
Abstract. The propagation of optical pulses through a
ébreoptic communication line with a phase shift of odd bits is
directly numerically simulated. It is shown that simple
analytic expressions approximate well the error probability.
The phase shift of odd bits in the initial sequence is
statistically shown to decrease signiécantly the error
probability in the communication line.
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Optimisation of optical communication line parameters is a
key problem in designing a communication system. The
quality of a communication line is estimated by the bit error
rate (BER), which is the ratio of the number of error bits to
the total number of transmitted bits. Because the direct
measurement of small BERs is often technically compli-
cated, statistical and numerical methods for estimating the
error probability in a communication system play an
important role. The knowledge of the error statistics
plays a decisive role in the development and application
of efécient forward error correction (FEC) methods, which
can signiécantly improve the eféciency of a communication
line.

In the literature and for practical calculations, the `tails'
of the probability density distributions of unit and zero bits
are often approximated by Gaussians. In this case, the
calculation of the BER requires the knowledge of the Q
factor, which is determined by the expression Q � (m1 ÿ m0)
�(s1 � s0)

ÿ1, where m1 and m0 are the average values of unit
and zero bits, respectively, and s1 and s0 are their average
root-mean-square deviations. The BER is calculated by the
expression

BER�Q� � 1
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������
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The Gaussian approximation is simple but the accuracy of
predicting the error probability for this model is low.

In this paper, we present the results of the direct

numerical simulation of the error statistics in a ébreoptic
communication line based on a standard single-mode SMF
ébre with a 40-Gbit sÿ1 data transmission rate. The initial
signal was produced in such a way that odd bits have a
phase shift Dj, which is equivalent to multiplication of
pulses located on the odd time intervals by the constant
exp (iDj). It is shown statistically that the use of the format
with the phase shift of each second bit signiécantly reduces
the error probability in the communication line when the
phase modulation Dj is properly selected. In addition,
simple analytic expressions are shown to approximate
well the error probability in the case of the data transfer
by using the phase shift of odd bits.

We considered an optical communication line whose
periodic section has the following conéguration and dimen-
sions:

SMF�85 km� � EDFA�DCF�14:85 km� � EDFA,

where DCF is the dispersion-compensating ébre; EDFA is
an erbium-doped ébre ampliéer. The parameters of the
optical ébres are presented below.

Erbium ampliéers had a noise factor of 4.5 dB and a gain
of 13.4 dB necessary to compensate completely for the
optical signal attenuation over the length of the periodic
section. The average dispersion of the periodic section was
ÿ0:4 ps nmÿ1 kmÿ1. The communication line had 31
sections and an additional segment of a standard single
mode ébre compensating for the accumulated dispersion.
The length of the latter (72.6 km) was selected so that the Q
factor at the end of the communication line be maximal.
The dispersion accumulated in 31 periodic sections was
ÿ1238:1 ps nmÿ1, while the total dispersion of the additio-
nal segment was 1234.2 ps nmÿ1. Thus, the average dis-
persion of the entire communication line was almost zero.

As unit bits, we used 7.5-ps Gaussian pulses with a 5-
mW peak power. We considered the data transfer in one
frequency channel at a rate of 40-Gbit sÿ1.

The dynamics of optical pulses was described by the
generalised Schr�odinger equation for the complex envelope
A of the electromagnetic éeld [1]:
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SMF DCF

Attenuation at 1550 nm
�
dB kmÿ1 . . . . . . . . . 0.2 0.65

Effective mode area
�
mm2 . . . . . . . . . . . . . . . . 80 19

Dispersion
�
ps nmÿ1 kmÿ1 . . . . . . . . . . . . . . . 17 ÿ100

Dispersion slope
�
ps nmÿ2 kmÿ1 . . . . . . . . . . . 0.07 ÿ0:41

Nonlinear refractive index
�
m2 Wÿ1 . . . . . . . . 2:7� 10ÿ20 2:7� 10ÿ20
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Here, z is the distance along the line; t is the time; jAj2 is the
pulse power; b2 is the group velocity dispersion parameter;
s � 2pn2=(l0Aeff) is the Kerr nonlinearity coefécient; n2 is
the nonlinear refractive index; l0 is the carrier wavelength;
Aeff is the effective area of the ébre eigenmode; g(z) is the
signal attenuation coefécient; rk is the gain; location points
of ampliéers are denoted by zk; the quantities s and b2 are
presented as functions of z to take into account the changes
in these parameters when passing from one ébre type to
another.

In dispersion-controlled systems, ébres with the chro-
matic dispersion of opposite signs are used to ensure the
control of the dispersion pulse broadening. If the average
dispersion of the communication line was equal to zero, in
the linear case in the absence of attenuation and noise, the
signal shape was reconstructed at the end of the line [1].
Within the framework of the generalised nonlinear Schr�o-
dinger equation describing the propagation of optical
pulses, we take into account the following effects responsible
for the signal distortion: Kerr nonlinearity, dispersion
broadening, ampliéed spontaneous emission as well as
êuctuations of the positions of individual bits (the so-called
Gordon ëHaus effect [2]). Apart from this effect, there are a
number of physical reasons resulting in the jitter of the
pulses. They are electrostriction [3] and polarisation mode
dispersion; however, they are beyond the scope of the model
under study and this paper.

The data were statistically processed after the propaga-
tion of optical signals over a distance of 3000 km. A
rectangular optical élter with the transmission bandwidth
Bop � 100 GHz and an electric third-order Butterworth
élter with the transmission bandwidth Bel � 40 GHz are
used to receive signals. Depending on the speciéed threshold
decision level (DL) of the electric current, either a zero bit or
a unit bit is detected. If the current is smaller than the DL,
the bit is recognised as a zero one, and if the current is
higher, ë as a unit bit. The number of errors depends on the
choice of the DL value, and there exists an optimal level of
division of zeros and units for which the number of errors is
minimal.

The basic effects causing signal degradation are the
ampliéed spontaneous emission and Kerr nonlinearity.
Agrawal [1] describes the physical mechanism of the non-
linearity suppression with the help of the phase shift of each
second bit of the initial sequence in a ébreoptic line without
the ampliéed spontaneous emission.

In this paper, to demonstrate the effect of the phase shift
on the nonlinearity, we considered two models of prop-
agation of optical pulses: with ideal noiseless ampliéers and
with the ampliéed spontaneous emission of erbium
ampliéers.

The generalised nonlinear Schr�odinger equation (2) was
solved numerically by using the method of splitting into
physical processes [1].

Let us denote by w0(y) the probability density function
of the zero bit distribution constructed using the sampling of
current values y on the detector. Figure 1 shows the
dependences of F0(y) � ln (w0(y)), calculated by neglecting

the ampliéer noise, for a standard format without a phase
shift and for a format with the phase shift of each second bit
by Dj � p=2. The sampling size of the zero bits was 99948
values of the standard format and 100460 values of the
format with the phase shift. It is obvious that the application
of the Dj � p=2 phase shift for each second bit signiécantly
decreases the error probability in detecting the zero.

Thus, let w1(y) be the probability density function of the
unit bit distribution constructed using the sampling of
current values y on the detector. Figure 1 shows the
function of F1(y) � ln (w1(y)) for the propagation model
with ideal ampliéers. The curves were plotted using 99732
values of the current on the detector for the standard
formation of the initial bit sequence and using 100424
values for the format with a phase shift. It is obvious
that when the initial bit sequence is produced using the
Dj � p=2 phase shift, the error probability in detecting the
unity on the detector is smaller than in the standard case,
when Dj � 0.

We will present below the results of the numerical
simulation of propagation of optical signals with the phase
shift of each second bit Dj � 0 (standard format),
Dj � p=2, and Dj � p taking into account the ampliéed
spontaneous emission and nonlinearity effect.
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Figure 1. Dependence of the logarithm F0�y� � ln�w0�y�� of the pro-
bability density distribution of zero bits on the current y (in relative
units) on the detector for Dj � p=2 (solid curve) and Dj � 0 (dashed
curve) in a model with ideal ampliéers.
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Figure 2. Dependence of the logarithm F1�y� � ln�w1�y�� of the
probability density distribution of unit bits on the current y (in relative
units) on the detector for Dj � p=2 (solid curve) and Dj � 0 (dashed
curve) in a model with ideal ampliéers.
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The dependences of the probability density distribution
of zero bits in this case, F0(y) � ln (w0(y)), are shown in
Fig. 3. The statistical sampling consisted of 128024 current
values on the detector for Dj � 0, of 89164 values for
Dj � p=2, and of 83490 values for Dj � p. One can see that
the tails of the probability density distribution decrease
exponentially [4]. The same égure presents analytic approx-
imations of the probability density tails by the linear
functions: ÿ7:5y� 2 for Dj � 0, ÿ15:6y� 3:8 for Dj �
p=2, and ÿ8:5y� 2 for Dj � p.

Figure 4 illustrates the probability density distributions
of zero bits F1(y)� ln (w1(y)) for the above formats and
analytic approximation (solid curve) for Dj � 0. The
statistical sampling consisted of 127464 current values on
the detector for Dj � 0, of 89012 values for Dj � p=2, and
of 83422 values for Dj � p. The analytic approximation
P1(y) of the probability density distribution of the unit bits
w1(y) is expressed as [5, 6]

P1�y� �
1
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where I0 and I1 are the average values of the electric current
on the detector. The parameters �M and d were selected
from the sampling of zero and unit bits on the detector so
that the difference between the analytic probability density
distribution and the results of the numerical experiment be
minimised. In this paper, we used the least-squares method.
The comparison of the curves shows that the main reason
of signal distortion for unit bits is the ampliéed sponta-
neous emission.

Figure 5 shows the numerically calculated BER prob-
ability as a function of the DL for zero and unit bits for the
above formats of the initial bit sequence as well as the
analytic approximation. The error appears if the electric
current on the detector for the unit of the initial bit sequence
is smaller than the DL and for the zero ë higher than the

DL. It follows from the curves that the phase shift of each
second bit can signiécantly improve the signal quality on the
detector. Note that the best format from the point of view of
minimising the probability error is the format Dj � p=2.
The BER for this format, obtained by the direct numerical
simulation, is equal to 7� 10ÿ5 for the optimal DL, while
for the format without a phase shift, the minimal error
probability is 1:7� 10ÿ3. Thus, the error probability opti-
mal with respect to DL in the case of formation of an initial
bit sequence with a phase shift by Dj � p=2 is 20 times
lower than the minimal error probability in the absence of
the phase shift of odd bits.

It is shown statistically that the use of the phase shift of
each second bit interval signiécantly reduces the effect of the
Kerr nonlinearity, when optical pulses propagate in a
ébreoptic communication line, and improves the signal
quality on the detector.

The simple analytic expressions are also shown to
approximate well the tails of the probability density
distribution of zero and unit bits for the formats with a
phase shift of each second bit, which makes it possible to
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Figure 3. Dependence of the logarithm F0�y� � ln�w0�y�� of the pro-
bability density distribution of zero bits on the current y (in relative
units) on the detector for Dj � p=2 (calculation, &) and analytic
approximation (ÿ15:6y� 3:8, solid line), for Dj � p (*) and analytic
approximation (ÿ8:5y� 2, dashed line), as well as for Dj � 0 (~) and
analytic approximation (ÿ7:5y� 2, dotted line).
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Figure 4. Dependence of the logarithm F1�y� � ln�w1�y�� of the
probability density distribution of unit bits on the current y (in relative
units) on the detector for Dj � p=2 (&), Dj � p (*), and Dj � 0 (~) and
analytic approximation (solid curve) given by expression (3) atM � 4:83,
d � 0:144, I0 � 0:137, I1 � 1:62.
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Figure 5. BER coefécient obtained in a numerical experiment for
Dj � p=2 (&) and analytic approximation (solid curve), for Dj � p (*)
and analytic approximation (dashed curve), and for Dj � 0 (~) and
analytic approximation (dotted curve).
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reduce the sampling size required to estimate adequately the
error rate.
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