
Abstract. A three-dimensional numerical model of a vertical-
cavity surface-emitting laser (VCSEL) containing a reso-
nance grating of quantum wells (QWs) is developed. The
Helmholtz equation for a éeld and the diffusion equation for
a medium, in which an electron beam is the source of charge
carriers, are solved self-consistently, which allowed us to énd
the longitudinal and radial proéles of the generated éeld, its
frequency, and the threshold pump current. The character-
istics of the higher-order modes are calculated against the
background of the frozen medium formed by the generated
mode. The stability limit of the single-mode regime and the
type of a mode at which lasing begins to develop with
increasing pump power are found from calculations of the
gain balance and losses for higher-order modes. An iteration
algorithm is developed for calculating the parameters of a
VCSEL with many QWs, the calculation time increasing
linearly with the number of QWs. The proéles of the
resonator modes and their frequency spectrum are calculated
for a cylindrically symmetric VCSEL. The stability limits of
single-mode lasing are determined. The results are compared
qualitatively with experiments.

Keywords: resonance heterostructure, method of counterpropa-
gating beams, eigenvalues, nonlinear operator.

1. Introduction

Heterostructures containing many quantum wells (QWs)
are of practical interest for application in vertical-cavity
surface-emitting lasers (VCSELs). They can be pumped
either by an electron beam or laser diodes [1]. Longitudi-
nally electron-beam-pumped semiconductor lasers can be
used as quasi-continuous monochromatic radiation sources
in display tech-nologies. A distinctive feature of such lasers
is the absence of optical conénement in the direction
perpendicular to the resonator axis. The laser éeld
distribution in the transverse direction is determined by a

change in the complex per-mittivity, which in turn is
controlled by the current density distribution in an electron
beam spot, the scattering of electrons in a semiconductor
and the diffusion of charge carriers.

The érst theoretical studies of the mode composition
and radiation directivity taking into account the spatial
transverse inhomogeneity of excitation were performed for a
transversely pumped semiconductor laser [2, 3]. Analytic
solutions were constructed for the éeld in the resonator for
some characteristic pump rate distributions and the param-
eters of conéguration losses was introduced. These solutions
described qualitatively the radiation pattern for the basic
types of oscillations upon pumping slightly exceeding the
lasing threshold. This approach applied to longitudinally
pumped lasers showed [4] that the characteristic transverse
size of the éeld intensity distribution for the fundamental
mode at the lasing threshold is smaller than the diameter of
an electron beam with the Gaussian current density function.

The laser radiation divergence in experiments noticeably
exceeded the diffraction limit, especially when the lasing
threshold was considerably exceeded. It was assumed that
this was caused by excitation of higher-order modes. The
authors of paper [5] calculated the éeld intensity proéles for
transverse modes in the WKB approximation, found their
excitation thresholds, and analysed the inhomogeneities of
the gain distribution and the role of a thermal lens. The
divergence angle of a laser beam for the given current was
equated to the divergence angle of the highest excited type of
oscillations. The theory explained qualitatively the increase
in the divergence angle from � 5 � at the lasing threshold
up to � 15 � in the case of a considerable excess over the
threshold in laser electron-beam tubes with a single-crystal
active region and the electron-beam spot diameter 35 mm.
However, these papers neglected the inêuence of the gener-
ated éeld on the distribution of the complex permittivity,
which is considerable in semiconductor lasers [6].

In the last years the attention of researchers has shifted
from single-crystal structures to nanoheterostructures in
which the lasing threshold at room temperature can be
considerably reduced by using resonantly periodic amplié-
cation [7]. The simulation of a QW grating VCSEL is a
challenging computing problem because of a great number
of layers with boundaries partially reêecting light and due to
the nonlinear type of eigenvalue equations. In addition, a
mathematical model of the laser should adequately take into
account diffraction intracavity phenomena and match the
solutions for the electromagnetic éeld in QWs with the solu-
tions of nonlinear equations of the diffusion type for current
carriers.
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In this paper, we describe brieêy the iteration algorithm
for calculating the parameters of VCSELs with many QWs
and calculate the proéles of resonator modes and their
frequency spectrum for cylindrical VCSELs. The stability
limits for single-mode lasing are determined and qualitative
comparison with experiments is performed.

2. Mathematical model of a VCSEL

The general calculation of a VCSEL by the method of
count-erpropagating waves [8] considers the propagation of
plane waves through a set of homogeneous layers by using
the transfer matrix (T-matrix) formalism. The amplitudes of
counterpropagating waves on the lower and upper boun-
daries of the layer set are transformed to each other via the
product of the corresponding 2� 2 T-matrices. Spatially in-
homogeneous éelds are expanded in plane waves, and then
the T-matrix method is applied to the expansion compo-
nents. By starting from a certain plane and performing with
the help of this transformation a round trip in the cavity, a
closed system of equations can be obtained for an unknown
function representing the éeld distribution for a wave of
one direction in the selected plane. By using a discrete
approximation, the authors of [8] have obtained a matrix
equation Au � 0 for a énite-dimensional vector u and derived
explicit expressions for the elements of the matrix A, which
depend on the unknown eigenvalue l containing the exact
value of a cavity mode frequency. The solution of the
matrix equation Au � 0 is found by the selection of l.
However, this method requires a great memory capacity for
explicit calculations of the completely élled matrix A and
cannot be applied to the nonlinear regime, which is of most
interest in the case of lasers.

The method, which is close ideologically to that described
above but is devoid of the disadvantages of the latter, is
proposed in paper [9]. The éeld transformation on passing
from one transverse plane to another in a layered medium is
described by operators taking into account reêections from
intermediate boundaries. The éeld transformation during
propagation through a QW is described by a nonlinear
operator, which requires the use of the iteration approach
generalising the Fox ëLi method [10]. If a heterostructure
consists of many QWs, the problem complicates. In this
case, it was proposed [11] to use a special iteration pro-
cedure leading to a linear dependence of the calculation time
on the number of QWs.

Figure 1 shows a heterostructure consisting of a QW
grating located between external and lower Bragg mirrors
(BMs). Between BMs and the QW grating, thin matching
layers are inserted. If the z axis is directed perpendicular
to the substrate, then the VCSEL will represent a set of L
plane layers {�zkÿ1, zk�, k � 1, :::,L} with boundary coor-
dinates {zk, k � 0, ...,L} and the thickness hk � zk ÿ zkÿ1 of
the kth layer. The aluminium substrate is numbered in the
numerical scheme as a layer with k � 0, while the output
mirror layer has the number k � L� 1. The refractive index
and absorption coefécient of all passive layers are assumed
homogeneous. Their proéles in QWs are determined by the
action of pump and laser radiations.

We assume that polarisation effects can be neglected and
restrict ourselves to the scalar diffraction model. In addi-
tion, the refraction index and absorption coefécient in the
transverse plane are assumed axially symmetric, which makes
the use of cylindrical coordinates convenient. The generated

éeld depends on time as E (r,j, z, t) � U (r,j, z) exp (ÿiOt),
where O � o0 � Doÿ id; o0 is the reference laser frequency;
Do � oÿ o0 is the mode frequency shift; and d is the decay
decrement. The reference frequency o0 is selected close to
the laser frequency, and the corresponding wave vector
and wavelength in vacuum are k0 � o0=c and l0 � 2p=k0,
respectively.

The optical modes of the VCSEL in the adopted
approximations are standard TEMnm modes, where m is
the angular index corresponding to the dependence
� exp (imj) and n is the radial number. By making the
substitution U (r,j, z)� Um(r, z) exp (imj), we exclude the
angular coordinate and obtain the equation
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containing the complex eigenvalue b. Here, n and g are the
refractive index and gain, respectively; b � gt � i2Dk; Dk �
� Do=c; and gt is the threshold gain.

In the absence of pumping, equation (1) together with
conditions at the side boundary r � rmax selected far enough
from the pump spot determines the optical modes of the
passive structure. When the pump energy exceeds the thres-
hold, the self-consistent solution of the wave equation and
equations for the medium gives the proéle of the generated
éeld and its frequency in the stationary lasing regime. The
fundamental mode has the axial symmetry in the case of
axially symmetric pumping. Therefore, equation (1) should
be solved for m � 0 together with the system of nonlinear
equations for the diffusion of carries in QWs [12]
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for the normalised density of carriers Yj � Nj=Ntr in the j th
QW, j � 1, :::, q. Here, Nj is the carrier density; Ntr �

Figure 1. Scheme of a VCSEL. The relative size of layers is shown out
of scale.
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fÿ1=tnr � � 1=t 2nr � 4BJtr=(ed) �1=2g=(2B) is the carrier density
in the case of transparency; D is the diffusion coefécient; tnr
is the recombination time; B is the nonlinearity coefécient;
d is the QW thickness; e is the elementary electric charge;
jU0j2 � I=Is is the radiation intensity normalised to the
saturation intensity Is � hcNtr=(l0g0tnr); J � kJtr f (r=r0) is
the equivalent injection current density producing the same
charge carrier êow in the QW as the speciéed electron
beam; Jtr is the transparency current density; k is the pump
amplitude; f (r) is the pump proéle; f (0) � 1, r � r=r0; r0
is the pump region radius. The output power of the VCSEL
is calculated from the expression Pout � 2p

�
Ioutr dr, where

Iout is the intensity proéle of the emitted éeld. The boundary
conditions for Yj (r) at the side boundaries of active layers
(r � rmax) are set equal to zero. The gain and refractive index
in active layers are calculated from approximate expressions

gj � g0 ln�w�Yj��, nj � n0 ÿ
R�g0 � gj�

2k0
,

(3)

w�Y� � a� �1ÿ a�Y 1=�1ÿa�, Y < 1,
Y, Y5 1,

�
where g0 is the gain parameter; n0 is the refractive index
in the absence of charge carriers; R is the line broadening
factor; and a � eÿ1.

The densities of the equivalent injection current and
electron-beam current are related by the expression

J

ed
� Z jbEe

3EgNqwed
,

where jb is the axial electron-beam current density; Ee is the
energy of electrons in a beam; Eg is the energy gap width of
barrier layers; Nqw is the number of QWs; Z � 0:75 is the
fraction of the pump electron-beam energy supplied to the
QW structure. The rest of the energy is carried away by
reêected electrons and secondary emission electrons, and also
is absorbed in BMs. For experimental parameters Ee �
� 40 keV, 3Eg � 7:08 eV, and Nqw � 25, the densities of
the equivalent injection current and electron-beam current
are related by the expression

J � 170 mA cmÿ2$ jb � 1 mA cmÿ2.

The solution of equation (1) for m � 0 together with the
corresponding boundary conditions is reduced to the solu-
tion of the eigenvalue problem for a nonlinear operator. The
additional condition d � 0 (Re b � 0) determines the sta-
tionary lasing regime. We consider here brieêy the numerical
method, which is described in more detail in [9]. The wave
éeld in each horizontal plane is represented as the sum of
two éelds propagating upward and downward over the
structure. A quantum well is simulated by a homogeneous
layer containing an inhomogeneous phase screen with the
gain and phase incursion obtained from equations (2) and (3).
Thus, the VCSEL is represented as a set of alternating
homo-geneous layers, which are separated in some places by
in-homogeneous phase screens. The propagation of the éeld
between two adjacent phase screens is calculated with the
help of the Hankel fast transformation algorithm [13] and
the T-matrix formalism for Fourier components. Because the
beginning of the round trip is selected arbitrarily, a wave
propagating upward from the upper QW plane was chosen
as the start wave. The condition of the éeld reproduction

after the round trip transit is expressed by the operator
equation

P(g, n, b)u � u (4)

for the function u and the eigenvalue b. To énd the solution
of (4), érst the solution of the auxiliary eigenvalue problem

P(g, n, b)u � gu (5)

should be found for the unknown function u and eigenvalue
g for the speciéed complex value of b. Then, the value of b
is selected to obtain the equality g � 1 with the speciéed
accuracy. In the absence of pumping, the problem is linear.
Because of practical interest are only the highest-Q modes
(u, g), the auxiliary problem can be eféciently solved by the
Arnoldy method [14], which does not require the explicit
calculation of the P(g, n, b) matrix, but requires only the
knowledge of the algorithm of action of the operator P(g,n,b)
on the vector u. The eigenvalue of the nonlinear operator in
equation (5) in the lasing regime is modulo 1. The operator
P(g, n, b) of a round-trip transit in the resonator depends
on the distributions of the gain g and refractive index n in
QWs, which can be found from equations (2) and (3). This
problem is solved by the Fox ëLi iteration method [10].

3. Results of calculations and discussion

The reference wavelength used in calculations was l0 �
� 640 nm. According to the experiment, the lower BM con-
sisted of 7.5 pairs and the upper mirror consisted of 5 pairs
of alternating quarter-wave SiO2 (n � 1:465, h � 109:2 nm)
and TiO2 (n � 2:4, h � 66:7 nm) layers. The active part of
the VCSEL contained 25 QWs (Ga0.5In0.5P, n � n0 � 3:62,
h � d � 8 nm) separated by barrier layers
(Al0.35Ga0.15In0.5P, n � 3:345, h � 182:67 nm). Thus, the
QW grating formed a énite periodic structure with the
optical period exactly equal to l0, and, therefore, the
structure was resonant. Additional 6-nm-thick protective
layers with n � 3:62 were inserted between the heterostruc-
ture and BMs. Finally, the VCSEL was mounted on an
aluminium plate and was covered from above by an input
sapphire window (n � 1:716). Aluminium and sapphire
plates in the numerical model were assumed inénite. The rest
of the parameters were D � 0:5 cm2 sÿ1, tnr � 10ÿ9 s,
B � 3:5�10ÿ10 cm3 sÿ1, r0 � 13 mm, g0 � 3400 cmÿ1,
Jtr � � 400 A cmÿ2, which corresponds to the axial density
of the transparency current of the electron beam jbtr � 2:35
A cmÿ2 and the saturation intensity Is � 172 kW cmÿ2.
Because the pump profile in the electron-beam-pumped
VCSEL and the line broadening factor are not known
accurately, calculations were performed for model profiles
f (r) � (1� r4)ÿ1 and f (r) � exp(ÿr6), which did not
change over the structure length.

The number of nodes of the radial grid in all cal-
culations presented below was Nr � 1024. To estimate
the digitization error, one of the variants (Ib � 35 mA,
f (r) � � (1� r4)ÿ1, R � 2:5) was recalculated by using a
grid with Nr � 2048. The relative change in Dk for the
TEM00 mode was 0.8�10ÿ5, while the relative change in the
output power was 3.2�10ÿ3. In the case of a linear problem
(reson-ator with a `frozen' active medium), calculations for
the TEM01 mode gave the relative change in b at the level
3.4�10ÿ5. Thus, the calculation error is quite acceptable.
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We performed a series of calculations for R � 2:5. Let us
illustrate the results of calculations for the electron-beam
current equal to 35 mA and the proéle described by the
expression f (r) � (1� r4)ÿ1. The calculated frequency shift
was found to be Dk � ÿ405:36 ÔÏÿ1, which corresponds to
the laser wavelength shift with respect to the reference wave-
length lÿ l0 � 1:98 nm. To determine the main reason for
the laser wavelength shift, we calculated the eigenfrequencies
of the system in the approximation of plane waves of an
unlimited aperture. Figure 2 presents the dependence of the
resonance wavelength shift on the number of QWs in the
structure. In the case of a small number of QWs, the wave-
length shift rapidly decreases, which is explained by a decrease
in the inêuence of the boundaries of the QW system, and
then saturates. For 25 QWs, the resonance wavelength shift
is 2.03 nm and is virtually independent of the electron-beam
current.

The longitudinal éeld intensity distribution on the
VCSEL axis is shown in Fig. 3. Because the wavelength
is close to the resonance wavelength, the heights of éeld
intensity peaks in different QWs are almost the same.
Correspondingly, the radial gain proéles are also close in
different QWs. The gain proéle in the diametrical section of
the upper QW is shown in Fig. 4a. The diameter of the
region with the positive gain is � 30 mm. The dip in the gain
proéle at the axis is caused by the gain saturation by laser
radiation. For comparison, the intensity distribution in the
diametrical section of the laser beam is presented in Fig. 4b
together with the proéle f (r). The laser beam diameter at
half-maximum is 3.7 mm.

To estimate effects caused by variations in current, we
performed a series of calculations and plotted the watt ë
ampere characteristic (Fig. 5). By extrapolating the calcu-
lated dependence of the laser power to zero, we found the
lasing threshold It � 32 mA, which is consistent with the
experimental value. The laser beam quality is characterised
by the M 2 factor. The calculated dependence of this factor
on the pump current (Fig. 5) demonstrates the improvement
of the beam quality with increasing current.

The limiting current for stable single-mode lasing can be
found by solving a linear eigenvalue problem under condi-
tion that the gain and refractive index of the active medium
are formed by the laser mode and are `frozen'. If the
threshold gain for some mode (different from the generated
mode), including the difference of the gain and total losses,
becomes positive, the single-mode lasing stability is violated.
Our calculations show that the lasing threshold for the TEM01

mode is achieved for Ib � 38 mA. Thus, single-mode lasing
remains stable for currents Ib<� 1:2It. At higher currents, the
quality of the output radiation decreases due to the develop-
ment of lasing at higher modes.

Figure 2. Shift of the resonance wavelength of the VCSEL as a function
of the number of QWs in the absence of the transverse structure of the
pump and éeld.

Figure 3. Longitudinal distribution of the éeld intensity on the axis r � 0
(continuous function) and the square of the refractive index (step function);
Ib � 35 mA, f (r) � (1� r4)ÿ1, R � 2:5.

Figure 4. Transverse section of the gain proéle in the upper QW (a) and
the pump distribution f (r) � (1� r4)ÿ1 (solid curve) and the TEM00

mode intensity (b); Ib � 35 mA, R � 2:5.

Figure 5. Output power and the M 2-factor of the TEM00 mode as
functions of the pump current; f (r) � (1� r4)ÿ1, R � 2:5.
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For the hyper-Gaussian pump proéle f (r) � exp(ÿr6),
both the threshold pump current (17 mA) and the current
(19.4 mA) at which single-mode lasing becomes unstable are
lower than those for the power pump profile. This difference
is mainly caused by the fact that for the same axial current
density, the total current of the beam for the power profile is
1.71 times higher than that for the hyper-Gaussian profile.
Thus, the lasing threshold for the fundamental mode is
achieved in both cases at approximately the same axial
current density, but the critical excess of the lasing threshold
for the next mode is somewhat higher for the power pump
profile than for the hyper-Gaussian profile.

Because the line broadening factor R for structures studied
in the experiment is poorly known, we performed a series
of calculations for R � 2:5 and 5 for a éxed pump current
Ib � 35 mA with the pump profile f (r) � (1� r4)ÿ1. Figure 6
shows the corresponding far-field intensity profiles for the
generated mode. One can see that the output beam narrows
down with increasing R and the far-field spot size broadens
correspondingly. This demonstrates an important role of self-
focusing caused by the gain saturation. The output power of
the laser noticeably depends on the parameter R, being 2.41
and 1.2 mW for R � 2:5 and 5, respectively. The parameter
M 2 was 1.17 for R � 2:5 and 1.06 for R � 5. Thus, the
decrease in the output beam size is accompanied by some
improvement of its quality, although the far-field divergence
angle increases.

The divergence angle of the output beam was measured
in experiments for a similar structure at beam currents
noticeably exceeding the threshold value [15]. The typical
value of the divergence angle was 15�. The beam divergence
decreased approximately by a factor of 1.5 near the thresh-
old. A theoretical model predicts the divergence angle of 11�

for a small excess over the threshold. Taking into account the
uncertainties in the value of R and the radial pump proéle,
the agreement with experiments is satisfactory.

4. Conclusions

The numerical method developed in the paper can be used
to calculate the spatial proéle, output power, wavelength,
and other parameters of a generated mode in VCSELs. The
characteristic calculation time of one resonance structure
containing 25 QWs is about 1 h by using a Pentuim IV PC.
By varying the pump current, it is possible to determine the
lasing threshold, to study the single-mode lasing stability,
and to énd the maximum output power in this regime.
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