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Two-dimensional distributed feedback lasers
with excitation of TE waves in the active medium

V.R. Baryshev, N.S. Ginzburg, A.M. Malkin, A.S. Sergeev

Abstract.  Two-dimensional Bragg resonators with the
coupling of TE- and TM-polarised waves are proposed.
The selective properties of such resonators are analysed.
Within the semiclassical approach, the nonlinear dynamics of
laser radiation with a two-dimensional (in the xy plane)
distributed feedback is studied, at which TE-polarised waves,
propagating in the £z directions, are amplified in the active
medium (in particular, based on quantum wells). The latter,
on a two-dimensional Bragg structure, are scattered into TM-
polarised waves propagating in the +x directions. These
partial wave flows do not interact with the active medium but
provide the spatial radiation synchronisation. The conditions
of the solution self-similarity are obtained with increasing the
dimensions of the active medium and the corresponding
increase in the integral output power. It is shown that when
an additional end mirror is mounted, almost unidirectional
radiation coupling can be realised.

Keywords: distributed feedback lasers, two-dimensional Bragg
resonator, mode selection.

1. Introduction

Conventional distributed feedback (DFB) lasers use the
coupling of two counterpropagating waveguide modes in a
structure with a periodic modulation of dielectric properties
[1-7]. Such a structure forms a one-dimensional Bragg
resonator, which allows one to selects modes with respect to
the longitudinal index. Transverse synchronisation of
radiation can be provided by diffraction if the transverse
size [, of the system is limited by the Fresnel condition:
12 /(.A) < 1, where /. is the system length; 4 is the radiation
wavelength. The authors of papers [8-10] proposed an
efficient method for spatial synchronisation of radiation in
the case of a large Fresnel parameter [/2/(1,/) > 1], based
on the use of a two-dimensional DFB.

In the optical range, a two-dimensional DFB can be
produced using dielectric structures with a doubly periodic
modulation of the waveguide thickness (Fig. la, b):
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Figure 1. General scheme of a two-dimensional DFB laser (a), chess-like
approximation of the dielectric waveguide surface on an enlarged scale
(b) and diagram illustrating the coupling of the partial waves
(k= Fhxo and kE= Fh.z, are the wave vectors of the partial waves,
K* = h.xy £ h.z, are the translation vectors of the grating, x, z, are
unit vectors).

b(x,z) = by + by [cos (hx + h.z) + cos (hyx — h.z)], (1)

where b, is the modulation amplitude; /. = 2n/d, _; d, .
are the modulation periods along the x and z axes. Such
structures provide coupling and mutual scattering of four

partial wave flows specified by the vector-potential

A= Re{ [a:(y) (C;refih:: + C_:ei/z_.z)

-l-ax(y) (C;Lefih\,x + C;eih\,x)]eiwl}’ (2)

where the functions a,.(y) describe the known mode
structure of a regular planar waveguide with a dielectric
constant [3], the modes propagating in the directions + x
and £z with the moduli /2, and A. of the wave vectors;
CE(x,z) are the slowly-varying complex amplitudes of the
partial waves. We assume that the Bragg conditions
(Fig. 1c) h, . zh}?z are fulfilled under which the waves
with the amplitudes C* propagating in the directions +z
are coupled with the waves with the amplitudes CZ
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propagating in the directions +x. Note that the direct
coupling between the waves C." and C. , as well as between
C{ and C; are absent.

In practical realisation, similarly to the case of two-
dimensional Bragg resonators based on the coupling of TM
waves [8—10], sinusoidal modulation can be replaced by the
chess-like modulation (Fig. 1b):

bx,z = bO + blf(x)f(z)9
_ B 3)

. _ 17

where ¢ =1, 2,... .

Note that in our previous papers [8§—10], we considered
the case when all four partial wave flows represented TM-
polarised waves. The eigenmodes of this resonator are
described in detail in paper [10], which shows a high
selectivity of such resonators along two coordinates at large
Fresnel parameters. The nonlinear dynamics of a two-
dimensional DFB laser was studied in [8, 9] by assuming
that all the waves refer to one TM type and the laser active
medium ensures their isotropic amplification. As is known,
the interaction with the TM-polarised waves takes place in
semiconductor active media. At the same time, in active
media based on quantum wells, TE-polarised waves are
mainly amplified [11]. However, due to the orthogonality of
electric fields of partial waves, coupling on a two-dimen-
sional Bragg structure (1) of TE-polarised waves is absent
(see below).

In this paper, to overcome the mentioned polarisation
restrictions we study the two-dimensional DFB laser model
with the coupling of TE- and TM-polarised waves. We
assume that the active medium amplifies the TE-polarised
waves propagating in the directions +z, these waves being
scattered on the Bragg structure into the TM-polarised
waves propagating in the directions +z. These partial wave
flows do not interact with the active medium but provide the
spatial synchronisation of radiation.

2. Modes of a two-dimensional Bragg resonator
with the coupling of TE- and TM-polarised
waves

The eigenmodes of a planar dielectric waveguide separate
TE- and TM-polarised waves (see, for example, [3]). Papers
[8, 9] studied the coupling on a two-dimensional Bragg
structure (1) of TM-polarised waves for which the partial
waves C. and C.* have a common electric field component
(£,) and correspondingly a different-from-zero coupling
coefficient (this coefficient is proportional to the scalar
product of the electric fields of the partial waves [3]). In the
case of the TE-polarised waves, the electric field is directed
perpendicular to the wave vector; hence, the electric fields
of the waves C* and C* are orthogonal and the coupling
between the waves is absent. However, as was noted above,
in the active medium formed by the quantum wells, it is the
TE-polarised waves that are amplified. In this case, of
interest is the situation where the coupling of TE and TM
waves, propagating in mutually perpendicular directions, is
realised on a two-dimensional Bragg grating. The electric
field of the TM wave has a longitudinal component, which
provides their coupling with TE waves. The waveguide

thickness should be selected so that in the studied frequency
range specified by the working transition frequency, only
the lowest TE and TM modes would propagate in the
waveguide.

The coupled-wave equations describing mutual scatter-
ing of partial TE and TM waves on a two-dimensional
Bragg grating can be reduced, in the geometric optics
approximation (the case of large Fresnel parameters), to
the form used in [8—10] to describe the scattering of TM
waves:

oC*k
oz

+i6C." +ink(C,F + C,) =0,
4)

aCﬁ‘xﬂ: N s A+ =~
PF +i6C; +iak(C.F+C.7) = 0.

Here, 6 = (v — 6))/0g is the Bragg resonance detuning;
X= xril; Z=zr; r= 1/ng/vgz; Vg = /UgUgz; Ugy and Vg
are the group velocities of the lowest TE (the subscript z)
and TM (the subscript x) modes of the dielectric waveguide;
Cr=cE V% CE=C*"* k=®/c; @ is the Bragg
frequency. The coupling parameter o, following [3], can be
represented in the form

Lo Wb Ve—1(e7+1) (gzpz)

Vb TEpT™ g\/g /1:3
Dx
X| ———=, 5
( h(g3 +82p3)) ©
where
TE
b= =by+ e
b™ = py + 2

VI K2 [h2/(ek2) + h2Jk2 — 1]

are the effective waveguide thicknesses for TE and TM
modes; pi. = hi.—k?, gi.=¢ek> —hi. are the transverse
(along the y axis) wave numbers outside and inside the
dielectric layer, respectively, for TE and TM modes. In the
case of the sinusoidal modulation, v = 1, and in the case of
chess-like modulation, v = 16/712. The functions a.(y) and
a,.(y) describing the transverse structures of partial TE and
TM waves, respectively, are normalised as follows:

.y =0) = 1, Js|az<y>|dy - Js\axofndy.

The spectrum of the resonator eigenmodes can be found
from the solution of the system of equations (4) with
boundary conditions

CH(%,0)=0,C.(%,2) = 0,C,7(0,2) =0, C; (I, 2) = 0, (6)
which correspond to the absence of incident external
electromagnetic fluxes. Here, lf\,,z = l_x,y_,ril is the length
and width of the region occupied by the two-dimensional
modulation with the sinusoidal (1) and chess-like (3) surface
profile.

The eigenmode frequencies w,, ~ @ + v,Red,,, and
their Q factors Q,,, = @/(2v,ImJ,,,)) in the case of strong
coupling (akl,. > 1) can be represented in the form [10]
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Figure 2. Field structures of the partial waves C." (a) and C," (b) of the fundamental mode (n =0, m=1)at L. =5, L, = 2.5.
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O [ K+ ik <73 Tz )} ke <7_,3 T >

2 2 2 2
Sy = T (”T+”f—>. (7b)

——= 1 ——==
ukll,  2e*kPLI N\ L L

According to (7), the studied modification of the two-
dimensional Bragg resonator has a high selectivity over the
longitudinal (n) and transverse () subscripts, the selectivity
being achieved due to the simultaneous coupling of radi-
ation both in the longitudinal (£z) and transverse (+x)
directions. The eigenmodes can be divided into two groups
whose frequencies lie near the boundaries of the Bragg
band: § ~ +2ak (7a) and in the vicinity of the exact Bragg
resonance: 6 = 0 (7b). A distinct feature of two-dimensional
Bragg structures is the existence of high-Q modes from the
second group inside the Bragg band. The modes at the exact
Bragg frequency with the subscripts m =0, n=1 and
m =1, n =0 have the highest-Q factor. Within the frame-
work of the geometric optics approximation, these modes
are degenerate with respect to the frequency, and, in
addition, at /. = /., they have the same Q factor. To remove
the degeneracy with respect to the Q factor, we will consider
below the systems with [, =2[/.. The spatial amplitude
distributions of the partial waves of the fundamental
mode (m =0, n=1) are shown in Fig. 2 for this case.

3. Simulation of nonlinear dynamics
of two-dimensional DFB lasers

Let a thin (in the scale of the waveguide mode inhomo-
geneities) layer of the active medium be located at the plate
centre at y = 0 and interact only with TE-polarised waves.
We assume that the Bragg frequency @ coincides with the
transition frequency w, between the working levels. We will
describe the interaction of the active medium with the
electromagnetic field within the framework of the semi-
classical approach [12]. Thus, in the expression for the
electromagnetic field (2) in which the amplitudes of the
partial wave flows Cxi are also the time functions, the
polarisation P and population inversion p of the medium
will be represented in the form [12]

P =Re [i(P_fe”;Z + szefiﬁl)eia)g[] ,
, ®)
P =Py + Re(pzzeﬁhz)

’

where P_,i(x, z,0), po(x,z,1), py.(x,z,f) are the slowly
varying amplitudes of the corresponding spatial harmonics.

The process of partial wave amplification (2) in the
active medium and their mutual re-scattering on the Bragg
grating (1) and nonlinear grating produced by the popu-
lation inversion modulation of the medium can be described
by a system of averaged equations:

0 0 A+ (At A—=\ _ p+
(j:a? a)cz +1(Cx +Cx)* z

©)

aTJFT]_ (C.FP+CoPY).

Here, X = awoxr ' /e, Z = awyzr/c, 1= awytvg/c are the
normalised spatial coordinates and time;

nhyc ]/2.
aphogughEr )
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p. 1s the equilibrium concentration of the active elements in
the absence of radiation; T}, are the longitudinal and
transverse relaxation times.

Assuming the transverse relaxation time 75 to be small
compared to other temporal scales, we will use the balance
approximation by representing the medium polarisation
components in the form

Pt =BTy (2C po + C. pan),
2( 0 z 2) (10)

P_; = ﬁfZ (2éziﬁ0 + Cz+i);z)’
where

2 a
f— e |1|"chy
202 haogvgh TEr
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is the normalised density of the active elements; u is the
dipole moment.
The total output power is

2
s belie’ho & (1
4o
where
L, . N
s=r [ e P e oPax
0
L N
+rj (1€ (L 2)]" +|C5 (0, 2)")dz: (12)
0
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Figure 3. Dependences of the normalised output power S on the
normalised time 7 at L. =5, L, =2.5, T} =1 and excesses over the
self-excitation threshold 7, =0.075 (1), 0.1 (2), 0.15(3), 0.25 (4) and
0.35(5).

L. = ocwol;_rz /c are the normalised width and length of the
active medium.

In the strong wave coupling approximation (L,. > 1),
the conditions for the self-excitation of different modes can
be written in the form

Im 2 — 2p7,. (13)

ok
where the mode decrements are determined by relations (7).
The minimal self-excitation threshold F is realised for the
fundamental mode and can be represented in the form

F=4BT,L L. /n* = 1. (14)

We studied the nonlinear interaction stage by using the
numerical simulation of the system of equation (9), (10) with
boundary conditions (6). As initial conditions, we specified
the noise distribution of the electromagnetic field with a
small amplitude c¢:

Cii(X,Z,1=0) = coexp[-9,-(X, 2)]. (15)

Figure 3 presents the time dependences of the normal-
ised output power S at different excesses of the self-
excitation threshold. Figure 4 shows the spatiotemporal
dependences of the amplitudes and partial wave phases
on one of the active region boundaries, which demonstrate
the process of radiation synchronisation and establishment
of the stationary lasing regime. Amplitude distributions of
the partial waves and the mean population inversion in the
stationary lasing regime are demonstrated in Fig. 5. Note
that the dependences presented in Figs 4 and 5 are obtained
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Figure 4. Spatiotemporal dependences of the amplitudes and phases of the partial waves C." (a, b) and C,! (c, d) on the active region boundaries
during the establishment of the stationary lasing regime at Z = L.z (a, b), X =L, (¢c,d), L. =5, L, =2.5, T, =0.35, T} = 1.
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Figure 5. Spatial dependences of the amplitudes of the partial waves C.* (a) and C. (b), the mean population inversion p, (c), and the induced
population-inversion grating |p,.| (d) in the stationary lasing regime at L. =5, L, = 2.5, f7, = 0.35, T; = 1.

at a significant excess of the lasing threshold: F =~ 9. Under
these conditions, several modes of a two-dimensional Bragg
resonator are excited at the initial stage but, due to the
nonlinear competition, the stationary lasing regime with the
amplitude distributions of partial waves, analogous to the
field distribution of the fundamental (n = 1, m = 0) mode, is
established (see Fig. 2).

Note that the stationary solutions of equations (9) are
self-similar. If we decrease the normalised relaxation time 7'
of the population inversion without changing the normal-
ised dimensions of the system (L, . = const), the amplitude
distributions of the partial waves in the stationary lasing
regime do not change. At the same time, the wave
amplitudes and the normalised output power will increase
proportionally: \C‘fz|1/2 T, = const, ST, = const (Fig. 6). In
physical variables, it means that if the size /. of the active
region is increased and the equilibrium population inversion
p. (for example, by decreasing the pump power density) and
the coupling coefficient « are proportionally decreased so
that /,.p. = const and /.o = const, the amplitude distri-
bution of the partial waves in the stationary regime will not
change and the total integral output power will increase
proportionally: S//, . = const.

Simulation of the lasing establishment process with the
help of equations (9) shows that the dynamics of the
transient process changes with varying 7, because it
determines the ratio between the relaxation time 7, and
the lifetime of photons in the resonator, 7, = 1/Imé;y. At
T > T, the transient process includes generation of a pulse
with the peak power exceeding significantly the output
power in the stationary lasing regime (Fig. 6). When 7
is decreased, the dynamics of the transient process becomes
simpler. In this case, in the entire range of normalised
system dimensions admissible from the point of view of
computational resources (L,. < 10), the establishment of
the stationary lasing regime was observed.

ST r\ J

0.5
A 2
7\, 3
100 200

0.4
300 400 T

0.3
0.2
0.1

T
MN———

0

Figure 6. Ti}ne dependences of the normalised output power at L, =5,
L, =2.5, BT, = 0.1 and the relaxation constant 7, = 10 (1), 33 (2),
and 100 (3).

Thus, the simulation results demonstrate the possibility
of using two-dimensional distributed Bragg structures for
the spatial synchronization of radiation from two-dimen-
sional active media in which the medium amplifies two
partial TE-polarised waves propagating in the directions +z.
These waves are scattered on the Bragg structure into TM-
polarised waves propagating in the directions +x, thereby,
synchronising radiation of different parts of the active
medium.

The disadvantage of the proposed scheme is the radi-
ation coupling from all the four end faces of the active
medium. Nevertheless, there exists the possibility to realise
an almost unidirectional radiation coupling if we mount an
additional end mirror, which will ensure, in the cross section
x = 0, re-reflection of the wave C, to the wave C." (Fig. 7).
In this case, the boundary condition in this cross section is
transformed to the form

Cj(ov Z) = _RC\7(07Z)= (16)

where R is the reflection coefficient from the additional end
mirror. Figure 8 shows the amplitude distributions of the
partial waves obtained during the numerical simulation at
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Mirror

Figure 7. Scheme of a two-dimensional DFB laser with an additional end
mirror.

TE waves. The lasing threshold in a two-dimensional DFB
laser has been found analytically. We have simulated
numerically, within the framework of a semiclassical
approximation, the parameters of the stationary lasing
regime including the self-similarity conditions. We have
demonstrated the possibility providing an almost unidirec-
tional radiation coupling with the help of an additional end
mirror.
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Figure 8. Spatial amplitude distributions of partial waves C." (a), C; (b), and C," (c) in the stationary lasing regime in a system with an additional end
mirror at L. = 5, L, = 2.5, 75 = 0.2, T} = 1. The main energy flux is carried out by the wave C," through the cross section X = L.

R=1 in the stationary lasing regime. Under these
conditions, up to 90 % of output energy is coupled out
together with the wave C, through the cross section
X = L. Note that the mounting of an additional mirror
does not deteriorate the phase-matching conditions, this
installation being realised under the same geometrical
dimensions of the laser as in the absence of the mentioned
reflector.

4. Conclusions

We have shown in this paper that the two-dimensional
DFB can be used to synchronise radiation of spatially
developed laser medium in which amplification of a TE-
polarised waves takes place. In the optical range, the new
feedback mechanism can be realised based on the two-
dimensional Bragg structure formed by a dielectric plate
with a doubly periodic modulation of the thickness and
providing coupling of TE- and TM-polarised waves
propagating in mutually perpendicular directions. As a
result of formation of additional wave flows of TM
polarisation (and their distributed re-emission into the
TE waves), radiation is synchronised in the direction
perpendicular to the propagation direction of the amplified
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