
Abstract. This work examines reêection of a light wave from
the surface of a semi-inénite medium covered with an ordered
monolayer of spherical nanoparticles. We derive analytical
expressions for the electric éelds within and outside such
structures with allowance for the electrodynamic interaction
of the nanoparticles with one another and with the substrate.
It is shown that such metalayers may raise or reduce the
reêection coefécient relative to Fresnel reêection from an
uncoated substrate surface. Constructive and destructive
interference conditions are examined. We derive and analyse
a zero-reêection condition in the form of a relationship
between the parameters of the monolayer and medium.

Keywords: metamaterial, monolayer of nanoparticles, light scatte-
ring by small particles.

1. Introduction

Much attention has recently been paid to the optical
properties of artiécially structured materials containing
various nanoscale objects embedded in a matrix, which are
referred to as metamaterials [1 ë 4]. The interest in
metamaterials is generated by the possibility of observing
a number of unusual effects related to their composite
structure and the speciécs of light scattering by nano-
particles. Indeed, varying the geometric and material
parameters of a system, one can obtain, e.g., media with
a giant, extremely small or negative refractive index [1, 5, 6]
or with a real part of their refractive index close to unity [7].

A surface monolayer of spherical clusters was described
theoretically by directly solving Maxwell's equations in
spherical coordinates [8, 9]. Although the solution obtained
by Mie [10] refers to diffraction from a single sphere, it can
be generalised to any number of interacting particles using

3j symbols and Clebsch ëGordan coefécients, which allow
one to take into account multiple coherent light scattering
by nanoclusters in the structures in question [8]. This
approach is however not always appropriate. Indeed, as
shown earlier [8, 9, 11, 12] the interaction between particles
is long-range and requires taking into account a rather large
number of elements that inêuence each other. The problem
can thus be treated in this approach only numerically, which
requires a long computation time. Similar diféculties are
encountered in other methods that directly solve Maxwell's
equations, such as the énite element method (FEM) [13, 14],
énite-difference time-domain (FDTD) method [15, 16], and
coupled dipole method (CDM) [17]. Moreover, taking into
account the interaction between a layer of nanoparticles and
the substrate [9, 14, 17] adds considerable complexity to the
computation process or requires a number of approxima-
tions, e.g., averaging of the refractive indices of the substrate
and environment [18], which can be done by different
procedures, or the introduction of an imaginary nano-
structured layer, a reêection of the real layer [9].

A recently proposed theoretical approach [4, 11, 19]
allows one to énd a relatively simple analytical solution
to the problem of light scattering by a system of nano-
clusters in the long-wavelength approximation. The theory
relies on an integral-equation formalism [8, 20], does not
require Maxwell boundary conditions for evaluating the
interaction parameters of nanoparticles in the layer and, as
will be shown below, makes it possible to directly take into
account the mutual polarisation of the medium and nano-
structured layer. Note that the ability to énd an analytical
solution is essential for inverse optical problems, where the
resultant optical properties are given a priori, whereas the
underlying geometric and material parameters of the system
are unknown. In this context, we propose using the above-
mentioned integral-equation method and reéning the results
by electrodynamic énite element simulation in the COM-
SOL Multiphysics environment [21].

This work focuses on the interference interaction of an
ordered monolayer of spherical nanoparticles with the
substrate. The expressions obtained for the éelds within
and outside the system are used to examine the conditions
under which its reêectance decreases or increases. We derive
and analyse the condition for complete elimination of
reêection from a medium (zero-reêection condition), which
determines the geometric and material parameters of the
nanoparticle monolayer necessary for suppressing the reêec-
tion from the substrate, and demonstrate that zero reêection
is possible in a wide wavelength range.
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2. Constitutive equations

Figure 1 schematically shows a system comprising a layer of
spherical nanoparticles and a substrate. The layer and
substrate are inénite in the xy plane. To assess the
electromagnetic response of the system, we use the
integral-equation formalism [4, 8, 11, 12] that was applied
earlier to study a variety of nanostructured arrays. Here we
restrict ourselves to a linear approximation: the polar-
isations of the medium and particles are linear functions of
éeld strength.

In this approach, the éeld at each point of space can be
written in the form

E�r; t� � EI�r; t� �
�
V

rotrot
P�r 0; tÿ R=c�

R
dV 0

� 3

4p

XN
j�1

�
Vj

rotrot
ej�r 0j � ÿ 1

ej�r 0j � � 2

E 0j eff�r 0j ; tÿ R 0j =c�
R 0j

dV 0j , (1)

where EI(r, t) � E0I exp (ik0rÿ iot) is the wave at a point of
observation with radius vector r; the érst integral represents
the response of the substrate, whose polarisation P is
proportional to the amplitude of the incident éeld; R �
jrÿ r 0j is the distance from an integration point (radius
vector r 0) in the medium to the point of observation; V is
the volume of the medium; c is the speed of light in
vacuum; and (tÿ R=c) represents the time delay of the
corresponding quantity. The second integral (more pre-
cisely, the sum of integrals) represents the éeld of the layer
of N spherical nanoparticles interacting with it, which have
a complex relative dielectric permittivity ej (r) and volume
Rj � jrÿ r 0j j; and r 0j is the radius vector of an integration
point inside the jth nanoparticle. The effective éeld E 0j eff in
(1) differs from the incident plane wave EI and has the form
of a wave acting on each point in the jth nanoparticle, with
allowance for the éelds re-emitted by the nanoparticles and
substrate. As shown earlier [20, 22], E 0j eff comprises two
contributions: external, due to the environment (the other
particles of the monolayer and the substrate), and internal,
which determines the interatomic interaction in the nano-
particle and the permittivity of the medium. Taking into
account the internal éeld leads to separation of Eqn (1) into
local and nonlocal parts, as described in detail elsewhere

[20]. The former part reduces to the Lorentz ë Lorenz
formula, which relates the permittivity of a particle to the
polarisability and concentration of its constituent atoms.
The boundary problem is thus reduced to solving nonlocal
equations, namely, to énding the éelds Ej eff that act on the
nanoparticles from the environment.

For simplicity, consider a layer of identical homoge-
neous nanoclusters [e � ej, a � aj ( j � 1, . . . , N)] using the
long-wavelength approximation, which can be represented
by the conditions

k0a; k0aRen; k0aImn5 1; (2)

where k0 is the wave vector of the incident wave, and a and
n � ��

e
p

are the radius and refractive index of the spherical
clusters, respectively. With these conditions met, EI and
Ej eff can be considered constant throughout a given cluster
and equal to those in its centre.

Placing the point of observation and the origin in the
centre of the ith particle, we write the nonlocal part of
Eqn (1) in the form

Eieff � EI�0; t� �
3

4p
eÿ 1

e� 2
(3)

�
XN

j�1; j6�i

�
Vj

rotrot
Ej eff�r 0j ; tÿ jr 0j j=c�

jr 0j j
dV 0j � �ĜEm��tÿjDj=c�.

The second term in the right-hand side of Eqn (3)
represents the superposition of the éelds produced by the
nanoparticles in the centre of the ith particle. The third
term represents the total éeld (with allowance for the
contribution from the monolayer) reêected from the
substrate surface, where Ĝ is the reêection coefécient; Em

is the effective éeld incident on the substrate; and tÿ jDj=c
is the time delay by jDj=c, equal to the time it takes the
wave to travel from the plane deéned by the centres of the
nanoparticles to the substrate surface, with D � (0, 0, ÿ a).
Taking into account the self-polarisation of the layer
through the reêection of its éeld from the substrate surface
is of key importance because neglecting this effect leads to
considerable deviations from the exact solution. Em can be
found from the nonlocal part of Eqn (1), by writing it for a
point of observation on the substrate surface:

Em � EI�D; t� �
3

4p
eÿ 1

e� 2

�
XN
j�1

�
Vj

rotrot
Ej eff�r 0j ; tÿ jD ÿ r 0j j=c�

jD ÿ r 0j j
dV 0j . (4)

Equations (3) and (4) constitute a self-consistent system
of integral equations, whose solution is the effective electric
éeld in the monolayer. Unfortunately, the reêection coefé-
cient Ĝ is rather difécult to calculate in general form [23]. In
particular, the standard procedure based on the extinction
theorem in integral form [20] cannot be used to perform the
integration over the medium in (1) because the éeld
produced by the nanoparticles in the surface layer of the
substrate is inhomogeneous [9]. The solution can then be
found using the above-mentioned coupled dipole method,
which requires purely computational means. On the other
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Figure 1. Geometry of the system. A wave with wave vector k0 is
incident from vacuum on a surface, S, covered with an ordered layer of
nanoparticles.
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hand, as we showed previously [19] the reêection coefécient
Ĝ of an inhomogeneous éeld can be approximated by a
tensor constructed from the Fresnel reêection coefécients of
a plane wave. In the optical region, this approximation is
applicable when the characteristic values of the geometric
parameters of the metalayer (lattice period and particle size)
do not exceed a few tens of nanometres at a moderate
absorption coefécient of the particles, which corresponds to
conditions (2). The Ĝ tensor then has the form

Ĝ �
r? sin

2 jÿ rk cos
2 j ÿ�r? � rk� sinj cosj 0

ÿ�r? � rk� sinj cosj r? cos
2 jÿ rk sin

2 j 0
0 0 rk

0@ 1A,

where r? and rk are the Fresnel reêection coefécients for the
electric vector components normal and parallel to the plane
of incidence [20] and j is the angle between the plane of
incidence and the x axis.

3. Optical éelds in the nanostructured layer

Consider the éeld produced by the jth nanoparticle in
vacuum at a point of observation with radius vector R
outside the nanoparticle. In the long-wavelength approx-
imation, the integrl representing the éeld strength in (1) can
be calculated easily by the Ewald ëOseen method [20], as
done in previous studies [11, 12, 24]. As a result, we obtain
the relation

Ej sca�R� � ap f̂j�R�Ej eff (5)

(ap � a 3(eÿ 1)=(e� 2)), where the f̂j(R) tensor has the
following components for the external-éeld polarisations
parallel and normal to R:

f p
j �R� � exp�ik0R�

�
2

R 3
ÿ 2ik0

R 2

�
,

(6)

f s
j �R� � exp�ik0R�

�
ÿ 1

R 3
� ik0
R 2
� k 2

0

R

�
.

According to Eqns (5) and (6), the éeld scattered by a
nanoparticle strictly corresponds to that created by a dipole
of polarisability ap located in the centre of the particle
[20, 22]. Clearly, if the particle is surrounded not by
vacuum, the permittivity e in (5) is relative rather than
absolute.

Let us use the principle of parallel translational sym-
metry [25, 26], according to which an electric éeld (an
external wave or the wave reêected from the substrate
surface) incident on a layer of nanoparticles meets the
condition

Einc�rj� � Einc�0� exp�iqrj�. (7)

Here, rj is the radius vector of the centre of the jth
nanoparticle, and the components of the q vector are
(qx, qy, 0), where qx � k0x � ÿk0 sin yI cosj and qy � k0y �
ÿk0 sin yI sinj (yI is the angle of incidence). Therefore,
since all the clusters are identical, the éeld amplitudes are
Ej eff � Ei eff � Eeff and the phase shift is given by (7). With
Eqns (5) ë (7), the integrals in (3) and (4) can be converted
to lattice sums:

3

4p
eÿ 1

e� 2

XN
j�1

�
Vj

rotrot
Eeff�r 0j ; tÿ R 0j =c�

R 0j
dV 0j

� apEeff

XN
j�1

f̂j�jrÿ rjj� exp�iqrj�. (8)

Therefore, the system of integral equations (3) and (4)
reduces to the following linear algebraic equation for the
éeld acting on a cluster:

Eeff � EI�0� � apEeffÂp

� Ĝ
�
EI�0� exp�2ik0D� �

ÿ
apEeffĈ

ÿ
p �2D�

��
, (9)

where the term in square brackets is equal to (Em)�tÿjDj=c�
given that the wave reêected from the substrate lags the
wave incident on the layer both in the path from the plane
deéned by the centres of the nanoparticles to the substrate
surface and after the reêection, in the path from the
substrate surface to that plane. In (9), we use the following
designations:

Âp �
XN

j�1; j6�i
f̂j�jrjj� exp�iqrj�, (10)

is the lattice sum determining the éeld produced at the ith
particle by the other particles in the layer and

Ĉ ÿp �2D� �
�XN

j�1
f̂j�jD ÿ rjj� exp�iqrj�

�
�tÿjDj=c�

(11)

is the lattice sum describing the éeld emitted by the layer
towards the substrate (the superscript `ÿ' denotes that the
wave propagates in the negative direction relative to the z
axis). The calculated lattice sums of the form (10) and (11)
are given in the Appendix.

Solving Eqn (9) for the effective éeld acting on a
nanoparticle in the monolayer, we obtain

Eeff �
1� Ĝ exp�2ik0D�

1ÿ apÂp ÿ Ĝ
ÿ
apĈ ÿp �2D�

� EI�0�. (12)

The effective-polarisability approach allows one to deal
with the external éeld strength without considering the
parameters of the structure. From the relation

dp � apEeff � âp effEI, (13)

where dp is the dipole moment of a nanocluster, we obtain
the following formula for the effective polarisability of the
nanoparticle:

âp eff � ap
1� Ĝ exp�2ik0D�

1ÿ apÂp ÿ Ĝ
ÿ
apĈ ÿp �2D�

�. (14)

4. Reêected wave éeld in the wave zone.
Effect of a monolayer of particles on reêectance

At a point of observation with radius vector p, the wave
reêected from a monolayer ë substrate system has the form

Erefl�p� �
�
Ĝ exp

�
ik0D � ik0 refl�ÿD � p��

� âp eff
�
ĜĈ ÿp �2D ÿ p� � Ĉ �p �p�

�	
EI, (15)
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where the use of ÿp in Ĉ ÿp (2D ÿ p) allows us to avoid
dividing the wave path into two parts (in the z direction
from the layer to the substrate surface and then in the
opposite direction from the substrate to point p) and to
replace it with the total distance plotted in the z direction,
and k0 refl � (k0x, k0y, ÿ k0z) is the wave vector of the
reêected wave.

It follows from (15) that the reêected wave amplitude is
the sum of three quantities. One of them, the érst term in
(15), represents Fresnel reêection from a êat substrate
surface with no nanoparticles. The other two terms are
due to the polarisation of the nanospheres, which interact
electrodynamically with one another and with the substrate:
ap effĈ

�
p (p)EI represents the emission from the monolayer in

the reêected wave direction (�z direction) and ap effĜ�
Ĉ ÿp (2D ÿ p)EI represents the emission from the monolayer
to the substrate and that reêected from its surface. Since the
phase factors of these terms depend signiécantly on the
geometry and material parameters of the monolayer sub-
strate system, interference of the corresponding waves at the
point of observation may raise or reduce the reêection
coefécient relative to the Fresnel coefécient.

From the data in Fig. 2, obtained by exact electro-
dynamic énite element computations [21], it is seen that the
interfacial monolayer leads to light wave energy redistrib-
ution, characteristic of optical interference effects: a
decrease in reêectance is always accompanied by an increase
in the fraction of energy transmitted to the substrate, and
vice versa. In transparent media, interference may be
destructive only when (nÿ n1)(n2 ÿ n1) > 0, where n1 and
n2 are the absolute refractive indices of two adjacent semi-
inénite media. The relationship between the optical density
of spherical particles and that of their environment deter-
mines the sign of the polarisability of the particles, ap, and
hence the phase shift of the waves generated by the
monolayer of the particles. Thus, a change in the sign of
(nÿ n1) leads to a change in the nature of the interference of
the waves reêected from the entire structure, as evidenced by
comparison of the data in Figs 2a and 2b with those in
Fig. 2c.

Thus, the nature of interference of the waves reêected
from the layer and substrate strongly depends on the
relationship between the optical constants of the environ-
ment and substrate and the parameters of the monolayer,
which allows the resultant reêectance to be tuned over a
rather wide range. A reduction in the reêectance of the
system by nanocoatings was also observed in earlier studies
[4, 19].

5. Zero-reêection condition

It is of interest to derive conditions for complete
suppression of reêection from the substrate (zero-reêection
conditions). Setting the reêected wave amplitude in (15)
equal to zero, we obtain the following relation between the
parameters of the substrate and nanostructured layer:

Ĝ � M̂� P̂� �ÿM̂� P̂
�2 ÿ Ĉ �p � p�K̂ 2

�1=2
K̂

, (16)

where

K̂ � 2ap
�
Ĉ ÿp �2D� exp�ik0D � ik0 refl�ÿD � p��

ÿ Ĉ ÿp �2D ÿ p� exp�2ik0D�
	
;

M̂ � exp�ik0D � ik0 refl�ÿD � p��ÿ1ÿ apÂp

�
;

P̂ � ap
�
Ĉ ÿp �2D ÿ p� ÿ Ĉ �p � p� exp�2ik0D �

�
.

Note that the left-hand side of (16) refers to the substrate,
whereas its right-hand side is fully determined by the
geometry and material parameters of the monolayer of
nanoparticles.

In some instances, Eqn (16) signiécantly simpliées.
Consider a wave incident on a system along the normal
to its surface. We neglect the contribution of decaying waves
to the Ĉ�p tensors [see Eqn (A1) in the Appendix] because,
as we showed previously [19], their amplitude is much
smaller than that of the zeroth (undamped) harmonic in
the range of geometric and material parameters examined.
With these approximations, the zero-reêection condition
(16) takes the form

Ĝ � i
2pk0
ja1 � a2j

ap
1ÿ apÂ

exp�ÿi2k0D�. (17)

Figure 3 shows the reêection spectra of the system under
consideration obtained by exact electrodynamic énite ele-
ment computations [21]. The refractive index of the
substrate was chosen so as to meet condition (17) at
wavelengths of 550 (Fig. 3a) and 460 nm (Fig. 3b), and
the parameters of the monolayer were set a priori. The
material of the nanoparticles in Fig. 3a is a hypothetical
medium with a refractive index n � 1:8, and that in Fig. 3b
is silicon, with the known dispersion of its optical constants
[27].

1.2 1.3 1.4 1.5 n2=n11.1 0.8 1.2 1.4 n2=n11.0 0.5 0.6 0.7 0.8 0.9 1.0 n2=n1ÿ0:002

a b c

ÿ0:002

ÿ0:004

0

0.002

0.004

DR, DT DR, DT

0.0005

0.0010

0.0015

ÿ0:0015
ÿ0:0010
± 0.0005

DR, DT

0.002

0.004

0.006

ÿ0:006
ÿ0:004

Figure 2. Deviations of the reêectance and transmittance of a system comprising a monolayer of spherical nanoparticles and a substrate from the
Fresnel reêectance (DR � Rÿ RF, solid lines) and transmittance (DT � Tÿ TF, dashed lines) computed for normal incidence. Spheres of radius
a � 10 nm have a refractive index n � 1:5 and are arranged in the form of a square lattice with a centre-to-centre distance of 30 nm. The monolayer is
situated in a medium with an absolute refractive index n1 � (a) 1, (b) 1.33 and (c) 2.
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Note that in Fig. 3 the reêectance does not become zero
at the minima (but the minimum reêectance is several
hundred times lower than the reêectance of an uncoated
substrate surface), and the minima are slightly shifted from
the intended 550 and 460 nm, which is due to the discrep-
ancy between the analytical solution (which was used to
derive condition (17)) and the exact solution [19]. Therefore,
in the case of large (a5 20 nm [19]) nanoparticles, the
refractive index of the substrate found from (17) must also
be slightly corrected using the exact solution. In this work,
this was done by adjusting the corresponding parameter. In
particular, the analytical refractive index of the substrate,
n2, in Fig. 3b is 1:1� 0:36i, whereas the minimum in
reêectance is reached at 1:23� 0:33i. This is because
condition (2) is not met, and the particles no longer behave
as dipoles localised at their centre, so multipole terms in the
expansion of the scattered éeld must be taken into account.

It should also be emphasised that reêection suppression
is signiécant (by more than a factor of 10) in a rather broad
wavelength range: from 460 to 800 nm in Fig. 3a and from
400 to 600 nm in Fig. 3b. Moreover, there is no absorption
in the layer in Fig. 3a, and the average absorptance in the
visible range in Fig. 3b is 0.13%.

Reêection suppression by a nanostructured élm on the
surface of a medium offers considerable promise for
producing antireêection coatings. Indeed, for some materi-
als thin-élm multilayer optical interference coatings are
difécult to produce because of the dispersion of their
refractive index or because one must use élms with optical
constants unattainable in bulk materials. The optical
response of a coating composed of nanoparticles can be
tuned by varying only the internal geometric parameters,
which enables reêection suppression even in the above
`complicated' systems. For example, at a éxed refractive
index of the substrate, changing the particle radius by 1%
shifts the minimum in reêectance by approximately 27 nm
in Fig. 3a and 23 nm in Fig. 3b. Reducing the particle size
shifts the minimum to shorter wavelengths, and vice versa.
The lattice constant also inêuences the position of the zero-
reêection region: with increasing lattice density, it shifts to
longer wavelengths. If we éx not the optical constants of the
substrate but the zero-reêection wavelength, the parameters
of the monolayer at which condition (17) is met depend on
the substrate, with the following relationship: the higher the
reêectance of the substrate, the higher must be the effective
absorbance of the metalayer (denser packing, larger par-
ticles or higher optical density of the particles). This

conclusion is obvious because the wave generated by the
monolayer then has a large amplitude and, accordingly,
suppresses the stronger reêection from the substrate through
destructive interference.

Another approach to substantially modifying the optical
properties of a monolayer ë substrate system is to change the
geometry of the lattice of nanoparticles, e.g., to produce
anisotropic metalayers with a non-square lattice or utilise
nested sublattices. As an example, Fig. 4 shows the reêection
spectrum of a medium with a coating in the form of a
complex lattice consisting of two nested sublattices differing
in particle size. Clearly, this approach allows the minimum-
reêectance wavelength to be tuned over a considerable
range.

6. Conclusions

We examined electrodynamic interaction between an
ordered monolayer of spherical nanoparticles and a
substrate. The results show that, in such systems, the
éelds reêected from the monolayer and the substrate
surface may interfere both constructively and destructively,
raising or reducing the reêectance of the entire system. We
derived and analysed conditions for complete elimination of
reêection from the substrate and identiéed the factors that
inêuence the minimum-reêectance wavelength. Note that
elimination of Fresnel reêection from the interface between
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Figure 3. Reêection spectra of a system comprising a monolayer of spherical nanoparticles and a substrate: (a) a � 15 nm, n � 1:8, n2 � 1:03� 0:11i;
(b) a � 20 nm, n � n�o� (silicon), n2 � 1:23� 0:33i. A y-axis polarised wave is incident on the system along the normal to its surface (yI � 0). The
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two media using a layer of carbon nanotubes or SiO2 or
TiO2 nanorods has recently been demonstrated experimen-
tally [28, 29].

One possible application of this effect is the engineering
of antireêection coatings for existing artiécial media with a
refractive index close to unity [7]. According to the general
theory of antireêection coatings [20], the refractive index of
the antireêection élm should then be closer to that of
vacuum, so that no natural materials can be exploited for
this purpose. The use of a loose structure with controlled
optical characteristics, such as a monolayer of nanopar-
ticles, makes it possible to substantially suppress or
completely eliminate reêection from such materials, which
in turn paves the way for engineering absolutely transparent
materials.

Appendix

Lattice sums

To calculate the lattice sums (10) and (11), we take
advantage of a procedure proposed by Ewald and
successfully used in a number of studies [25, 26, 30].
Consider érst the case where the point of observation is
situated outside the layer. Given that the function describ-
ing the éeld of the dipoles is periodic, with a period equal to
that of the lattice, it can be Fourier expanded in terms of
reciprocal lattice vectors. Since the derivation of the
expressions in question can be found in the aforementioned
reports, we present only the result:

Ĉp�rÿ rj��ÿ
X1

p; q�ÿ1

2pi
ja1 � a1j

�kpq�kpq � n0��
exp�ikpqr�

kpq
, (A1)

where n0 � EI=jEIj; kpq � �k 2
0 ÿ (q� g p

pq)
2�1=2; g p

pq � pg1�
qg2; and

kpq � �q� g p
pq; kpq�; z>0,

�q� g p
pq;ÿkpq�; z<0.

�
(A2)

The reciprocal lattice vectors are given by

g1 � 2p
a2 � n

ja1 � a2j
, g2 � 2p

n� a1
ja1 � a2j

, (A3)

where a1 � (a, 0, 0) and a2 � (b, g, 0) are the translation
vectors of minimal length in the real space lattice and the
vector n � (0, 0, 1) is normal to the monolayer.

Equation (A1) is the expansion of the éeld of the
monolayer into a plane harmonic wave (p � q � 0) and a
number of exponentially decaying waves, which emerge for
jq� gpqj > k0, when the kpq coefécients are imaginary-
valued.

To calculate the lattice sum (10) for a point of
observation inside the metacoating, we use the Ewald
method [25] to obtain the following relation at z � 0:

Âp � l̂�k0�n0 exp�iqrj�. (A4)

The l̂ tensor is symmetric, with lxz, lyz, lzx and lzy equal to
zero, and has the form

l mn�k0� � c mn ÿ
�
2

3
ik 3

0 Erfc

�
ik0
2F

�
�

� 4F

3
���
p
p ÿ

k 2
0 ÿ F 2

�
exp

�
k 2
0

4F 2

�
ÿ 2

3
ik 3

0

�
dmn. (A5)

This formula contains the complementary error function
(Erfc), which rapidly approaches zero at large arguments,
and

c mn � ip
ja1 � a2j

X
p;q

�
k 2
0 d

mn ÿ kpqvkpqm
kpq

Dpq�1� t� � ZSpq

�

� 1

2

X
n;m

exp�ik0anm�
a 3
nm

�
G �1�nm

�
dmnG �2�nm � a m

nma
v
nmG

�3�
nm

�
�G �4�nm

�ÿ dmnanm � am
nma

v
nmG

�5�
nm

�� c:c
	
, (A6)

where m, v � x, y, z; anm � na1 �ma2; anm � janmj; n and m
are integers; Z � dmzd vz; t � (ÿ 1)d

mz

(ÿ 1)d
vz

;

Dpq � Erfc

�
ÿ ikpq

2F

�
; Spq �

i4F���
p
p exp

�
k 2
pq

4F 2

�
;

G �1�nm � exp�ÿik0anm�Erfc
�
anmFÿ

ik0
2F

�
;

(A7)

G �2�nm � ÿ1ÿ ik0anm � k 2
0 a

2
nm; G �3�nm � ÿk 2

0 �
3ik0
anm
� 3

a 2
nm

;

G �4�nm �
2F���
p
p exp

�
ÿ F 2a 2

nm �
k 2
0

4F 2

�
;

G �5�nm �
3

anm
� 2F 2anm; F �

�
p

ja1 � a2j
�1=2

.

The convergence of the sums in (A5) is determined by
the F parameter, which has the dimensions of reciprocal
length. This parameter has no physical meaning and is real-
valued and positive. Substituting F into (A7), we can énd
the maximum values of m, n, p and q necessary for
evaluating the lattice sums with a preset accuracy. Given
that Erfc(x) � exp (ÿ x 2)=(x

���
p
p

) at large arguments, we
obtain

exp

�
ÿ pa 2

nm

ja1 � a2j
�
� x, (A8)

where x is a small parameter that characterises the
computation accuracy. Exact computations for a square
lattice show that varying m, n, p and q from ÿ2 to 2 ensures
a relative accuracy in the lattice sums of about 10ÿ4 %,
which agrees well with estimate (A8).
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