
Abstract. The general concepts for generation and amplié-
cation of the X-pulses in optical parametric ampliéers under
the plane-wave and localised (Bessel beam, or more generally,
X-pulse) pump are reviewed. It is shown numerically and
experimentally that X-pulse phase-matching gives rise to
spontaneous emergence of the localised light structures in the
regime of the parametric frequency down-conversion. The
parametric ampliécation technique of localised waves is
extended to the chirped X-pulse optical parametric amplié-
cation concept, which allows one to achieve few optical cycle,
high-peak power localised wave packets for laser ëmatter
interactions.

Keywords: parametric ampliécation, X-pulses, localised wave pac-
kets.

1. Introduction

The érst theoretical concepts of the optical parametric
ampliécation and oscillation were introduced in theoretical
works by Akhmanov and Khokhlov [1], Kroll [2], and
Kingston [3] dating back to early 1960s. Soon these
concepts were applied to proof-of-principle demonstration
of the optical parametric ampliéers [4, 5] and wavelength
tunable optical parametric oscillators [6, 7]. This éeld of
research rapidly grew to maturity and the érst picosecond
optical parametric ampliéer (OPA) was launched in 1968
[8]. Actually, it resulted in extended studies of ultrafast
OPAs aiming at the development of frequency-tunable
sources of the ultrashort light pulses with a duration
approaching few optical cycles (see reviews [9, 10]). An
exclusive feature of parametric interactions in transparent
crystals with a quadratic nonlinearity w �2� is a large gain
bandwidth [11, 12], in principle allowing the generation of
the light pulses much shorter than the pump pulse. In
particular, the broad ampliécation bandwidth of the OPA
is provided by the noncollinear interaction geometry, which
was érst pointed out by Gale et al. [13]. This capability as
combined with a new optical parametric chirped pulse
ampliécation (OPCPA) concept [14 ë 16] holds a promise to

scale the performance of the conventional ultrafast lasers
down to single optical cycle pulse generation and to boost
the output power to the multi-petawatt level [17, 18].
Noncollinear phase matching of the X-pulses opens an
innovative approach to control and shape the OPA gain
bandwidth [19]. X-pulses expose strong angular-frequency
dependence and hold unique features of dispersion-free and
diffraction-free propagation. Moreover, X-shaped spatio-
temporal spectrum emerges as a result of the interplay
between the temporal dispersion and spatial diffraction in
the OPA [20, 21]. An important conclusion was made
demonstrating for the érst time that the conditions for
noncollinear phase matching in three-wave parametric
interactions coincide with the conditions for the generation
and ampliécation of the focus wave modes (X-pulses or, in
general, localised waves) [20]. The results of experiments on
generation of ultrabroadband localised optical éelds by the
optical parametric ampliécation are quite promising and
further investigations are in progress. Recently, the X-pulse
OPCPA concept has been suggested in [22] introducing a
new straight method to compress ampliéed X-pulses down
to a few tens of femtoseconds by free propagation of
chirped X-pulse in vacuum. This approach excludes
expensive components of an optical compressor routinely
used in high intensity laser systems.

In this paper, we study the phase-matching requirements
for the three X-wave parametric interactions and discuss the
experimental results on the X-wave generation in the OPA.
We also propose an idea of the optical parametric amplié-
cation of chirped X-pulses and demonstrate analytical and
numerical results obtained quite recently, which might open
new perspectives in ampliécation of high peak power
ultrashort laser pulses.

2. Optical X-pulses

Generation of localised, propagation-invariant wave-pack-
ets, which withstand diffractive and dispersive broadening
while propagating in a free space or in a dispersive medium,
is one of the most urgent and exciting problems in modern
optics. At present, localised waves attract considerable
attention from the fundamental point of view as well as
suggest an innovative approach in many practical applica-
tions [23]. While the Bessel beam is well known for being
the simplest monochromatic localised wave, which exhibits
diffraction-free propagation [24], the X-pulse (or sometimes
called X-wave) represents the generalisation of the concept
of energy localisation in space and time in the case of
polychromatic beams carrying ultrashort light pulses [25].
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The optical X-pulse constitutes a weakly localised wave-
packet exhibiting an exceptional feature of coexistence of a
localised high-intensity core and a high energy, but low
intensity beam periphery (energy reservoir), which prop-
agates locally as a single (quasi)-stationary proéle. In its
simplest form, a linear X-pulse represents a propagation-
invariant wave packet, which is the solution of paraxial
propagation equation in a dispersive medium:

i qA
qz
� g0

2

q 2A

qt 2
ÿ 1

2k0
D?A � 0, (1)

where A is the complex electrical éeld amplitude; D? is the
transverse Laplace operator; g0 � d2k=do 2jo0

is the group
velocity dispersion (GVD) coefécient; and k0 � o0n(o0)=c
is the propagation constant. In the space ë time domain, a
propagation-invariant wave packet takes the shape of the
letter `X' ë with the intense and highly localised central
spike and slowly decaying tails (Fig. 1). In a dispersive
medium, the propagation-invariant wave packet (X-pulse)
emerges whenever its spatiotemporal spectrum in the
(k?,Do) domain asymptotically éts the dispersion relation:

a � g0Do
2 ÿ k 2

?=k0 � const, (2)

where k? is the transverse wave-vector component related
to the cone angle y � k?=k0 and Do � oÿ o0 is the
frequency detuning from the carrier frequency. In the case
of the normal group velocity dispersion (g0 > 0), Eqn (2)
represents a family of hyperbolas, while the angularly
resolved spectral shape resembles an X-shaped proéle
associated with the lines along a � 0:

k? � �
���������
k0g0

p
Do. (3)

Therefore, the X-pulse represents a combination of
coloured cones with each cone corresponding to a particular
frequency. If the spectral components comprise an expo-
nential spectrum and are phase-locked, the spatiotemporal
electric éeld distribution takes the shape of the X-pulse [26]:

E�r; t� � Re
��Dÿ it�2 � k0g0r

2
�ÿ1=2

, (4)

where D is the duration of the central peak. If the spectrum
of the X-pulse lies in a limited spectral domain, the X-pulse
carries a limited (non-inénite) power and energy.

An interesting feature of the X-pulse is that it can be
constructed to possess desirable propagation properties ë
group and phase velocity, energy localisation, etc., either in
a free-space or in a dispersive medium [20, 27 ë 32]. In
practice, experimental methods for X-pulse generation
are rapidly developing, and they are currently based on
the linear optics involving axicons and holographic elements
[33], microaxicons [34], beam shaping techniques [35, 36]
and cylindrical gratings [37]. It is interesting to note, that the
X-pulses can be generated directly from the laser resonator
containing conical optical elements [38], or even emerge as
modes of passively mode-locked éber laser cavity in the
presence of the normal group velocity dispersion [39].

On the other hand, X-pulses are also the solutions of
nonlinear propagation equations, which involve quadratic
and cubic nonlinearities [26], and spontaneously emerge in
many frequently encountered problems of nonlinear optics.
In media with a quadratic nonlinearity, the X-pulses are
excited at phase-mismatched second harmonic generation
[40 ë 42] and parametric frequency down-conversion
[19, 20, 43, 44]. In transparent media possessing the fast
Kerr nonlinearity, the nonlinear X-pulses are excited via
femtosecond élamentation [45 ë 47], which opens new routes
for ultrashort frequency conversion [48]. X-pulses sponta-
neously emerge in more speciéc, periodic nonlinear
environments such as photonic crystals [49], waveguide
arrays [50] and nonlinear lattices [51].

3. Phase-matching of the X-waves
in v �2� crystals
The possibility of ampliécation of localised X-shaped waves
in an optical parametric ampliéer (OPA) was érst
theoretically considered in [20]. It was shown that
distortion-free ampliécation of localised waves and X-
waves, in particular, in the éeld of the plane-wave pump
becomes possible due to simultaneous achievement of
angular and spectral phase-matching requirements. In
this section we extend this idea demonstrating that the
phase-matching condition for the X-waves in the nonlinear
crystals with the quadratic nonlinearity is very general, and
could be satiséed upon pumping by a plane wave and
Bessel beam or an X-wave. More importantly, we show that
in the regime of parametric frequency down-conversion,
localised waves emerge spontaneously, as demonstrated by
numerical simulations and érst experimental results.

3.1 General considerations

An X-wave in a dispersive medium can be represented as a
superposition of coaxial Bessel beams whose frequencies o,
wave vectors k and cone angles y are related by the
equation

k�o� cos y�o� � o=V� g, (5)

where V is the group velocity of an X-wave, and g is an
arbitrary constant deéning the angular dispersion [33]. The
phase-matching conditions of interacting X-waves in a
nonlinear medium with the quadratic nonlinearity w �2� can
be directly obtained by using the phase-matching conditions
for plane and monochromatic waves with the account for
the requirement for the angular dispersion [Eqn (5)]. As a
result, the phase-matching conditions of the X-waves in w �2�

medium can be written in the form
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Figure 1. Spatiotemporal representation of the X-pulse: (a) spatiotem-
poral intensity proéle I �x; t�, (b) iso-intensity surface at the intensity
level 0:1Imax.
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o1 � o2 � o3,

k1 cos y1 � k2 cos y2 � k3 cos y3,
(6)

k1 sin y1 � k2 sin y2 � k3 sin y3,

kj cos yj � oj=Vj � gj, j � 1, 2, 3,

where the subscripts 1, 2, 3 denote signal, idler and pump
waves, respectively (Fig. 2).

We assume that the cone axis of the X-waves coincides
with the direction of the collinear phase-matching of three
plane monochromatic waves with frequencies o10 � o20 �
o30 and wave vectors k10 � k20 � k30, respectively. Then,
according to Eqn (5), oj � oj0 � Doj, kj0 � oj0=Vj � gj and

kj cos yj � kj0 � Doj=Vj. (7)

Now the phase-matching conditions for the X-waves take
the form:

Do1 � Do2 � Do3,

Do1=V1 � Do2=V2 � Do3=V3,
(8)

k1 sin y1 � k2 sin y2 � k3 sin y3,

kj cos yj � kj0 � Doj=Vj, j � 1, 2, 3.

Further we restrict our consideration to the paraxial
approximation sin yj � yj, cos yj � 1ÿ y 2

j =2, assume that
jDojj5oj0, and expand the wave vectors kj into Taylor
series

kj�oj0 � Doj� � kj0 �
Doj

uj0
� gj0

2
Do 2

j ,

where uj0 and gj0 are the group velocity and GVD
coefécient of the jth wave with the carrier frequency oj0,
respectively. In the case of noncritical phase-matching,
when the lateral walk-off of the interacting waves can be
neglected, the system of equations (8) can be rewritten in
the form

Do1 � Do2 � Do3,

Do1=V1 � Do2=V2 � Do3=V3,
(9)

k10y1 � k20y2 � k30y3,

kj0y
2
j � 2�1=uj0 ÿ 1=Vj�Doj � gj0Do

2
j , j � 1, 2, 3.

The solutions of Eqns (9) were analysed in detail in Ref.
[19]. We will discuss below the phase-matching conditions
of the X-waves for some cases of practical interest, which
can be obtained under real experimental conditions.

3.2 Parametric down-conversion of a quasi-monochromatic
plane wave

We assume that the pump wave is a quasi-monochromatic
plane wave, therefore in Eqns (9) we set Do3 � 0, y3 � 0. In
this case, we énd Do1� ÿDo2�Do, V1 � V2 � V (group
velocity matching), and

k10y1 � k20y2 � 0, (10)

kj0y
2
j � 2�1=uj0 ÿ 1=V�Doj � gj0Do

2
j , j � 1, 2. (11)

When the cone axis of the X-waves in the nonlinear crystal
coincides with the direction of phase-matched degenerate
type I parametric interaction (o10 � o20 � o0 � o30=2 and
k10 � k20 � k0 � k30=2) the solutions of Eqns (10) ë (11)
have the form

y1 � ÿy2 � y, y � �
������������
g0=k0

p
Do, (12)

and u10 � u20 � u0 � V, g10 � g20 � g0. Thus, the angular
dispersion curves of the parametrically ampliéed X-waves
in the degenerate OPA pumped by a plane monochromatic
wave are represented by two intersecting straight lines.

If the cone axis of the X-waves in the nonlinear crystal
coincides with the direction of phase-matched non-degen-
erate parametric interaction (o10 6� o20), the term with Do 2

j

can be neglected, and Eqn (11) can be rewritten in the form

kj0y
2
j � 2�1=uj0 ÿ 1=V�Doj, j � 1, 2. (13)

Now the non-diffracting propagation of the ampliéed signal
and idler waves (V � const) takes place at the group
velocity

V � k30u10u20
k10u20 � k20u10

� const. (14)

In this case, the angular dispersion curves of the
ampliéed X-waves are described by hyperbolas:

y 2
1 � �2=k10��1=u10 ÿ 1=V�Do,

(15)

y 2
2 � �2=k20��1=u20 ÿ 1=V�Do.

Figure 3 presents the angular-spectral distribution of the
parametric superêuorescence experimentally measured at
the output plane of an imaging spectrometer for different
temperatures of type I phase-matching KDP crystal
pumped by the fourth-harmonic pulses (l3 � 266 nm)
from a cw mode-locked Nd :YAG laser [19]. The numerical
ét of the experimental curve at the degeneracy is illustrated
by intersecting straight lines in Fig. 3c, showing a good
agreement between the theoretical predictions and exper-

z

o3, k3

o2, k2

o1, k1

x

y3

y2

y1

Figure 2. Scheme of the non-collinear phase-matching of three plane
monochromatic waves in a nonlinear crystal.
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imental results. Thus, the parametric down-conversion in
the éeld of a quasi-monochromatic pump beam stimulates
an excitation of nondiffracting pulsed signal and idler
beams from the quantum noise level. These beams should
obtain a typical X-shape if the components of the

spatiotemporal spectrum are properly phase-locked. A
particularly interesting experimental proof refers to the
demonstration of the optical parametric ampliécation of
tightly focused (highly divergent) broadband Gaussian seed
signal, which reshapes into a pulsed Bessel beam as a result
of spatiotemporal gain properties of the OPA [52].

3.3 Parametric down-conversion of a monochromatic
Bessel beam

Now let us assume that the pump wave is a quasi-
monochromatic Bessel beam with a cone angle y3 (see
Fig. 2). The evolution of the signal wave amplitude in an
OPA pumped by a Bessel beam is described by the equation

qA1

qz
� ÿ 1

u0

qA1

qt
� i

g0
2

q 2A1

qt 2
ÿ i

D?
2k0

A1� isa3J0�b0r�A �1 .(16)

Here, k0, u0 and g0 are the wave vector, group velocity, and
GVD coefécient of the signal wave at the degeneracy
o0 � o3=2; s is the nonlinear coupling coefécient; a3 is the
amplitude of the Bessel pump beam; J0 is the zero-order
Bessel function; and b0 � k3 sin y3 is the transverse wave
vector of the pump wave. For simplicity, we assume that all
the optical éelds are axially symmetric.

Equation (16) was solved numerically with the param-
eters l1 � 532 nm and l3 � 266 nm and with the initial
random signal amplitude (noise burst) A1 at the input. The
duration and the transverse size of the noise burst was taken
100 ps and 120 mm, respectively. As a nonlinear medium, we
considered a temperature-tuned ADP crystal cut for the
noncritical type I phase-matching. The results of the
numerical simulation for three propagation distances inside
the nonlinear crystal are shown in Fig. 4 [44]. Two pairs of
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Figure 3. Angular-spectral distribution of the OPA output radiation in
air measured for different KDP crystal temperatures: (a) 32 8C, (b) 56 8C,
(c) 60 8C, (d) 60.5 8C, (e) 68 8C, (f) 76 8C; l3 � 266 nm. The numerical ét
at the degeneracy is plotted by straight lines (c). Reprinted with permis-
sion from Ref. [19].
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Figure 4. Frequency-resolved far-éeld spectra of the signal wave emerging from noise at different propagation distances in the ADP crystal: (a) 1 cm,
(b) 2 cm, (c) 3 cm; (d) contour plot of the spatiotemporal intensity distribution of the signal wave at the output of the crystal. Reprinted with
permission from Ref. [44].
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straight lines intersecting at points A and B situated on the
pump cone correspond to the degenerate parametric inter-
action (see Fig. 4c). The numerical results are in good
agreement with the theoretical predictions.

The spatiotemporal proéle of the ampliéed signal wave
at the output of the nonlinear crystal is shown in Fig. 5 [44],
which resembles the familiar X-shape known from classical
studies of nondiffractive and nondispersive optical éelds.
Apparent spatiotemporal localisation of the excited light
éeld increases with increasing the pump Bessel beam cone
angle as evident from comparison of Fig. 5a and Fig. 5b.
The results suggest that an input noise burst in the OPA
pumped by a quasi-monochromatic Bessel beam sponta-
neously reshapes into the nondiffracting X-shaped pulsed
beam with a pulse duration and a beam width with a high
degree of the spatiotemporal localisation. Note that the
similar reshaping by the spontaneous phase-locking of the
spatiotemporal components of the input spectrum is also
possible in the OPA pumped by a narrow Gaussian pump
beam if its diffraction could be neglected. Figure 6 shows the
experimentally obtained angular-spectral distribution of the
parametric superêuorescence measured at the output of the
ADP crystal pumped by the Bessel beam. The crystal length
was 4 cm and its temperature was 55 8C. One can see that
this distribution qualitatively reproduces the main results of
the numerical simulation shown in Fig. 4 [44]. Pumping was
performed by the fourth-harmonic generation (l � 266 nm)
from a cw mode-locked Nd :YAG laser.

It is worth mentioning that the spontaneous phase-
locking in the ampliéed noise signal was observed under

different experimental conditions. The occurrence of the
azimuthal correlation in the noise signal ampliéed in the
OPA pumped by a narrow Gaussian beam with a ring-
shaped gain proéle was demonstrated in Ref. [53]. In this
case, the probability of the Bessel beam excitation increased
with decreasing the pump beam diameter. The radial
inhomogeneity of the parametric gain caused by the central
peak of the Bessel beam can also stimulate the appearance
of radial coherence of the optical éeld excited from the
quantum noise level [54].

3.4 Parametric ampliécation of quasi-monochromatic
plane signal wave

If we assume that the signal is a quasi-monochromatic
plane wave (Do1 � 0, y1 � 0), then the phase-matching
conditions [Eqns (9)] take a form:

k20y2 � k30y3, (17)

kj0y
2
j � 2�1=uj0 ÿ 1=V�Do, j � 2, 3, (18)

where V � V2 � V3; Do � Do2 � Do3. The non-diffracting
propagation of the pump and idler waves occurs at the
group velocity

V � k10u20u30
k30u20 ÿ k20u30

. (19)

The angular dispersion curves for pump and idler X-waves
should be the hyperbolas

y 2
3 � �2=k30��1=u30 ÿ 1=V�Do,

(20)

y 2
2 � ÿ�2=k20��1=u20 ÿ 1=V�Do.

Note that in this case, the coherent parametric amplié-
cation of the axial signal wave is also possible by the
incoherent pump wave whose angular dispersion obeys the
requirement for the non-diffracting propagation. This idea
might be extended by considering a multicolour conical
wave to pump the OPA and to convert the energy from the
incoherent radiation into the coherent one, exposing the
cumulative action, known as energy combining [55, 56].
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Figure 5. Spatiotemporal intensity proéle of the ampliéed signal beam calculated for two different values of the Bessel pump beam cone angle: (a)
y3 � 35 mrad, (b) y3 � 70 mrad. The contour line indicates the half-intensity level. Reprinted with permission from Ref. [44].
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4. Optical parametric ampliécation of chirped
X-pulses

The chirped pulse ampliécation (CPA) technique allows one
to amplify an ultrashort optical pulse without distortions of
spectral, spatial and phase characteristics. An ultrashort
(e.g. broadband) optical pulse is stretched in time by
decreasing its peak power, ampliéed without the onset of
intensity-dependent beam or pulse self-action effects. Then,
the pulse is again re-compressed to the original duration,
retaining its high peak power. The OPCPA technique,
which replaces a laser ampliéer by the optical parametric
ampliéer, was proposed in 1992 by some of the present
authors [14] and nowadays serves as a tool for developing
of modern high-peak power ultrashort pulse laser systems
[17].

In this section we consider the foundations of the
chirped X-pulse optical parametric ampliécation in the
éeld of a plane pump wave (or more generally, extended
Gaussian beam) [22]. By selecting a suitable temporal chirp
at the input X-pulse, the ampliéed chirped X-pulse is re-
compressed to its original duration during its propagation in
the free space (vacuum) at the position of the target and,
therefore, does not require a complex arrangement of the
pulse compressor.

4.1 Properties of chirped X-pulses

The concept of the chirped X-pulse (CXP) as a speciéc
wave packet was érst introduced in paper [29]. Unlike
conventional chirped Gaussian pulses, which recover only
their temporal shape after passing the pulse compressor,
chirped X-pulses recover their entire spatial and temporal
shape after propagating some distance in a dispersive
medium. In other words, the chirped X-pulse is not
propagation invariant; nevertheless its spatial and temporal
characteristics can be constructed in such a way so that to
obtain a high-quality beam in the irradiation of the target.

In what follows, we discuss some basic and speciéc
properties of chirped X-pulses. Propagation of a radially
symmetric wave packet in linear dispersive medium under
paraxial approximation is described by the equation

qA
qz
� v

qA
qZ
ÿ i

2
g0

q 2A

qZ 2
� i

2k0
D?A � 0, (21)

where A(r, Z, z) is the complex amplitude; Z � tÿ z=V is the
retarded time; x; y are transverse and z is longitudinal
coordinates, respectively; v � 1=u0 ÿ 1=V is the group
velocity mismatch with respect to the reference frame
moving with velocity V. One of the possible non-stationary
solutions of Eqn (21) possessing an arbitrary angular
dispersion d(o) is

A�r; Z; z� � 1

2p

�1
ÿ1

S0�o�J0�d�o�r�

� exp

�
z

2ik0

ÿ
k0g0o

2 � 2k0voÿ d 2�o��� exp�ioZ�do, (22)

where S0(o) is the spectrum of the initial pulse at z � 0 and
r � 0. The spectral phase remains constant with propaga-
tion if d(o) � (k0g0o

2 � 2k0vo)
1=2, and the solution of Eqn

(22) is the X-pulse with propagation-invariant envelope
moving with the group velocity . Its axial (r � 0) amplitude

is simply deéned by the temporal spectrum S (o) at the
input and is expressed as

A�0; Z; z� � 1

2p

�1
ÿ1

S0�o� exp�ioZ�do. (23)

By setting an appropriate angular dispersion relation d(o)
into Eqn (22), one can control the propagation dynamics of
the X-pulse described by Eqn (21).

Consider now a chirped Gaussian pulse of duration t
with the amplitude

A0�t� � a0 exp

�
ÿ t 2

t 2�1ÿ ib�
�

and the spectral envelope

S0�o� � B0 exp

�
ÿ o 2

Do 2
�1� ib�

�
, (24)

where B0� a0t
���
p
p

(1ÿ ib)ÿ1=2 is the spectral amplitude;
Do � �4(1� b 2)=t 2�1=2 is the spectral width at the 1/e level;
b is the chirp parameter. By substituting Eqn (24) into Eqn
(22) and for simplicity assuming the coordinate frame
moving with the pulse group velocity V � u0, we obtain an
expression for a CXP with the Gaussian envelope at the
beam center:

A�r; Z; z� � B0

2p

�1
ÿ1

exp

�
ÿ
�

o
Do

�2 �
J0�d�o�r�

� exp

�
ÿ i

�
bo 2

Do 2 �
zg0o

2

2
ÿ zd 2�o�

2k0

��
exp�ioZ�do. (25)

Equation (25) describes the CXP, whose on-axis behav-
iour is equivalent to a Gaussian pulse in the medium
possessing some effective dispersion keff (o) � k0 � g0o

2=2
ÿd 2(o)=2k0. Figure 7 compares the spatiotemporal inten-
sity distribution of the transform-limited ( b � 0) X-pulse
and CXP with b � 100 of the same duration with spectral
bandwidth corresponding to 10-fs transform-limited pulse.
The CXP still possess a characteristic X-shaped proéle, but
with sharper intensity contrast and faster decaying tails out
of the beam center [22].

In what follows, assuming the angular dispersion law in
the form of the quadratic polynomial with arbitrary
parameters p and q ( p, q > 0): d 2(o) � po 2 � q, the
duration of the CXP changes with propagation, and the
best compression occurs at the distance

zc �
2k0b

Do 2�pÿ k0g0�
. (26)

The required dispersion properties of the medium for
self-compression to occur follow from the sign of the chirp
parameter. For b > 0, the pulse is compressed when g0 <
p=k0 that can be accomplished either in the medium with a
normal or anomalous GVD or in a vacuum (g0 � 0). This
property of the CXP is of great practical importance,
because it allows one not only to control eféciently the
relevant parameters of the wave-packet during propagation,
but also to compress the pulse without using a complex
optical arrangement.
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4.2 Optical parametric ampliécation of chirped X-pulses

Recall that the gain bandwidth of the collinear OPA within
the érst dispersion approximation is limited by the group
velocity mismatch between the signal and idler pulses. The
idea of broadband phase matching is based on imposing the
angular dispersion on the spectral components and hence
ensuring the exact phase-matching condition for all the
frequency components comprising the pulse. For a conven-
tional Gaussian wave packet, this modiécation is equivalent
to tilting of the amplitude front with respect to the phase
front. Thus, the group velocity of the tilted pulse in a
birefringent medium is controlled by pulse-front tilt angle.
More importantly, pulse-front tilting allows one to control
also the sign and magnitude of the effective GVD, `seen' by
the pulse [57]. If combined together, both modiécations
alter pulse propagation in a dispersive medium to a great
extent and might be adjusted to ensure extremely broad
ampliécation bandwidth of the OPA. The X-pulse, on the
other hand, brings the generalisation of the tilted pulse idea
for the case of the cylindrical symmetry, resulting in a
cylindrically symmetric wave packet with the angular
dispersion. The group velocity and the effective GVD
coefécient of the X-pulse are controlled in the same way as
in the case of the tilted pulse [58].

Consider now optical parametric ampliécation of a weak
CXP signal in the éeld of a plain monochromatic pump
pulse. In the undepleted-pump approximation (jA1j, jA2j5
jA3j; A3 � const � a3), parametric ampliécation of the
signal and idler waves in the coordinate frame moving
with the group velocity of the pump pulse is described by the
set of equations

qA1

qz
� v13

qA1

qZ
ÿ i

2
g10

q 2A1

qZ 2
� i

2k10
D?A1 � is1A

�
2 a3,

(27)
qA2

qz
� v23

qA2

qZ
ÿ i

2
g20

q 2A2

qZ 2
� i

2k20
D?A2 � is2A

�
1 a3,

where subscripts 1, 2, 3 stand for signal, idler and pump
waves, respectively; vj3 � 1=uj0 ÿ 1=u30 is the group velocity
mismatch; the parameters gj0 ( j � 1, 2) are the GVD
coefécients for the signal and idler pulses, respectively; and
sj is the nonlinear coupling coefécient. The solution of

Eqn (27) has the form of a Bessel-type X-pulse with the
angular dispersion:

Aj�r; Z; z� �
1

2p

�1
ÿ1

Sj�o; z�J0�dj�o�r� exp�ioZ�do, (28)

where

S1�o; z� � �S10�o� cosh�G�o�z�

ÿ iR10�o� sinh�G�o�z�� exp�ÿiD�o�z�,
(29)

S �2 �ÿo; z� � �S �20�ÿo� cosh�G�o�z�

� iR20�o� sinh�G�o�z�� exp�ÿiD�o�z�,

R10�o� �
K�o�S10�o� � s1a3S

�
20�ÿo�

G�o� ,

R20�o� �
K�o�S �20�ÿo� � s2a3S10�o�

G�o� ,

G�o� � �s1s2a 2
3 ÿ K 2�o��1=2, (30)

D�o� � 1

2
�D1�o� ÿD2�ÿo��,

K�o� � 1

2
�D1�o� �D2�ÿo��.

The introduced parameter Dj (o) � ovj3 � 1
2o

2gj0ÿ
dj (o)

2�2kj0)ÿ1 describes the evolution of the spectral phase
during propagation, i.e. the so-called nonlinear dispersion,
whereas the parameter G(o) deénes the spectral gain. The
gain bandwidth of the parametric ampliéer becomes inénite
if the gain for all the spectral components is uniform:
G(o) � const. This condition requires K(o) � 0, which
could be satiséed by setting the angular dispersion of the
CXP in the form

a b
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Figure 7. Spatiotemporal intensity distribution of (a) transform-limited and (b) chirped X-pulses. Axial pulse widths in both cases are identical and
equal to 1 ps. Reprinted with permission from Ref. [22].
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d 2
1 �o� �

2k10k20
k10 � k20

�
v12o�

g10 � g20
2

o 2

�
. (31)

Equation (31) describes the condition of the inénite OPA
gain bandwidth for the given approximation, which, in a
more general case, can be extended up to any higher order
dispersion approximation. The transformation of the spec-
tral phase during propagation is deéned by the parameter
D(o) � 0:

D�o� � 1

k10 � k20

�
�
�v13k10 � v23k20�o�

1

2
�g10k10 ÿ g20k20�o 2

�
. (32)

Then, the solution provided by Eqn (29) with account for
Eqn (31) is transformed to the form:

S1�o; z� �
�
S10�o� cosh�G0z� ÿ i

�����
s1
s2

r
S �20�ÿo� sinh�G0z�

�

� exp�ÿiD�o�z�,
(33)

S �2 �ÿo; z� �
�
S �20�ÿo� cosh�G0z� � i

�����
s2
s1

r
S10�o� sinh�G0z�

�

� exp�ÿiD�o�z�,

where G(o) � ����������
s1s2
p

a 2
3 � G0 is the increment of the so-

called stationary ampliécation (constant for all frequency
components).

It thus becomes apparent that the OPA gain bandwidth
becomes unlimited if the CXP has a particular angular
dispersion described by Eqn (31), and, hence, the broadband
chirped pulse experiences stationary ampliécation. The
ampliéed signal and idler pulses [see Eqn (32)] travel locked
together with the same group velocity and experience the
opposite GVD. At the degeneracy, the GVD term vanishes.

As an example, consider type-I degenerate parametric
ampliécation (o1 � o2, k10 � k20, v13 � v23, g10 � g20) in a
nonlinear crystal of length z � L of the signal pulse,
described by Eqn (24), with the angular dispersion d 2(o)
matching the condition of the inénite OPA gain bandwidth.
The ampliéed pulse attains its shortest duration after
propagating in the free space the distance zc and its complex
amplitude has the form

A1�r; Z; zc� �
B0 cosh�G0L�

2p

�1
ÿ1

exp

�
ÿ
�

o
Do

�2 �
� J0�d1�o�r� exp�ÿiao� exp�ioZ�do, (34)

where

d 2
1 �o� � k10g10o

2; zc �
2b

n1g10Do 2
; a � v13L. (35)

Here, a describes only the temporal shift of the compressed
signal pulse occurring due to the group velocity mismatch
and has no impact on the compression result.

Figure 8 illustrates the results of the numerical simu-
lation of CXP ampliécation in non-critically type-I phase-
matched LBO crystal at the degeneracy, with account for

the third-order dispersion [22]. The input signal CXP with
the central wavelength 1055 nm has a duration of 1 ps and a
chirp parameter b � 100. These parameters correspond to a
bandwidth-limited X-pulse of duration 10 fs. Figure 8a
shows the ampliéed CXP, whose temporal on-axis proéle
remains Gaussian with a somewhat reduced temporal width
(0.8 ps) due to gain narrowing caused by the énite (5 ps)
pump pulse duration. The ampliéed CXP experiences self-
compression during its propagation in the free space (or
vacuum). The best compression occurs at z � 125 mm,
yielding a highly localised X-shaped proéle as plotted in
Fig. 8b with the axial FWHM pulse duration of 26 fs. The
compression dynamics versus the free-space propagation
distance z is shown in Fig. 8c. Note that imperfect com-
pression in terms of the pulse duration is due to
uncompensated third-order dispersion imposed by the pulse
propagation within the nonlinear crystal.

5. Conclusions

In this paper, we have shown that parametric ampliécation
of the localised waves in the éeld of the intense pump with a
quite different localisation level (X-pulse, pulsed Bessel
beam or focused Gaussian beam) is generally possible due
to simultaneous achievement of angular and spectral phase-
matching requirements. We have demonstrated that the
phase-locking of the temporal spectrum components
comprising the X-pulse is readily achievable in the OPA
in the case of the properly chosen pump geometry (e.g.,
Bessel or tightly focused Gaussian pump beam). As a result,
a quasi-monochromatic pulsed Bessel beam is converted
into a localised (e.g. non-diffracting and non-dispersing) X-
pulse with a shorter pulse duration and a smaller beam
waist. This happens due to azimuthal and radial correla-
tions that arise in a quantum noise under parametric gain in
the strong optical éeld of the Bessel beam central peak,
while the phase-locking of the spatial components (trans-
verse localisation) is resulted by non-collinear phase-
matching in the nonlinear crystal. More generally, we
note that the appearance of conical emission in the
nonlinear optical processes can be considered as a signature
of the formation of localised X-shaped wave packets.

As for possible future applications of the X-pulses in the
éeld of high-intensity optics, the use of chirped X-pulses is
of particular interest and promise an innovative approach in
forthcoming applications. By means of a numerical experi-
ment, we have demonstrated that the X-pulse with the
properly chosen spatial and temporal chirp could be
eféciently ampliéed in an OPA without phase distortions
and could be self-compressed during propagation in the free
space. This marks a new approach to the optical parametric
chirped pulse ampliécation, OPCPA technique, suggesting a
relevant simpliécation, because it does not require complex
optical arrangement of the pulse compressor.

The main advantage of the optical parametric ampliéers
in the domain of localised-wave optics is their potential
capability of ampliécation and generation of the X-pulses in
broad spectral range spanning from the ultraviolet up to the
far infrared. Moreover, the carrier frequency and the
angular dispersion of the X-pulse depends on the pump
wavelength, the orientation of a nonlinear crystal and the
phase-matching geometry. All these parameters might be
continuously tunable, opening a possibility of involvement
of OPAs in ampliécation and/or formation of localised X-
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shaped wave packets with desirable spatial, temporal and
propagation properties. It is worth noting that the unique
properties of the OPA to sustain both very broad temporal
and angular spectra envisage ampliécation of the poly-
chromatic images of arbitrary three-dimensional structure
[59] including different families of non-diffracting and non-
dispersing envelope waves.
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