
Abstract. The peculiarities of the effective cubic nonlinearity
are analysed upon second harmonic generation in a medium
with a quadratic nonlinearity. It is shown that in this case, the
polarisation state of the pump wave changes during its
propagation due to additional effective photoinduced aniso-
tropy of propagation constants of two orthogonally polarised
pump components. Depending on the initial conditions, either
an elliptically polarised cnoidal wave is produced (the
polarisation state of pump radiation periodically changes
from linear to elliptic and vice versa) or a passage occurs to
an aperiodic polarisation `chaos'.

Keywords: frequency doubling on the quadratic nonlinearity, effec-
tive cubic nonlinearity and photoinduced anisotropy of propagation
constants, elliptically polarised cnoidal wave and aperiodic polari-
sation `chaos'.

1. Introduction

The authors of [1] showed that in the collinear interaction
of three plane monochromatic waves (modes), the problem
of the stationary parametric frequency conversion on the
quadratic nonlinearity [2] is reduced to three independent
stationary nonlinear Schr�odinger equations (NSEs). Each
of them is related to the others only through boundary
conditions and describes a cnoidal wave either with a real
or complex amplitude. This passage to the NSEs was
interpreted as a possibility to describe the result of
competition of processes of merging (o1 � o2 ! o3) and
decay (o3 ! o1 � o2) of photons with the frequencies
o1ÿ3, simultaneously proceeding on the second-order non-
linearity, in terms of the effective cascade cubic nonlinearity
[3].

We will analyse below the character and peculiarities of
this effective nonlinearity for the type II (oee interaction)
SHG process (o1 � o2) [2] and will show that the proper
description of its polarisation peculiarities is not reduced to
a trivial account for the well-studied cubic nonlinearity of
Kerr type. In this process, both periodic (elliptically
polarised cnoidal waves [4]) and aperiodic regimes of the

pump wave propagation can be realised due to additional
effective photoinduced anisotropy of the dielectric constant
of the medium.

2. Effective cubic nonlinearity and photoinduced
anisotropy

Consider the collinear interaction of three plane linearly
polarised monochromatic waves: two waves ë at the
fundamental frequency (the amplitudes A1;2, frequencies
o1;2 � o, wave vectors k1;2) and one wave ë at the second
harmonic frequency (the amplitude A3, frequency o3 � 2o,
wave vector k3) propagating from the plane z � 0 along the
z axis in a medium with the quadratic nonlinearity. We
assume that the medium occupies the half-space z5 0 in
which the type-II parametric process (for example, oee
interaction) is realised [2]. By directing now the x and y axes
of the laboratory system of coordinates along the
orthogonal polarisation vectors e1;2 of the pump waves
with the amplitudes A1;2 and by neglecting the spatial
dispersion of the medium and absorption, we will describe
the process in question by the known [2] system of
equations:

dA1

dz
� ÿibA�2A3 exp ÿiDz� �; (1a)

dA2

dz
� ÿibA�1A3 exp ÿiDz� �; (1b)

dA3

dz
� ÿi2bA1A2 exp��iDz�: (1c)

Here, b is the nonlinear coupling constant; D � k1 � k2 ÿ k3
is the wave detuning. System (1) has two integrals of
motion:

I1�z� � I2�z� � I3�z� � I10 � I20 � I30 � I0; (2a)

I1�z� ÿ I2�z� � I10 ÿ I20 � DI0; (2b)

where Ii(z) � Ai (z)A
�
i (z) is a variable proportional to the

energy êux density of the ith (hereafter, i � 1ÿ 3) wave,
which we will call the intensity; Ii 0 � Iijz�0. Integral (2a)
describes the conservation law of the total energy êux
density, while (2b) reêects the Manly ëRow relation [2].

The authors of [1] showed that system (1) after the
substitution of variables
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A1ÿ3�z� � ~A1ÿ3�z� exp�ÿia1ÿ3z�; (3)

where a1ÿ3 � const, is reduced to three independent
equations describing the nonlinear self-consistent oscilla-
tions of the amplitudes A1ÿ3(z) in terms of the effective
local cubic nonlinearity:

d 2 ~A1

dz 2
ÿ b 2

��
I0 � 3DI0 ÿ

D 2

4b 2

�
ÿ 4 ~A1

~A�1

�
~A1 � 0; (4a)

d 2 ~A2

dz 2
ÿ b 2

��
I0 ÿ 3DI0 ÿ

D 2

4b 2

�
ÿ 4 ~A2

~A�2

�
~A2 � 0; (4b)

d 2 ~A3

dz 2
� b 2

��
2I0 �

D 2

4b 2

�
ÿ 2 ~A3

~A�3

�
~A3 � 0: (4c)

In this case, a set of values a1ÿ3 and boundary conditions in
the form

a1 � D=2; a2 ÿ a3 � D=2; (5a)

~A1jz�0 � A10,
d ~A1

dz

����
z�0
� i

D
2
A10 ÿ ibA�20A30 (5b)

correspond to equation (4a), while

a2 � D=2; a1 ÿ a3 � D=2; (6a)

~A2jz�0 � A20,
d ~A2

dz

����
z�0
� i

D
2
A20 ÿ ibA�10A30 (6b)

and

a3 � ÿD=2; a1 � a2 � D=2; (7a)

~A3jz�0 � A30,
d ~A3

dz

����
z�0
� ÿiD

2
A30 ÿ i2bA10A20 (7b)

correspond to equations (4b) and (4c), respectively. In this
case, because all the equations in (4) are independent, the
initial problem is reformulated so that it describes the
independent propagation of three waves having different
propagation constants due to the effective cubic non-
linearity of the medium. The solutions of all the three
equations are still related with each other but only through
their boundary conditions (5b) ë (7b) and constants entering
Eqn (4).

Note that conditions (5a) ë (7a) are compatible in pairs.
It means that any pair of equations in (4) can be considered
as a close system. By selecting, for example, equations (4a)
and (4b) as such a pair (i.e. setting a1 � a2 � D=2 and
a3 � 0) and using equalities (2), the corresponding system of
equations can be written in different forms. Indeed, by
substituting the identity

DI0 � qDI0 � �1ÿ q�� ~A1
~A�1 ÿ ~A2

~A�2�; (8)

where q is an arbitrary constant, to equations (4a) and (4b),
we obtain the general form for the system of interest:

d 2 ~A1

dz 2
ÿ b 2

��
I0 � 3qDI0 ÿ

D 2

4b 2

�
ÿ

ÿ�1� 3q� ~A1
~A�1 ÿ 3�1ÿ q� ~A2

~A�2

�
~A1 � 0; (9a)

d 2 ~A2

dz 2
ÿ b 2

��
I0 ÿ 3qDI0 ÿ

D 2

4b 2

�

ÿ 3�1ÿ q� ~A1
~A�1 ÿ �1� 3q� ~A2

~A�2

�
~A2 � 0: (9b)

Considering now (9) as an analogue of the pair of equations
of motion, we can easily ascertain that in those cases when
DI0 6� 0, the position of the point of static equilibrium

I
�0�
1;2 �

1

4

�
I0 �

6q

3qÿ 1
DI0 ÿ

D 2

4b 2

�
; (10)

i.e. the point in which the intensities I
�0�
1;2 zero the second

terms (`mechanical forces') in the left-hand sides of (9a) and
(9b), proves incompatible with condition (2b) at any q
because

I
�0�
1 ÿ I

�0�
2 �

3q

3qÿ 1
DI0 6� DI0. (11)

A similar incompatibility is also observed in the only
singular [with respect to computations performed in
deriving (11)] point q � ÿ1=3, where system (9) takes the
form

d 2 ~A1;2

dz 2
ÿ b 2

��
I0 � DI0 ÿ

D 2

4b 2

�
ÿ 4 ~A2;1

~A�2;1

�
~A1;2 � 0; (12)

for which

I
�0�
1;2 �

1

4

�
I0 � DI0 ÿ

D 2

4b 2

�
; (13)

and at DI0 6� 0

I
�0�
1 ÿ I

�0�
2 �

1

2
DI0 6� DI0: (14)

This means that the system of equations under analysis has
stationary (with respect to z) solutions satisfying conserva-
tion laws (2) only in those cases, when DI0 � 0.

One can easily see that the notation (4a) and (4b) stands
separate from the class of notations (9) because only this
notation corresponds to diagonalization (absence of combi-
nations ~Ai

~Aj at i 6� j) of expression for the potential (free)
energy

U � U �1� �U �2�, (15a)

where

U �1� � b 2

�
I0 ÿ

D 2

4b 2

�
� ~A1

~A�1 � ~A2
~A�2�

� 3b 2DI0� ~A1
~A�1 ÿ ~A2

~A�2�; (15b)

U �2� � ÿ2b 2�� ~A1
~A�1�2 � � ~A2

~A�2�2 � (15c)

in the selected coordinate system and only in this case, the
dependence of the variables I1;2 on each other (2) is not
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principal. Note also that because equations (4a) and (4b)
coincide in their form with the stationary (with respect to
time) wave equations in the presence of linear and cubic
(with respect to the external éeld) components to polar-
isation, relations (15) describe actually photoinduced
anisotropy, which is characterised by contributions both
to the tensor components of the dielectric constant

Dexx;yy /
q 2U �1�

q ~A1;2q ~A�1;2
� b 2

�
I0 � 3DI0 ÿ

D 2

4b 2

�
,

(16)

Dexy;yx /
q 2U �1�

q ~A2;1q ~A�1;2
� 0;

and to the cubic nonlinear susceptibility

wxxxx; yyyy /
q 4U �2�

q ~A1;2q ~A�1;2q ~A1;2q ~A�1;2
� ÿ 4b 2;

(17)

wxxyy; yyxx /
q 4U �2�

q ~A1;2q ~A�1;2q ~A2;1q ~A�2;1
� 0

(see [5]). In this case, the use of the term `dielectric constant'
is purely conditional because we deal with the contributions
whose quantities, érst, depending on the boundary con-
ditions, can be both larger and smaller than zero, and,
second, they explicitly depend on the input intensities, and
when I10ÿ30 � 0, are absent. Note again that it is impossible
to use identity (8) to change somehow the character and
symmetry of expressions (16) and (17) because the
diagonalization of tensors corresponding to (15b) and
(15c), taking into account the dependences of the variables
I1;2 on each other [integrals (2)], is of fundamental
importance.

3. Elliptically polarised cnoidal waves

Consider now the situation, in which I30 � 0 and the SH
frequency is absent at the input plane of the nonlinear
medium. In this case, we can restrict our consideration to
the analysis of the propagation process of two orthogonally
polarised pump waves with the amplitudes A1;2 in a medium
with a suitable photoinduced anisotropy of the dielectric
constant and cubic nonlinearity. The process of the mode
generation with the amplitude A3 can be `forgotten' in this
case, because we consider it as a physical mechanism
responsible for the appearance of the corresponding non-
linearity. In this case, system (4) takes the form

d 2 ~A1;2

dz 2
ÿ b 2

��
4I10;20 ÿ 2I20;10 ÿ

D 2

4b 2

�

ÿ 4 ~A1;2
~A�1;2

�
~A1;2 � 0 (18)

at boundary conditions

~A1;2jz�0 � A10;20,
d ~A1;2

dz

����
z�0
� i

D
2
A10;20; (19)

the photoinduced anisotropy of the dielectric constant is
determined by the expression

Dexx; yy / b 2

�
4I10;20 ÿ 2I20;10 ÿ

D 2

4b 2

�
,

(20)

Dexy � Deyx � 0;

while the effective cubic nonlinearity ë by expressions (17).
It is easy to notice that the main peculiarity of the problem
is independent (with the accuracy to boundary conditions
and numerical parameters) nonlinear propagation of two
waves with different (Dexx 6� Deyy) propagation constants at
I10 6� I20.

Although it follows from (19) that at D 6� 0, the
amplitudes ~A1;2 are complex, and, therefore, using the
replacement

~A1;2 � X1;2 exp�ij1;2� (21)

it is necessary to introduce their real amplitudes X1;2 and
phases j1;2, it is convenient to seek for the solution of
problem (18) via the complex mode amplitude ~A3 whose
phase is a constant when I30 � 0 [1]. The solution of
equation (4c), taking into account (7), yields

~A3�z� � ÿi sn�gz; k��

2�I10I20�1=2 exp�i�j10 � j20��
fI10 � I20 � D2=8b 2 � ��I10 � I20 � D2=8b 2�2 ÿ 4I10I20�1=2g1=2

,

(22a)

g � bfI10 � I20 � D2=8b 2 � ��I10 � I20 � D2=8b 2�2

ÿ 4I10I20�1=2g1=2; (22b)

k � 2�I10I20�1=2
I10 � I20 � D2=8b 2 � ��I10 � I20 � D2=8b 2�2 ÿ 4I10I20�1=2

:

(22c)

In this case, it follows directly from conservation laws (2)
that

X 2
1;2�z� � I10;20�

�
1ÿ 2I20;10

I10 � I20 � D2=8b 2 � ��I10 � I20 � D2=8b 2 � 2 ÿ 4I10I20�1=2

� sn 2�gz; k�
�
: (23)

Here, sn(x; k) is the elliptic Jacobi function; x and 15 k
5 0 is its argument and modulus [6]. For the phases j1;2 of
the searched-for solutions ~A1;2 of system (18), taking into
account (19) and expression (7) from paper [7], we can write
at once

j1;2�z� � j10;20 �
D
2
I10;20

� z

0

dz 0

X 2
1;2�z 0�

: (24)

After that expressions (23) and (24) determine the solutions
~A1;2(z) of the system of equations (18) necessary to us for
the further analysis.
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It is obvious directly from the character of the above
expressions that the division of the contributions, whose
appearance is associated with the effective photoinduced
anisotropy of the dielectric constant (20) and cubic non-
linearity (17), is not a trivial problem in the general case.
Therefore, we will pass to a simpler situation with a linearly
polarised input pump radiation and will assume that at
z � 0, the vector of its polarisation e0 lies in the plane xy
and is turned by the angle c0 with respect to the y axis due
to which two orthogonally polarised éeld components at the
frequency o with the amplitudes A1;2 are formed at the
medium input. Taking into account the fact that
j10 � j20 � j0, the boundary conditions for system (18)
are written in the form

~A10 �
����
I0

p
sinc0 exp�ij0�; (25a)

~A20 �
����
I0

p
cosc0 exp�ij0�: (25b)

To illustrate clearly the role of the photoinduced
processes, we will neglect now the initial anisotropy of
the medium by setting k1 � k2. In practice, this can
correspond, for example, to introducing, to the converter
scheme, an additional wave plate compensating for the
difference in the refractive indices of two pump components.
It follows from (20) that in this case, the photoinduced
anisotropy of the dielectric constant De � Deyy ÿ Dexx!
6b 2I0 cos 2c0 does not vanish only when c0 6� cn

� (2n� 1)p=4, where n is an arbitrary integer. The current
polarisation state of the pump wave can thus be determined
by two parameters, tanc(z) � X1(z)=X2(z) and Dj(z) �
j1(z)ÿ j2(z), describing its evolution during the radiation
propagation [8]. Taking into account (23) ë (25), it is easy to
see that under those conditions when c0 6� cn, the polar-
isation state of the wave at the frequency o really changes.
Thus, at c0 6� cn and D � 0 (i.e. when the phase-matching
condition is exactly fulélled), the pump radiation polar-
isation remains linear because

Dj�z� � j1 ÿ j2 � 0; (26)

although the orientation of the polarisation vector e in the
plane xy changes periodically during the propagation
because

tanc�z� � X1=X2

� tanc0

�
1� jcos 2c0j ÿ 2 cos 2 c0sn

2�gz; k�
1� jcos 2c0j ÿ 2 sin 2 c0sn

2�gz; k�
�1=2

(27)

periodically changes (see [8]). In this case, tanc(z) � tanc0,
and the directions e and e0 coincide only at the points
z � zn � 2nK=g, i.e. at distances from the input plane z � 0
multiple of the period 2K=g of oscillations X1;2. Here, K(k)
is the complete elliptic integral [6].

At c0 6� cn and D 6� 0, the situation becomes signié-
cantly more complicated. The polarisation of the pump
wave continuously changes during its propagation, thereby
transforming constantly from linear to elliptic and vice
versa. Taking into account (24) and (25), pump radiation is
linearly polarised only at those points z � zj of the z axis,
where

Dj�zj� �
D
2
I0

� zj

0

�
sin 2 c0

X 2
1 �z0�

ÿ cos 2 c0

X 2
2 �z0�

�
dz 0 � j 2p: (28)

Here, j is an arbitrary integer. Because in the general case,
zj 6� zn at no j and n (see above), the vector e even at z � zj
should be rotated with respect to e0. At other points z 6� zj,
the pump wave should be elliptically polarised, the
orientation of the polarisation ellipse axes of this wave
being different all the time because

tanc�z� � tanc0

��
1� D 2

8b 2I0
�
��

1� D 2

8b 2I0

�2

ÿ sin 2 2c0

�1=2
ÿ 2 cos 2 c0sn

2�gz; k�
�

�
�
1� D 2

8b 2I0
�
��

1� D 2

8b 2I0

�2
ÿ sin 2 2c0

�1=2

ÿ 2 sin 2 c0sn
2�gz; k�

�ÿ1�1=2

(29)

and c(z) � c0 only at z � zn.
This rather complicated transformation can be illus-

trated with the help of the Poincare sphere [8]. To this end,
after determining in the standard way the components s1ÿ3
of the normalised (s 21 � s 22 � s 23 � 1) Stokes vector
s � fs1; s2; s3g, taking into account substitution (21) and
boundary conditions (25), we obtain

s1 �
~A1

~A�2 � ~A�1 ~A2

~A1
~A�1 � ~A2

~A�2
� 2X1X2

X 2
1 � X 2

2

cosDj, (30a)

s2 � i
~A�1 ~A2 ÿ ~A1

~A�2
~A1

~A�1 � ~A2
~A�2
� 2X1X2

X 2
1 � X 2

2

sinDj; (30b)

s3 �
~A1

~A�1 ÿ ~A2
~A�2

~A1
~A�1 � ~A2

~A�2
� ÿ I0 cos 2c0

X 2
1 � X 2

2

: (30c)

It follows from relations (30) that at c0 � cn and
Dj � 0 (i.e. at DI0 � 0 and D � 0), the polarisation state
of the pump wave does not change and is described on the
Poincare sphere by the point fs1 � 1; s2 � 0; s3 � 0g lying in
its equatorial plane (Fig. 1a). At c0 6� cn and Dj � 0 (i.e. at
DI0 6� 0 and D � 0), the end of the vector s, starting its
motion along the surface of the Poincare sphere from the
point {s1 � sin 2c0; s2 � 0; s3 � ÿ cos 2c0} and passing
along the meridian s2 � 0 (conservation of linear polar-
isation) through its closest vertex (s3 � �1), reaches the
point {s1 � ÿ sin 2c0; s2 � 0; s3 � ÿ cos 2c0}, where it turns
around and starts moving in the backward direction
(Fig. 1a, heavy solid curve). This periodic change in the
orientation s corresponds to the fact that the polarisation of
the pump wave, remaining linear, changes periodically its
direction in the xy plane.

At c0 6� cn and D 6� 0 (i.e. at DI0 6� 0 and D 6� 0), the
character of motion of the end of the vector s becomes more
complicated. Note, érst of all, that it follows from (30) that
the polar (j) and azimuth (y) angles, characterising the
orientation of the vector s in the coordinate system
{s1; s2; s3} are determined by the expressions
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cotj � s2
s1
� tanDj, (31a)

cot y � s3

�s 21 � s 22 �1=2
� ÿ I0 cos 2c0

2X1X2

: (31b)

It follows from (31b) taking into account (23) and (25) that
at points z � zn and z � (zn � 2K=g) for which the values
X 2

1;2 are maximal and minimal, the relations

cot yjsn 2�gz;k��0 � ÿ
cos 2c0

jsin 2c0j
; (32a)

cot yjsn 2�gz;k��1 � ÿ
cos 2c0

jsin 2c0j

� �O� �O
2 ÿ sin 2 2c0�1=2�1=2
�2�Oÿ 1��1=2

(32b)

are fulélled, where O � 1� D2=(8b 2I0)5 1: Therefore, in
the evolution of the polarisation state of the pump wave
(during its propagation), the end of the vector s should
move along the trajectories localised within the spherical
layer surface

y 2 �yjsn 2�gz;k��0; yjsn 2�gz;k��1�: (33)

The character of this motion, due to the parameter
O � 1� D2=(8b 2I0), depends on the ratio of the periods
of changes in j and y. If these periods are multiple, i.e. the
condition

jp � �2�Oÿ 1��1=2�O� �O 2 ÿ sin 2 2c0�1=2�1=2 cos 2c0

�
� 2nK

0

sn2�x; k�dx�O� �O 2 ÿ sin 2 2c0�1=2

ÿ 2 cos 2 c0sn
2�x; k��ÿ1�O� �O 2 ÿ sin 2 2c0�1=2

ÿ 2 sin 2 c0sn
2�x; k��ÿ1 (34)

is fulélled, where j and n are integers, the polarisation state
of the pump wave changes periodically (Fig. 1b) and a
cnoidal wave is produced in which radiation polarisation
during its propagation changes periodically from linear to
elliptic and vice versa. If condition (34) is not fulélled and
the ratio of the periods of changes in j and y is irrational,
the polarisation state of the pump wave during its
propagation changes aperiodically, and despite the strict
determinancy of the problem, the end of the Stokes vector s
during its evolution obligatory passes through each point of
the spherical layer surface (33) (Fig. 1c). The vector s
behaves in this case as a strange attractor, completely élling
the corresponding region of the phase space, during its
aperiodic movement.

4. Conclusions

We have shown above that the presence of the effective
photoinduced anisotropy of the dielectric constant (De 6� 0)
at DI0 6� 0 and D 6� 0 drastically distinguishes the para-
metric frequency conversion on the quadratic nonlinearity
from the well-studied processes of cnoidal wave formation
in media with the local cubic nonlinearity. Due to this, the
solution of the corresponding problem is not reduced to the
trivial account for the ordinary effective Kerr nonlinearity.

In the type-II SHG process, at DI0 6� 0 and D 6� 0, the
evolution character of the polarisation state of pump
radiation is determined, due to this effective anisotropy,
by the value of the numerical parameter O � 1� D2=(8b 2I0)
and can be completely different. When condition (34) is
fulélled, pump radiation represents a cnoidal wave whose
polarisation changes periodically from linear to elliptic and
vice versa during its propagation due to a change in the
ratios of the amplitudes and phases of its two orthogonally
polarised components. When this condition is violated, the
Stokes vector of the pump wave behaves as a strange
attractor and the polarisation state of this wave changes
aperiodically. Note that the formation of solitary and
periodical nonlinear waves of a similar type ë the so-called
elliptically polarised solitons and cnoidal waves ë was
considered before only for birefrigent optical ébres and
gyrotropic media with the Kerr-type nonlinearity [4], i.e. for
systems with real but ineffective anisotropy.

Note also that allowance for the above-described photo-
induced polarisation peculiarities of the pump radiation
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Figure 1. Trajectory of motion (in changing z) of the end of the normalised Stokes vector s � fs1; s2; s3g of the pump wave on the Poincare sphere:
DI0 � 0 and D � 0 (c0 � p=4 and O � 1, the point is in the equatorial plane), DI0 6� 0 and D � 0 (c0 � 2 and O � 1, heavy solid curve) (a); DI0 6� 0

and D 6� 0 for the radio of the periods of changes in j and y equal to 4 (c0 � 2 and O � 1:1667) (b) and 2
���
3
p

(c0 � 2 and O � 1:1065) (c).
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propagation in the case of type-II parametric interaction is
very important from the practical point of view, especially,
in designing efécient intracavity frequency doublers.
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