surface, N � 103 (i.e. the total
irradiation time of each point was about a millisecond).
On passing from one scanning region to another, only the
energy density F in each pulse changed. These changes
occurred near the threshold energy density of inelastic
deformation F0 � 0:1 J cmÿ2, the characteristic irradiation
intensities being � 105 ÿ 106 W cmÿ2. As the radiation
dose was increased, the formation of a disordered ensemble
of nanoclusters was érst observed, then an ordered two-
dimensional nanocluster grating was formed, which was
oriented along the sides of the rectangular region being
scanned (Fig. 4a), and then a one-dimensional nanograting
appeared. The DD theory of this effect describing these
transitions and nanostructure parameters was constructed in
papers [17, 18].

The shape of the obviously nonmonochromatic periodic
surface nanorelief recorded with the help of the proélometer
(Fig. 4b) has remained unexplained till recently. The key to
the explanation follows from the fact that in summing the
érst and second spatial harmonics, there appears a relief
approximately corresponding to the experimental one. A
better correspondence of the modelled relief to the exper-
imental one is obtained by summing the érst, second and
third harmonics (cf. Figs 4d and b). The Fourier transform
of the experimental relief presented in Fig. 4b shows that the
érst, second and third harmonics of the relief are really
dominating in the spectrum (Fig. 4c).

6. Conclusions

Thus, the study performed in this paper (see also [7]) shows
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Figure 3. Photograph of the (100) Si surface irradiated by a millisecond
pulse of linearly polarised radiation, which was obtained with an optical
microscope [13] (a), the Fourier transform of the surface relief (each pair
of the maxima lying on the diameter and equidistant from the centre
corresponds to one relief grating) (b) and the directions of vectors qm and
2qm of DD gratings and the electric éeld strength vector E of exciting
radiation (c).
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that the surface relief produced due to the development of
the DD instability can contain in the linear regime,
depending on the excess over the threshold, either one or
two dominating harmonics with the wave vectors qm (16)
and qc (14). In both cases, the modulation period of the
relief is approximately equal to the thickness of the defect-
enriched layer produced upon laser (in the general case ë
beam) irradiation, the thickness lying in the nanometre or
micrometre range [3]. In the nonlinear regime, there can
appear additional harmonics with the wave vectors 2qm,
3qm, qc ÿ qm considered in this paper as well as other
harmonics generated by other three-wave interactions.

The physical mechanism of harmonic generation in the
case of the DD instability consists in the spatial redistrib-
ution of defects under the action of self-consistent
deformation grating on the initial defect grating. For
example, during the SHG, the defect grating with the
wave vector qm is affected by the grating of the deforma-
tion-induced forces with the same wave vector qm but phase
shifted by p=2. This leads to the appearance of the grating of
defect êuxes with the wave vector 2qm, which serves as a
source in equation (2) for the defect concentration [or, in the
Fourier transform, in expression (11)]. Therefore, the non-
linear (quadratic) defect êux in the case of the SHG of the
surface relief is analogues to the quadratic polarisation of
the medium (or current) in the case of generation of the
second optical harmonic.

The presence of two maxima of the growth rate and the
possibility of nonlinear generation of DD harmonics of the
relief should be taken into account in the analysis of the
experimental data on the generation of the surface relief
appearing due to irradiation of solids. Thus, the appearance
of two modulation scales of the relief is a typical feature of
the generation processes of nano- and microstructures in
laser and ion etching of semiconductor surfaces [3]. Three-
wave interactions, as shown in this paper, lead to the SHG.
It can be expected that at even larger excesses over the
threshold, the consideration of higher-order nonlinear
interactions will result in a further enrichment of the
spectrum of surface-relief harmonics.
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