
Abstract. The possibility of using temporal analysis to énd
the relation between chromatic properties of probe radiation
and coherent properties of the optical images of rough non-
planar objects is substantiated. The analysis is based on the
use of the time correlation function and on the study of the
speckle pattern contrast in the optical images. The conditions
are determined under which the different parts of the optical
image of an object are coherent, partially coherent and
incoherent, while probe radiation is manifested as mono-
chromatic, quasi-monochromatic, and polychromatic. It is
shown that these conditions depend considerably on the object
surface shape. The use of the temporal analysis for three-
dimensional imaging of an object by its planar images and
improving the optical image quality by removing its speckle
pattern is illustrated by examples.

Keywords: coherence of optical images, speckles, three-dimensional
imaging by the speckle pattern of planar images of objects.

1. Introduction

Analysis of the coherent properties of optical images of
rough objects, including the properties of their speckle pat-
terns, has a long history [1 ë 4]. However, the relation between
chromatic properties of probe radiation and coherent pro-
perties of the optical image was determined only in some
particular cases. For example, the contrast of a speckle
pattern in the time-averaged intensity distribution

ÿ
I � hIit

of the image of a rough nonplanar object was determined as
a function of the coherence length Lc of probe radiation in
works [4, 5]. The angle brackets h:::it denote averaging

h f it �
1

T

� t0�T

t0

f�t�dt,

where t0 and T are the initial moment and averaging time,
respectively. The approach used in these papers, which is
based on the spectral expansion of the modulation function
u (t) of probe radiation, allowed the authors to determine

this dependence only for Gaussian probe pulses. It was
shown that for a éxed coherence length Lc, the speckle
pattern contrast in the image of steep slopes of the object
surface noticeably exceeds this contrast for the images of
smooth slopes.

On the other hand, in [6 ë 8] a temporal approach was
proposed for determining the relation between chromatic
properties of probe radiation and coherent properties of the
light éelds scattered by objects from the averaged intensity
distribution of the scattered éeld

ÿ
Isc � hjEscj2 it, where Esc is

the éeld amplitude. This relation is found by using the
speckle pattern contrast in the radiation intensity distribu-
tion

ÿ
Isc, which is determined with the help of the time

correlation function Bu(t) � hu (t) u �(t� t)it {the modula-
tion function was written in the form u (t) � ju (t)j exp� ic(t)�,
c(t) � arctan�Im u (t)=Re u (t)� is its phase} under the con-
dition that Bu(t � 0) � 1 and T > 10tc, where

tc �
���� �1ÿ1 Bu�t�dt

����
is the coherence time of probe radiation specifying its
coherent length Lc � ctc (c is the speed of light).

This approach allows one to determine the speckle
pattern contrast for arbitrary temporal structures of probe
radiation, including cw radiation and pulsed radiation with
pulses of arbitrary shapes. If c(t) is a rapidly varying func-
tion, it can be described as a random process, which is
typical for cw radiation. Then, tc � tc=sc, where tc and sc
are the correlation time and rms deviation of the phase c(t).
If c(t) is a slowly varying function, which is typical for
pulsed radiation, then tc is the radiation pulse duration. In
[6 ë 8], the distinct boundaries are indicated between mono-
chromatic, quasi-monochromatic, and polychromatic probe
radiations and between coherent, partially coherent, and
incoherent éelds scattered by a rough nonplanar object. It is
shown that these boundaries are considerably determined by
the surface shape of scattering objects and the size of the
observed scattering region.

Note also that in [4, 5] the speckle pattern contrast in the
intensity distribution of the image of a nonplanar object
was calculated by using a single-scale model of its surface
inhomogeneities. The surface irregularities of the object
surface in this model are its roughnesses. In this case, it
was possible to analyse the contrast only for two limiting
cases of very large and very small coherence lengths Lc of
probe radiation and under the condition that the optical
system forming the image can resolve small details of the
surface. However, the scattering surface of a real object is
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two-scale. This means that it consists of large details, each of
them containing several small details, which can be dis-
cerned in the case of a high enough resolution of the optical
system (Fig. 1). The necessity of using the two-scale model
of the object surface appears, for example, in determining
the speckle pattern contrast in the image of a remote object
when the resolution of the optical system is too low to
resolve small details of the object.

The aim of this paper is to énd the relation between
chromatic properties of probe radiation and coherent pro-
perties of the optical image. For this purpose, by using érst
the temporal approach, we determined the speckle structure
contrast in the time-averaged intensity distribution

ÿ
I of the

optical image of a rough nonplanar object taking into
account the two-scale model of its scattering surface. Such
an approach allows us to determine the dependence of this
contrast on the coherence length Lc of probe radiation.
Then, we determine from this dependence the conditions
under which different parts of the optical image of the object
are coherent, partially coherent, and incoherent, while probe
radiation is manifested as monochromatic, quasi-mono-
chromatic, and polychromatic. We will show that these
conditions strongly depend on the coherence length of probe
radiation and the object surface shape. Two methods are

presented as the examples of practical application of the
temporal approach. The érst method involves the three-
dimensional imaging of rough nonplanar objects by the
speckle pattern contrast in the intensity distribution at
different points of their planar images, while the second
method is used to improve the image quality of these objects
distorted by the high-contrast speckle pattern and is based
on the accumulation of their images by probing with several
radiation sources.

2. Analysis of the éeld distribution in optical
images of rough nonplanar objects in the
two-scale model of their surfaces

Let us determine the éeld distribution in the plane of the
optical image of a rough nonplanar object within the frame-
work of the two-scale model of its surface consisting, as
mentioned above, of large and small details (Fig. 1). The
radius vector of the surface is rS � r�Nx(r)x(r), where
r(x, y, z) is the radius vector of the surface formed by small
details; x(r) and Nx(r) are the distribution of roughness
heights (small-scale irregularities) on this surface and the
normal to it, respectively. In addition, r � rm �NZ(r)Z(r),
where Z(r) and NZ(r) are the height distribution for large-

Figure 1. Formation of the object image in the two-scale model of the object surface:
( 1 ) object; ( 2 ) probe source; ( 3 ) small scattering region; ( 4 ) imaging optical system; ( 5 ) optical axis; ( 6 ) object image plane; at the top right is
presented the magniéed image of region 3, at the bottom left ë the object surface proéle even at a larger magniécation; the thin wavy lines around
straight lines AC and EL show the height distributions of the object surface roughness; the arrows denote the path of one light beam from the source to
the object surface and further from the object surface to the optical system, inside and from it to the object image pane.
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scale irregularities consisting of small details and the normal
to the average surface of the object, respectively; and rm is
the radius vector of the intersection point of the normal
NZ(r) with the average surface. We will assume below that
roughnesses x(r) and large-scale irregularities Z(r) are dis-
tributed according to the Gaussian law with the correlation
radii `x and `Z 4 `x and rms deviations sx � (hx 2(r)ix)1=2
and sZ � (hZ 2(r)iZ)1=2 4 sx [angle brackets h:::ix and h:::iZ
denote averaging by the different realisations of rough-
nesses x(r) and large-scale irregularities Z(r) of the object
surface]. The parameters lZ and sx can be treated as the
average length and average height, respectively, of small
details. We assume that sx 4 l0, where l0 � o0=c is the
mean radiation frequency. We also assume that the object is
probed with a point source with the emission éeld ampli-
tude Ez(t) � EsU(t), where Es is the éeld amplitude on the
source aperture and U(t) � u (t) exp(io0t). By using the re-
sults from [6, 7], we can show the éeld in the image plane is
described in the Kirchhoff approximation by the expression

E�d; t; qs� � �Es=�l0rcSr��

�
��

k�rS�L�q�U�tÿC�rS; q; d�=c� dq drS, (1)

where k(rS) is the reêectance distribution on the object
surface; Sr is the entrance pupil area of the imaging optical
system; L(q) is the system pupil function; q is the radius
vector at the entrance pupil of the recording system; rc
is the radius vector of the object surface point O nearest to
the centre;

C0�rS; q; d� � j rS ÿ qsj � j rS ÿ qj

� Ci�q� � j d ÿ q0j (2)

is the optical path of the probe radiation beam from the
source to the image plane; qs is the radius vector of the
probe radiation source; d is the radius vector of a point in
the image plane; Ci(q) is the optical path of the probe beam
between the entrance and exit pupils of the optical system;
and q0 is the radius vector of the point at which the beam
escapes from the optical system.

As a rule, the axis of the optical system is oriented to the
object and its entrance pupil is circular, so that Sr � pd 2

r ,
where dr is the entrance pupil diameter (Fig. 2). Then,
rc � z0, where z0 is the distance between the object and the
entrance pupil, and the modulus of the radius vector of
point Oi corresponding to the point O of the object is
dc � zi, where zi is the distance between the exit pupil of
the optical system and the image plane. Usually, Ci(q) �
C0 ÿ r 2=(2f �, where C0 is a constant determined by the
design of the imaging optical system, and f is its focal
distance. For example, if the system is a thin plano-convex
lens with the radius R of a spherical convex surface and the
refractive index n (Fig. 2), then in the paraxial approxima-
tion f � R=�2(nÿ 1)� and C0 � Hn, where H � j q ÿ q0j is
the distance between the entrance and exit pupils of the
optical system.

We will analyse relation (1) by assuming that z0 4 d,
where d � r0�sx=(2`x)�2 is the transverse size of the back-
scattering region of the object [6]. Then, in the Fresnel
approximation, taking into account relations (1), (2), and

the lens formula 1=z0 � 1=zi � 1=f, the éeld distribution
in the object image with an accuracy to insigniécant factors
and small terms is described by the expression

E�d; t; qs� � �Es=Sr�
��

k�r�L�q�Uftÿ �2r� rqs=z0

� qNx�r� � q�r=z0 � d=zi��=cg dq dr,
where qN � qNx(r) and q � 2rc=rc is the scattering vector.
For the case most often encountered in practice, when
Lc 4 sx, by taking into account that rc � z0, we obtain in
the Fresnel approximation:

E�d; t; qs� � � exp�io0t�Es=�l0z0Sr��
��

k�r�L�q�

� expf2pi�2r� rqs=z0 � qNx�r�

� q�r=z0 � d=zi��=l0g uftÿ �2r� rqs=z0

� q�r=z0 � d=zi��=cgdq dr. (3)

Figure 2. To the calculation of the optical path of beams forming the
object image by means of a plano-convex lens:
( 1 ) plano-convex lens; ( 2 ) probe source; ( 3 ) probed object; ( 4, 5 )
entrance and exit pupil planes; ( 6 ) object image plane.
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Let us expand the function u in (3) as a power series in
the radius vector q. By integrating relation (3) with respect
to q, we obtain

E�d; t; qs� � Ei�d; t; qs� � Ea�d; t; qs�, (4)

where

Ei�d; t; qs� � � exp�io0t�Es=�l0z0��
�
k�r�h�r; d�

� expfÿ 2pi�2r� rqs=z0 � qNx�r��=l0g

� u�tÿ �2r� rqs=z0�=c� dr;

h(r; d) � (1=Sr)
�
L(q) exp�(2pi=z0)q�r� md)�dq is the pulse

response of the imaging optical system; m � z0=zi is
the scale factor; and Ea�d; t; qs� � �l0=Lc�Ei�d; t; qs�. The
resolution of the optical system is determined by the width
Dr � �

�
h(r; d) dr�1=2 � z0l0=dr of the pulsed response h(r; d)

along the radius vector r. It is equal to the size of the
projection of the minimal resolvable site of the object
surface on the image plane and is often called a resolution
element in the literature [5] (Figs 3 and 4). Note that when
the resolution of the optical system is very high and the
entrance pupil diameter dr is so large that Dr < l0(sx=`x),
the relation E(d; t; qs) � k(r � ÿmd) is fulélled [4]. This
means that the éeld distribution in the image is the exact

copy of the distribution of the reêectance k(r) on the object
surface.

3. Contrast of a speckle pattern in the
intensity distribution of images of rough
nonplanar objects and coherent properties of
these images

Let us determine now the speckle pattern contrast C(d) in
the time-averaged random intensity distribution

ÿ
I�d� � 1

T

� t0�T

t0

jE�d; t; qs�j2dt

of the éeld E(d; t) in the image of an object taking into
account the two-scale nature of its surface. The contrast
C(d) is determined from different expressions depending on
the resolution of the imaging optical system. If `Z 4Dr,
small details on the object surface, which represent large-
scale irregularities Z(r) of its surface, are resolved by this
system. Then, C(d) � Cx(d) � h

ÿ
I 2(d)ix=h

ÿ
I (d)i2x ÿ 1. Accord-

ing to calculations presented in Appendix,

Cx�d� �
�LcD

2
r=Lx�d��

�
k 2
x �r�jh�r; d�j4dr

�� kx�r�jh�r; d�j2dr�2 . (5)

For the coherence length of probe radiation Lc 4 Lx(d), we
obtain C(d) � Cx(d) � 1.

Figure 3. Detailed stepwise approximation of the object surface by parallelepipeds of height Lx(r � ÿmd) and square bases with side Drx in the case of a
high-resolution imaging system:
( 1 ) small region of the object; ( 2 ) parallelepiped approximating this region; ( 3 ) parallelogram ABCD tangential to the object surface; w and v are the
axes of the local coordinate system; sides AB and CD lie on the bases of the approximating parallelepiped.
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If `Z 5Dr, the optical system cannot resolve small details
of the object surface. Then, C(d) � CZ(d) � hh

ÿ
I 2(d)ixiZ=

hh ÿI (d)ixi2Z ÿ 1. Taking into account that the distribution
of the éeld E(d; t) is described by a Gaussian, we obtain the
relation

CZ�d� �
1

T 2

� t0�T

t0

� t0�T

t0

jhhE�d; t1�E ��d; t2�ixiZj2dt1dt2

�
�
hh ÿI (d)ixi2Z

�ÿ1
,

which resembles expression (A1) in Appendix. Taking rela-
tion (A3) into account, we can show that

CZ�d� �
LcD

2
r

� h�1=qx�k 2
x �r�iZjh�r; d�j4dr

�� hkx�r�iZjh�r; d�j2dr�2 . (6)

To analyse expression (6), we approximate a small site of
the mean surface of the object by a plane (Fig. 4). This
plane almost coincides with the EFGH plane, which is
tangential to this site at its centre determined by the radius
vector rm. The plane is oriented perpendicular to the normal
NZ(r) to the mean surface of the object. Expression (6)
depends on the function qx(r) � q?(r)=qN(r) equal to the
slope of a tangent to the object surface, which is a random
quantity determined by the derivatives from the height

distribution for large-scale irregularities. Therefore, averag-
ing over Z(r) can be replaced by averaging over qx. This
means that the relations

h�1=qx�k 2
x �r�iZ �

�
�1=qx�k 2

x �r�W�qx�dqx,
(7)

hkx�r�iZ �
�
kx�r�W�qx�dqx

take place, where W(qx) is the probability density distri-
bution of the function qx(r). Taking into account that the
distribution of heights is described by a Gaussian, we
can show that W(qx) � (`Z=sZ) exp� ÿ`2Z(qx ÿ qZ)

2=s2Z�, where
qZ � eq?=eqN � hqxiZ; eq? � (4ÿ eq 2

N)1=2; and eqN � qNZ(r). For
the coherence length of probe radiation Lc 5LZ(d) � DrqZ,
where LZ(d) is the length of the projection of the EFGH
plane on the vector q (see Figs. 1 and 4), taking into account
expressions (6) and (7) and the relation sZ=`Z 5 sx=`x,
which is usually fulélled, we obtain

CZ�d� �
�LcD

2
r=LZ�d��

�
kZ�r�jh�r; d�j4dr

�� kZ�r�jh�r; d�j dr�2 , (8)

where kZ(r)� (`x=sx)
2ki(r)exp(ÿqZ`x=sx)2 and ki(r)� jk(r)j2.

For the coherence length Lc 4LZ(d), we have CZ(d) � 1.
Relations (5) and (8) can be simpliéed, taking into account
that

Figure 4. Rough stepwise approximation of the object surface by parallelepipeds of height LZ(r � ÿmd) and square bases with side DrZ in the case of a
low-resolution imaging system:
( 1 ) probed object; ( 2 ) object surface regions in which LZ(r� � 0 (these regions are parallel to the entrance pupil plane of the optical system, and for
this reason the speckle contrast in their images is close to unity); ( 3 ) object surface region shown in Fig. 1; ( 4 ) parallelepiped approximating region
( 3 ); ( 5 ) parallelogram EFGH tangential to the average object surface; w and v are the axes of the local coordinate system; sides EF and GH lie on the
bases of the approximating parallelepiped.
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Dr 5Lx � ki�r � ÿmd�=�q2ki�r � ÿmd�=q2x�1=2,
(9)

Dr 5Ly � ki�r � ÿmd�=�q2ki�r � ÿmd�=q2y�1=2,

where Lx and Ly are the characteristic sizes of the details of
distribution (8) along the x and y axes [4]. Then,

h ÿI (d)ix � kx�r � ÿmd�
�
jh�r; d�j2dr

� D2
r kx�r � ÿmd�, (10)

1

T 2

� t0�T

t0

� t0�T

t0

jhE�d; t1�E ��d; t2�ixj2dt1dt2

� �kx�r � ÿmd��2
�
jh�r; d�j4dr

� �D4
rLc=Lx�d���kx�r � ÿmd��2. (11)

Taking relations (9), (10), and (11) into account under the
condition that Lc 5Lx(d),LZ(d), we obtain

Cx�d� � Lc=Lx�d�5 1, CZ�d� � Lc=LZ�d�5 1. (12)

Such small contrasts can be physically explained as
follows (see also section 3.6 in [4]). Let us éx a small
region of the object image corresponding to the minimal
resolvable part of the object surface. Then, we divide
mentally this region by planes parallel to the entrance pupil
plane and separated by distances Lc. As a result, the region
will be divided into Nx � Lx(d)=Lc 4 1 sites in the case of
high resolution and into NZ � LZ(d)=Lc 4 1 sites in the case
of low resolution. The éelds scattered by these sites make
Nx or NZ statistically independent contributions to the
formation of the éxed region of the image. Therefore,
the contrast in this region will be inversely proportional
to either Nx or NZ.

Let us estimate now the dependence of the contrast Cx(d)
on the coherence length for arbitrary ratios Lc=Lx for
imaging optical systems with the high resolution, when
Dr 5 `Z. In this case, taking into account relations (A1),
(A3), (9), (10), and (11), we have

Cx�d� �
� � jh�r1; d�h��r2; d�j2jBu� b�r1; r2��j2dr1dr2

�� jh�r; d�j2dr�2 . (13)

Taking into account that b (r1; r2) � �2qx(w1 ÿ w2)�=Lc, by
approximating the functions h and Bu by Gaussians,
h�r; d� � expfÿ� (w� mdx=zi)

2 � (v� mdy=zi)
2�=D2

xg and
Bu� b(r1; r2)� � exp�ÿ2qx(w1 ÿ w2)

2=L2
c �, and replacing inte-

gration with respect to r in (13) by integration with respect
to w and v in the interval �ÿ1;1�, we obtain C(d) �
Cx(d) � �1� ax(Lc=Lx)

2�1=2, where ax � 1. For Lc 4Lx, the
contrast is C(d) � Cx(d) � 1, and for Lc 5Lx, we have
C(d) � Cx(d) � Lc=Lx(d). Similarly in the case of a low
resolution, when `Z 5Dr, the contrast is C(d) � CZ(d) �
�1� aZ(Lc=LZ)

2�1=2, where aZ � 1. In this case, for Lc 4LZ,
the contrast is Lc 4LZ, and for Lc 5LZ, we have C(d) �
CZ(d) � Lc=LZ(d).

Let us use the results obtained above to classify the
chromatic properties of probe radiations and coherent

properties of optical images, similarly to the classiécation
proposed in paper [6]. When the coherence length Lc of
probe radiation exceeds the thickness Ls of the back-
scattering region, this radiation scattered from the entire
object behaves as monochromatic radiation and its image
as a whole manifests itself as a coherent image. If Lc 4Ls,
the chromatic properties of probe radiations and coherent
properties of optical images are determined by the reso-
lution of the imaging optical system and the steepness of the
slopes of the object surface.

In the images of the smooth slopes of the object surface
on which Lx(d)5Lc at high resolution and LZ(d)5Lc at
low resolution, the contrast of the time-averaged intensity
distribution is Cx(d) � CZ(d) � 1. Therefore, the probe
radiation scattered by these slopes behaves as monochro-
matic radiation, while the images of smooth slopes manifest
themselves as coherent images. In the images of steep slopes
of the object surface on which Cx(d) � Lc=Lx(d)5 1 at high
resolution (Lx(d)4Lc) and CZ(d) � Lc=LZ(d)5 1 at low
resolution (LZ(d)4Lc), the probe radiation scattered by
these slopes behaves as polychromatic radiation, and the
images of steep slopes manifest themselves as incoherent
images. In the intermediate case between smooth and steep
slopes for the high [0:25Lc 5Lx(d)5 0:1Lc] and low
[0:25Lc 5 LZ(d)5 0:1Lc] resolutions, the contrast of the
time-averaged intensity distribution is C(d) � 1. This means
that probe radiation behaves as quasi-monochromatic radi-
ation, while the images of these intermediate slopes manifest
themselves as partially coherent images.

Thus, if Lc 4Ls, the coherent properties of different
regions of the same optical image of a nonplanar rough
object strongly depend on the steepness of different regions
of its surface. This is demonstrated in Fig. 4 showing the two
smooth regions of the object surface on which LZ(d) � 0.
Their images are the coherent regions of the object image.
Region ( 3 ) of the object surface is an example of the inter-
mediate case. Its image is one of the partially coherent
regions of the object image.

4. Three-dimensional imaging by the planar
optical image of an object by using the temporal
approach

Let us use relations (15) for the three-dimensional imaging
of an object by the contrast of a speckle pattern in each
region of its planar image. If the resolution of the imaging
optical system is high and `Z 4Dr, we can perform a
detailed stepwise approximation of the object surface with
the help of parallelepipeds with square bases with the side
Drx � l0z0=drx (where drx is the entrance pupil diameter of
this system) and height Lx(d) � Lc=Cx(d) (see Fig. 3). If the
resolution of the optical system is low and `Z 5Dr, we
can perform a rough step approximation of this surface
with the help of parallelepipeds with square bases with the
side DrZ � l0z0=drZ 4Drx (where drZ 5 drx is the entrance
pupil diameter of this system) and height LZ(d) � Lc=CZ(d)
(see Fig. 4).

The contrast C(d) at each point of the object image can
be determined with the help of several (no more than a
hundred) probe sources arranged in the form of an array in
the entrance pupil plane (Fig. 5). Let us denote the radius
vector of the mnth source as qsmn, where m and n are the
array line and column numbers, respectively. We recorded
N images with the intensity distributions

ÿ
I (d, qsmn) in each
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of them. When the distance between adjacent sources is no
less than 0:7dr, these images are so separated that their
realisations on the entrance pupil are completely discernible:
h ÿI (d, qsm1n1

)
ÿ
I (d, qsm2n2

)ix � dm1n1;m2n2
(d is the Kronecker

delta) [4, 5] (Fig. 6). Then, the approximate contrast value is
calculated from the expression Ci(d) � h

ÿ
I 2(d)ii=h

ÿ
I (d)i2i ÿ 1,

where h ÿI 2(d)ii�Nÿ1
Pÿ

I 2(d, qsmn); h
ÿ
I (d)ii�Nÿ1

Pÿ
I (d, qsmn)

(summation is performed over all the sources). In the case
of the detailed stepwise approximation, it is expedient to
have no less than 50 sources. Then, Ci(d) � Cx(d) with an
accuracy of 2%. In the case of the rough stepwise approxi-
mation of the object surface, it is sufécient to have no more
than 20 sources (Fig. 6). Then, Ci(d) � CZ(d) with an accuracy
of up to 5%.

5. Improvement of the quality of the optical
image of a nonplanar object by accumulating
its statistically independent images

It is known that the speckle pattern of the image of a rough
object with the contrast C(d) > 0:1 noticeably deteriorates
the quality of this image [1 ë 5]. Speckles are most clearly
observed in the images of object regions that are parallel to
the entrance pupil plane of the optical system (Fig. 4). In
this regions, Lc 4LZ(d) in the case of poor resolution and
Lc 4Lx(d) for good resolution. Under these conditions, the
contrast is C(d) � 1.

The quality of the optical image of a nonplanar object
can be improved by summing (accumulating) its statistically
independent images formed by probing the object simulta-
neously with several sources. This takes place when the
distance between adjacent sources is no less than 0:7dr
(Fig. 5). In the case of the most compact arrangement of
sources separated by a distance of 0:7dr in the array (Fig. 6),
the intensity distribution in the accumulated image is h ÿI (d)ii �
Nÿ1

P ÿ
I (d, qsmn). The contrast of the speckle pattern in this

image achieved due to the accumulation of statistically in-
dependent images is considerably lower than the contrast of
the speckle pattern in the image obtained by using one source.
Such a low contrast provides the high quality of the accum-
ulated image h ÿI (d)ii. The integral criterion of quality, we can
use the correlation criterion K � � ÿIi (d)h ÿI (d, qsm0n0 )ix dd=� h ÿI (d, qsm0n0

)i2xdd [4] of the closeness of this image to the ideal
image representing the intensity distribution h ÿI (d, qsm0n0 )ix
in the initial image averaged over the roughnesses of the
object surface. The eféciency Zc of this criterion or, in other
words, the approximation accuracy of the ideal image of the
object by the accumulated image h ÿI (d)ii is determined by
the relative êuctuations of K: Zc � (hK 2i ÿ hKi2�=hKi2. By
using the temporal approach and the approach used to
calculate the parameter Zc in papers [4, 5], we can show
that for arbitrary coherent lengths of sources, the relative
êuctuation is Zc � Ca(d)=(MN), where M is the number of
spots; Ca(d) �

�
C(d) dd=Si is the average contrast of the

speckle pattern in the image; and Si is the object image
plane.

Figure 5. Descriptive interpretation of the statistical independence of object images formed by two probe radiation sources separated by a distance
of 0:7dr:
( 1, 2 ) probe radiation sources; ( 3 ) rough object; ( 4, 5 ) speckles formed by probe radiation from sources ( 1 ) and ( 2 ), respectively, scattered by
entrance pupil ( 6 ) of imaging optical system ( 7 ); ( 8, 9 ) coherent statistically independent object images corresponding to them.

Figure 6. Compact arrangement of probe radiation sources around the
entrance pupil of the optical system: ( 1 ) entrance pupil; ( 2 ) probe
radiation sources; ( 3 ) hexagonal region restricted by the dot-and-dash
line in which the sources are located, their number being sufécient for
determining the speckle contrast in the plane image of the object in the
case of the rough stepwise approximation of its surface.
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In a particular case of the coherent image of an object,
we have Ca(d) � C(d) � 1 and Zc � 1=(MN). The same
expression was used in papers [4, 5] to estimate the close-
ness of the intensity distribution in the accumulated image
h I (d)ii � Nÿ1

P
I (d, qsmn) and in the ideal image, which

represented the object-surface-roughness-averaged intensity
distribution hI (d, qsm0n0

)ix in the instantly recorded coherent
image of the object probed by radiation from one source.
Therefore, the results of experiments on improving the
quality of time-averaged and instant images of this object,
presented in papers [4, 5], should completely coincide. For
example, by improving the quality of the instant coherent
image of a planar triangle rough object due to time averaging
of the coherent image of this object, we obtain the image
coinciding with the ideal one (Fig. 7).

6. Conclusions

(i) The temporal analysis of optical images of a rough
object allows one to énd the relation between the chromatic
properties of probe radiation and coherent properties of
optical images of rough nonplanar objects. Thus, if the
coherence length Lc of probe radiation exceeds the depth Ls

of the backward scattering region of the object, the probe
radiation behaves as monochromatic radiation, while the
image as a whole manifests itself as a coherent image. If,
however, Lc < Ls, the probe radiation on the smooth slopes
of the object surface behaves as monochromatic radiation,
and the image of smooth slopes manifests itself as a
coherent image. Under the same condition, the probe
radiation on steep slopes behaves as quasi-monochromatic
or polychromatic radiation, while the image of steep slopes
manifests itself as partially coherent or incoherent
radiation.

(ii) The temporal approach can be used for the three-
dimensional imaging of rough nonplanar objects by the
contrast of speckles in the intensity distribution at different
points of their planar optical images, which is determined by
using several probe radiation sources.

(iii) This approach allows one to substantiate the
method for improving the quality of optical images of a
rough object by reducing the contrast of speckles distorting
them by means of the simultaneous probing of the object
by radiation from several sources with the same average
wavelength and arbitrary coherence length. In this case,
the distance between sources is chosen so that the images
formed with their help would be statistically independent.

Appendix.
Calculation of the speckle contrast in an

optical image

We will determine the contrast Cx(d) by assuming that the
éeld E(d; t) has the Gaussian distribution. In this case,

h ÿI 2�d�ix �
1

T 2

� t0�T

t0

� t0�T

t0

hjE�d; t1�j2jE�d; t2�j2ixdt1dt2

� h ÿI �d�i2x �
1

T 2

� t0�T

t0

� t0�T

t0

jhE�d; t1�E ��d; t2�ixj2dt1dt2

� 1

T 2

� t0�T

t0

� t0�T

t0

jhE�d; t1�E�d; t2�ixj2dt1dt2.

Because the third term in the right-hand side of this expres-
sion can be neglected if sx 4 l0 [4], we have

h ÿI 2�d�ix � h
ÿ
I �d�i2x

� 1

T 2

� t0�T

t0

� t0�T

t0

jhE�d; t1�E ��d; t2�ixj2dt1dt2.

We obtain from this

Cx�d� �
1

T 2

� t0�T

t0

� t0�T

t0

jhEi�d; t1�E �i �d; t2�ixj2dt1dt2

�
�
h ÿI �d�i2x

�ÿ1
, (A1)

where

1

T 2

� t0�T

t0

� t0�T

t0

jhEi�d; t1�E �i �d; t2�ixj2dt1dt2

�
����

k�r1�k ��r2�k ��r3�k�r4�h�r1; d�h ��r2; d�

� h ��r3; d�h�r4; d�X�r1; r2�X ��r3; r4�Cu�r1; r2; r3; r4�

�Fu�r1; r2; r3; r4�dr1dr2dr3dr4;

X�r1; r2� � hexpfio0qN�ÿx�r1� � x�r2��=cgix;

X�r3; r4� � hexpfio0qN�ÿx�r3� � x�r4��=cgix;

Cu�r1; r2; r3; r4� � exp� io0�ÿ2r1 � r1qs=r1 � 2r2

ÿ r2qs=r2 � 2r3 ÿ r3qs=r3 ÿ 2r4 � r4qs=r4�=c�;

Fu�r1; r2; r3; r4� �
1

T 2

� t0�T

t0

� t0�T

t0

u�t1 ÿ 2r1=c�

� u��t2 ÿ 2r2=c� u��t1 ÿ 2r3=c� u�t2 ÿ 2r4=c�dt1dt2

� Bu� b�r1; r3��B �u � b�r2; r4��;

b�r1; r2� � 2�r1 ÿ r2�=Lc.

Figure 7. Improved image of a plane triangular rough object obtained by
accumulating statistically independent coherent images formed by simul-
taneous probing the object by several sources: ( 1 ) initial coherent object
image consisting of seven contrast spots; ( 2 ) its improved image formed
by accumulating ten statistically independent coherent images.
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Then, under the condition that sx 4 l0 and the object is
probed by coherent radiation with the coherence length
Lc 5Lcm � 8l0 4 l0 [7], we obtain

h ÿI �d�ix �
�
kx�r�jh�r; d�j2dr, (A2)

1

T 2

� t0�T

t0

� t0�T

t0

jhEi�d; t1�E �i �d; t2�ixj2dt1dt2

�
��

kx�r1�kx�r2�jh�r1; d�h ��r2; d�j2

�jBu� b�r1; r2��j2dr1dr2, (A3)

where

kx�r� � �`x=sx�2j k�r�j2exp�ÿqx`x=sx�2;

qx � q?=qN; q? � �4ÿ q 2
N�1=2.

(A4)

If the coherence length Lc of probe radiation exceeds the
depth of the backward scattering region Ls � (rcursx)=`x
of the object, where rcur is the radius of curvature of its
surface, then, as shown in [6], we have jBu�b(r1, r2)�j2 � 1.
Then, taking into account relations (A1), (A2), and (A3), we
obtain that the contrast of the intensity distribution

ÿ
I (d) in

all the regions of the image is unity. In the opposite case,
when Lc 4Ls, the contrast in each of the regions of the
image of a nonplanar object depends on the steepness of the
slopes of its surface [4]. The contrast is high in the images of
smooth slopes and is low in the images of steep slopes. This
means that under the condition Lc 4Ls, it is necessary to
determine the contrast in the images of different regions of
the object surface.

Based on the considerations presented above, we will
determine the contrast Cx(d) by éxing a small region of the
object and introducing a local rectangular coordinate system
wv in this region so that the v axis is oriented parallel to the
entrance pupil plane of the imaging optical system (Fig. 3).
This region almost coincides with a plane tangential to it,
which is oriented perpendicular to the normal Nx(r) to the
surface. In this coordinated system, we have b(r1, r2) �
�2qx(w1 ÿ w2)�=Lc [4]. Taking into account this relation and
the equality

tc �
���� �1ÿ1 Bu�t�dt

����
for the coherence length Lc 5Lx(d) �Drqx(r � ÿmd), where
Lx(d) is the length of the projection of the tangential plane
ABCD on the vector q � 2rc=rc at a point optically conjugate
with the radius vector d (see Figs 1 and 3), we will have

Cx�d� �
LcD

2
r=Lx�d�

�
k 2
x �r�jh�r; d�j4dr

�� kx�r�jh�r; d�j2dr�2 . (A5)
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