Исследование параметров форплазмы лазерно-плазменного диода

Ю.В.Коробкин, А.И.Лебо, И.Г.Лебо

Представлены результаты вычислительных экспериментов, позволяющие оценить параметры лазерной форплазмы, инициирующей разряд в лазерно-плазменном диоде. Образующаяся плазма является материальной средой, через которую пропускается мощный разряд. Это дает возможность создать компактный источник жесткого рентгеновского излучения и потоков быстрых ионов. На основании численных расчетов выведены соотношения подобия, позволяющие определять потоки массы и заряда плазмы в зависимости от параметров лазерного импульса.

Ключевые слова: лазерно-плазменный диод, форплазма, численные расчеты.

1. Введение

Исследования по созданию компактного источника многозарядных ионов и жесткого рентгеновского излучения на основе лазерно-индуцируемых разрядов проводятся в ряде лабораторий [1–5].

Целью данной работы являются изучение параметров форплазмы – плазмы, образованной при воздействии мощных коротких лазерных импульсов на алюминиевую мишень, анализ экспериментальных данных с помощью методов математического моделирования, а также вывод соотношений подобия, позволяющих рассчитать параметры форплазмы (массу и количество свободных зарядов). Это даст возможность в дальнейшем использовать полученные значения для расчета эволюции двухкомпонентной плазмы (лазерной и электроразрядной) и условий возникновения пинчевания в катодной струе вакуумного лазерно-индуцируемого искрового разряда.

2. Физико-математическая постановка задачи

Для оценки параметров плазмы, формирующейся при облучении металлических мишеней лазерным импульсом, были выполнены расчеты по двумерной лагранжевой программе «Атлант» для решения следующей системы уравнений в цилиндрических координатах r, z [6]:

$$\frac{\mathrm{d}\rho}{\mathrm{d}t} = -\rho \nabla \boldsymbol{v},\tag{1}$$

Ю.В.Коробкин, А.И.Лебо. Московский государственный институт радиотехники, электроники и автоматики (технический университет), Россия, 119454 Москва, просп. Вернадского, 78; e-mail: lebo_a_i@mail.ru

И.Г.Лебо. Московский государственный институт радиотехники, электроники и автоматики (технический университет), Россия, 119454 Москва, просп. Вернадского, 78; Научно-исследовательский институт системных исследований РАН, Россия, 119991 Москва, Нахимовский просп., 36

Поступила в редакцию 11 марта 2010 г., после доработки – 15 апреля 2010 г.

$$\rho \frac{\mathrm{d}\boldsymbol{v}}{\mathrm{d}t} = -\nabla (Z_{\mathrm{i}} p_{\mathrm{e}} + p_{\mathrm{i}}),\tag{2}$$

$$Z_{i}\rho \frac{dE_{e}}{dt} = -Z_{i}p_{e}\nabla \boldsymbol{v} + \nabla(\varkappa_{e}\nabla T_{e}) - Q_{ei}$$
$$-R_{rad}(\rho, Z_{i}, T_{e}) + \nabla \boldsymbol{q}, \qquad (3)$$

$$\rho \frac{\mathrm{d}E_{\mathrm{i}}}{\mathrm{d}t} = -p_{\mathrm{i}}\nabla \boldsymbol{v} + \nabla(\varkappa_{\mathrm{i}}\nabla T_{\mathrm{i}}) + Q_{\mathrm{ei}},\tag{4}$$

$$\left(\frac{\boldsymbol{q}}{|\boldsymbol{q}|}, \nabla\right) \boldsymbol{q} = k_{\rm ab}(\rho, T_{\rm c})\boldsymbol{q},\tag{5}$$

$$p_{\rm e} = p_{\rm e}(\rho, T_{\rm e}), \ p_{\rm i} = p_{\rm i}(\rho, T_{\rm i}), \ E_{\rm e} = E_{\rm e}(\rho, T_{\rm e}),$$
(6)

$$E_{\rm i} = E_{\rm i}(\rho, T_{\rm i}), \ Q_{\rm ei} = Q_0(Z_{\rm i}, A) \frac{T_{\rm e} - T_{\rm i}}{T_{\rm e}^{3/2}} \rho^2.$$

Здесь ρ – плотность плазмы; v – скорость плазмы; $E_{\rm e}$ и $E_{\rm i}$ – удельные внутренние энергии электронов и ионов; T_e, T_i, *p*_e, *p*_i – электронные и ионные температуры и давления; $Q_{\rm ei}$ – член, описывающий скорость обмена энергией между электронами и ионами; Q_0 – размерный коэффициент, который, вообще говоря, зависит от состава плазмы; Z_i и A – заряд и атомная масса ионов; q – поток лазерного излучения; $\varkappa_{\rm e}, \varkappa_{\rm i}$ – коэффициенты электронной и ионной теплопроводностей; k_{ab} – коэффициент поглощения излучения (в общем случае может быть задан в виде таблицы); *E*_e, *p*_e отнесены к среднему заряду в лагранжевой ячейке; $R_{\rm rad} = R_{\rm rad}(\rho, Z_{\rm i}, T_{\rm e})$ – потери энергии на излучение плазмы. В программе предусмотрена возможность учета потерь на излучение в виде функции от указанных выше параметров или таблицы. В простейшем случае объемных потерь за счет тормозного излучения этот член имеет вид $R_{\rm rad} = R_0 Z_{\rm i}^3 \rho^2 \sqrt{T_{\rm e}}$ и учитывается только в том случае, когда плазма является прозрачной для тормозного излучения $(R_0 - \text{размерный коэффициент})^*$. Подробнее о физи-

^{*} В случае оптически плотной плазмы в программе «Атлант» имеется возможность проводить расчеты радиационной газовой динамики в трехтемпературном приближении (подробнее см. в [6]). В настоящей работе эта модель не использовалась.

ко-математической модели и методах решения приведенных выше уравнений можно прочесть в монографии [6].

Для решения уравнений (1)–(6) используется метод конечных разностей [7] с расщеплением по физическим процессам на каждом временном шаге. Уравнения газовой динамики (1),(2) решаются по явным разностным схемам, уравнения теплопереноса (3),(4) – по неявным с заданием коэффициентов переноса на предыдущем временном шаге.

Распространение лазерного излучения в плазме рассчитывается в приближении геометрической оптики (уравнение (5)). Лазерный пучок представляется в виде набора дискретных лучей (ray tracing), причем энергия выделяется вдоль траектории луча в соответствии с механизмом обратного тормозного поглощения. Применительно к расчетам лазерных мишеней этот подход впервые был реализован в работе [8], а применительно к пакету прикладных программ «Атлант» – в [9]. В расчетах полагалось, что лазерные лучи распространяются строго вдоль оси z.

В программе используются три модели состояния вещества: модель идеального газа без учета кинетики ионизации и рекомбинации (заряды ядер задаются постоянными в каждой лагранжевой ячейке); модель ZRI (модель Зельдовича–Райзера с учетом ионизации) и модель QEOS (quotidian equations of state) [10], где термодинамические параметры плазмы задаются в виде интерполяции табличных значений. Основные идеи для модели ZRI взяты из монографии [11] и описаны применительно к расчетам лазерной плазмы в [6, 12]. Дополнительно к уравнениям состояния идеальной двухкомпонентной (ионы и электроны) плазмы в ионной компоненте, согласно [11], учитываются упругие члены (p_{el}):

$$\begin{split} p_{\rm i} &= p_{T\rm i} + p_{\rm el}, \ P_{T\rm i} = n_{\rm i}T, \\ p_{\rm el} &= \rho_0 C_{\rm s}^2 \begin{cases} (\rho/\rho_0)^{\xi} - 1 \text{ при } \rho/\rho_0 \ge 1, \\ 0 \text{ при } \rho/\rho_0 < 1, \end{cases} \end{split}$$

где n_i – концентрация ионов; C_s – скорость звука в конденсированном веществе; $\xi = 3-4$.

Согласно модели ZRI в каждой лагранжевой ячейке рассчитываются термодинамические параметры (6) и заряд ионов из уравнения кинетики ионизации

$$\frac{dZ_{i}}{dt} = Z_{i}[\varphi_{1}(\rho, T_{e}, Z_{i}) - \varphi_{2}(\rho, T_{e}, Z_{i}) - \varphi_{3}(\rho, T_{e}, Z_{i})], \quad (7)$$

где φ_1 , φ_2 , φ_3 – скорости ионизации и рекомбинации, взятые из [11, 12]. В этой модели уравнение (7) решается в явном виде. Потери энергии на ионизацию в приближении среднего заряда ионов в лагранжевой ячейке учитываются путем суммирования потенциалов ионизации.

Указанные выше модели расположены в порядке возрастания затрат процессорного времени при решении конкретных задач. Ранее было установлено [13], что в диапазоне лазерных интенсивностей $10^{13}-10^{14}$ Вт/см² расчеты взаимодействия излучения с алюминиевыми мишенями, выполненные с помощью моделей состояния вещества ZRI и QEOS, дают близкие результаты. Ниже будет показано, что и при интенсивностях ~ 10^{12} Вт/см² различия невелики, поэтому расчеты проводились в основном по модели ZRI.

Предполагаемые параметры излучения Nd-лазера таковы: энергия в импульсе 10–100 мДж, длительность импульса 10–100 пс.

3. Результаты численных расчетов

На рис.1 приведены результаты двумерных расчетов формирования плазмы, образованной при облучении алюминиевой фольги толщиной 5 мкм излучением Nd-лазера с длиной волны $\lambda = 1.06$ мкм и энергией в импульсе $E_{\text{las}} = 50$ мДж. Лазерный импульс имел временную форму равнобедренного треугольника с длиной основания 54 пс, распределение интенсивности в сечении пучка $I(r) = \text{const/exp}(r/R_f)^2$, где $R_f = 160$ мкм.

Видно, что в малоплотной разлетающейся плазме максимальный заряд достигает 11, скорость плазмы превышает 300 км/с и в процессе разлета заряд ионов практически не уменьшается (происходит «закалка зарядов ионов» [11]). Рассчитаем средний заряд в разлетающейся плазме (т. е. в плазме с положительной компонентой скорости v_z и плотностью менее 1 г/см³) по формуле

$$\overline{Z}_{i} = \sum_{k} \Delta M_{k} Z_{ik} / \sum_{k} \Delta M_{k},$$

Рис.1. Распределения плотности ρ , электронной температуры T_e и заряда в ячейке Z_i вдоль оси z при r = 0 в моменты времени t = 30 (a) и 60 пс (δ) после начала лазерного импульса.

где k – индекс суммирования; ΔM_k – масса k-й лагранжевой ячейки. Получаем $\overline{Z}_i \approx 7$. В основном лагранжевые ячейки с таким зарядом имеют плотность $10^{-2}-10^{-1}$ г/см³ и разлетаются со скоростью $v_z = 10-200$ км/с. По мере разлета такая плазма будет частично рекомбинировать, и, как следует из двумерных расчетов, поперечная компонента скорости v_r возрастает быстрее продольной компоненты v_z .

Таким образом, к концу лазерного импульса плазма с зарядом ионов $Z_i \approx 11$ имеет плотность $\rho \leq 10^{-3}$ г/см³ и разлетается со скоростями $300 \leq v_z \leq 3000$ км/с, причем скорость разлета частиц направлена в основном вдоль оси z (т.е. $v_z \gg |v_r|$). Основная масса плазмы летит с заметно меньшими скоростями и частично рекомбинирует в процессе разлета. Диаграмма направленности потока такой плазмы будет существенно шире, чем для плазмы с $Z_i \approx 10-11$.

На рис.2 показано поле электронной температуры в плазме в момент времени t = 54 пс (т. е. к концу лазерного импульса). По мере возрастания радиуса r температура, скорость разлета и заряд ионов медленно уменьшаются.

Из рис.1,2 видно, что продольный размер плазмы L_z к концу лазерного импульса существенно меньше ее поперечного размера, в частности $L_z \ll R_f$. Поэтому влиянием краевых условий на течение плазмы в первом приближении можно пренебречь.

В последующих расчетах мы предполагали, что на мишень падает лазерный пучок, имеющий постоянную в поперечном направлении интенсивность, а на правой границе реализуются условия абсолютно упругой теплоизолированной стенки. Таким образом, задача становится одномерной и зависит только от переменных z и t.

В расчетах варьировались максимальная интенсивность лазерного излучения $I_{\rm m}$, длительность лазерного импульса τ и длина волны излучения λ . Фиксировались временная форма импульса (прямоугольный треугольник с основанием τ и высотой $I_{\rm m}$) и материал мишени – алюминиевая фольга толщиной 5 мкм. Рассчитывались масса разлетающейся плазмы и суммарный заряд ее ионов (соответственно и заряд свободных электронов, т. к. плазма – квазинейтральная) как функции параметров $I_{\rm m}$, τ , λ .

В первой серии расчетов фиксировались длительность импульса ($\tau = 30$ пс) и длина волны излучения лазера ($\lambda = 1.06$ мкм), а интенсивность $I_{\rm m}$ изменялась. В табл.1

Рис.2. Поле электронной температуры плазмы в момент времени t = 54 пс.

Габл.	1.
-------	----

$I_{\rm m} (10^{12} {\rm Bt/cm^2})$	<i>Z</i> _{<i>Q</i>} (мкКл)		ΔM (нг)	
	ZRI	QEOS	ZRI	QEOS
0.21225 0.849 3.4 8.49 84.9	38 96.1 234 387 1781	42.6 97.2 233 402 1770	2.56 4.87 9.45 11.5 44.1	3.1 4.86 8.83 13 44.1

представлены результаты расчетов массы разлетающейся плазмы ΔM и ее заряда Z_Q к моменту времени t = 30 пс, выполненных с использованием моделей ZRI и QEOS. (Здесь и далее рассчитывались потоки массы ΔM и заряда Z_Q через круглую площадку радиусом 250 мкм.) Видно, что расхождения в полученных значениях невелики, что позволило нам в дальнейшем пользоваться более экономичной с точки зрения затрат процессороного времени моделью.

На рис.3 показаны результаты расчетов и аппроксимации. В предположении, что соответствующие зависимости от $I_{\rm m}$ имеют степенной вид, получены следующие аппроксимирующие зависимости: $\Delta M/\tau \propto I_{\rm m}^{0.37}, Z_O/\tau \propto I_{\rm m}^{0.6}$.

Во второй серии расчетов предполагалось, что фиксированными параметрами являются $I_{\rm m} = 8.49 \times 10^{11}$ Вт/см² и $\lambda = 1.06$ мкм, а длительность импульса τ варьировалась. В результате получены аппроксимирующие зависимости $\Delta M/\tau \propto \tau^{-0.5}$ и $Z_O/\tau \propto \tau^{-0.2}$ (рис.4).

Δ*M*/*τ* ∝ *τ*^{-0.5} и *Z*_Q/*τ* ∝ *τ*^{-0.2} (рис.4). В третьей серии расчетов фиксировались параметры *I*_m = 8.49×10¹¹ Вг/см² и *τ* = 30 пс, а менялась длина волны излучения λ. Были получены аппроксимирующие зависимости Δ*M*/*τ* ∝ $\lambda^{-0.2}$ и *Z*_Q/*τ* ∝ $\lambda^{-0.06}$ (рис.5).

Рис.3. Зависимости от интенсивности излучения $I_{\rm m}$ потоков массы (*a*) и свободного заряда (δ) в плазме в момент окончания лазерного импульса. Сплошные кривые – аппроксимация.

Рис.4. Зависимости потоков массы (a) и свободного заряда (δ) от длительности лазерного импульса. Сплошные кривые – аппроксимация.

Во всех расчетах полагалось, что лазерное излучение распространяется строго вдоль оси *z* и поглощается за счет механизма обратного тормозного поглощения в плазме, а излучение, достигшее критической поверхности, поглощается в ближайшей лагранжевой ячейке. Таким образом, в этих расчетах предполагалось 100%-ное поглощение излучения.

На основании аппроксимации численных решений получены зависимости потоков массы ($\Delta M/\tau$) и заряда (Z_Q/τ) плазмы от указанных выше параметров (так называемые скэйлинги). В предположении 100%-ного поглощения лазерной энергии они имеют следующий вид:

$$\frac{\Delta M}{\tau} = 8.27 \times 10^4 \left(\frac{I_{\rm m}}{I_0}\right)^{0.37} \left(\frac{\tau}{\tau_0}\right)^{-0.5} \left(\frac{\lambda}{\lambda_0}\right)^{-0.2},\tag{8}$$

$$\frac{Z_Q}{\tau} = 1.63 \times 10^9 \left(\frac{I_{\rm m}}{I_0}\right)^{0.6} \left(\frac{\tau}{\tau_0}\right)^{-0.2} \left(\frac{\lambda}{\lambda_0}\right)^{-0.06},\tag{9}$$

где $\Delta M/\tau$ взято в г/с, а Z_Q/τ – в Кл/с. В качестве базовых параметров были выбраны следующие: $I_0 = 8.49 \times 10^{11}$ Вт/см² и $\tau_0 = 30$ пс, $\lambda_0 = 1.06$ мкм.

На первый взгляд, странной представляется полученная в расчетах слабая зависимость параметров плазмы от длины волны лазерного излучения, поскольку из экспериментов известно, что с уменьшением длины волны эффективность лазерно-плазменного взаимодействия возрастает весьма существенно. Действительно, с уменьшением длины волны излучения в основном увеличивается доля поглощенной лазерной энергии.

Рис.5. Зависимости потоков массы (*a*) и свободного заряда (*б*) от длины волны лазерного излучения. Сплошные кривые – аппроксимация

В одномерной постановке задачи можно использовать две модели поглощения лазерного излучения. Излучение распространяется строго вдоль оси, поглощаясь за счет обратного тормозного механизма, а затем либо доходит до критической поверхности и поглощается в ее окрестности, либо отражается от этой поверхности и проделывает соответствующий путь в обратном направлении (поглощаясь частично за счет обратного тормозного механизма). Излучение, достигшее внешней границы плазмы, отражается. Полученные выше соотношения (8), (9) соответствуют первой модели (100%-ное поглощение). Учет отражения строго назад приводит к зависимостям поглощенной энергии от длительности лазерного импульса и длины волны, приведенным на рис.6 и 7. Доля поглощенной лазерной энергии рассчитывалась по формуле η = $(E_{\text{las}} - E_{\text{ref}})/E_{\text{las}}$, где E_{las} и E_{ref} – падающая на мишень и отраженная от плазмы лазерные энергии.

В четвертой серии расчетов фиксировались интенсивность ($I_0 = 8.49 \times 10^{11}$ Вт/см²) и длина волны излучения ($\lambda_0 = 1.06$ мкм), но менялась длительность импульса. Из рис.6 видно, что с увеличением длительности импульса возрастает доля поглощенной лазерной энергии, т. к. увеличивается протяженность самой плазменной короны. Однако эта зависимость – нелинейная, и по мере увеличения длительности импульса (а следовательно, и энергии падающего лазерного излучения) скорость роста уменьшается. Нам не удалось подобрать одинаковую степенную зависимость доли поглощенной энергии от длительности импульса для всех случаев. Поэтому мы рассматривали две подобласти: $\tau \ge \tau_0$ и $\tau < \tau_0$, где $\tau_0 = 30$ пс.

Рис.6. Зависимости доли поглощенной лазерной энергии η от длительности импульса при показателе степени роста $\beta = 0.2 (\tau > \tau_0) (a)$ и 0.7 ($\tau \le \tau_0$) (δ). Сплошные кривые – аппроксимация.

В пятой серии расчетов фиксировались длительность лазерного импульса ($\tau_0 = 30$ пс) и интенсивность излучения ($I_0 = 8.49 \times 10^{11}$ Вт/см²), а менялась длина волны излучения λ . На рис.7 представлены результаты расчетов. Видно, что с уменьшением длины волны лазерного излучения возрастает доля поглощенной энергии. При базовых параметрах лазера ($I_0 = 8.49 \times 10^{11}$ Вт/см², $\tau_0 = 30$ пс, $\lambda_0 = 1.06$ мкм) примерно 60% энергии поглощенной энерги от τ и λ имеет вид

$$\eta = 0.6 \left(\frac{\lambda}{\lambda_0}\right)^{\alpha} \left(\frac{\tau}{\tau_0}\right)^{\beta},$$

$$\alpha = \begin{cases} -0.5, \ \lambda \le 1 \text{ MKM}, \\ -1.5, \ \lambda > 1 \text{ MKM}, \end{cases} \beta = \begin{cases} 0.7, \ \tau \le 30 \text{ nc}, \\ 0.2, \ \tau > 30 \text{ nc}. \end{cases}$$

4. Сравнение результатов расчета с имеющимися экспериментальными данными

Экспериментальное исследование некоторых параметров лазерной форплазмы было проведено в [5]. В этой работе были получены спектры зарядового состава ионов лазерной плазмы для трех плотностей мощности излучения на мишени: 5×10^{11} , 4.2×10^{12} и 2×10^{13} BT/см². Пока-

Рис.7. Зависимости доли поглощенной энергии η от длины волны лазерного излучения при показателе степени $\alpha = -1.5$ ($\lambda > \lambda_0$) (a) и -0.5 ($\lambda \le \lambda_0$) (b). Сплошные кривые – аппроксимация.

зано, что энергии ионов достигают 7 кэВ/ Z_i при плотности мощности на мишени 4.2×10¹² Вт/см². Анализ спектров зарядового состава ионов алюминия, полученных при различных отношениях энергии ионов к их заряду, позволил установить, что максимальный заряд ионов, эмиттируемых лазерной плазмой, равен 5+ и 11+ в случае воздействия на мишень пучком с плотностью мощности 5×10^{11} и 2×10^{13} Вт/см² соответственно.

Следует отметить, что, исходя из условий эксперимента, длина дрейфовой трубы в [5] составляла 40 см, поэтому зафиксированный средний заряд ионов был несколько ниже ($\overline{Z_i} \approx 5$) рассчитанного в момент окончания лазерного импульса ($\overline{Z_i} \approx 7$).

Данные экспериментальные результаты не противоречат результатам численного моделирования, приведенным в настоящей работе, что позволяет считать правомерными наши допущения и методы, применяемые для решения уравнений плазменной гидродинамики.

5. Выводы

В настоящей работе с помощью методов численного моделирования получены следующие результаты:

– установлено, что при воздействии излучения Nd-лазера с энергией в импульсе ~100 мДж и интенсивностью ~ 10^{12} Bt/cm² на алюминиевую фольгу формируется высокозарядная плазма, в которой могут существовать две группы ионов: ионы с зарядом 10-11, разлетающиеся со скоростью ~500-1000 км/с (т.е. с энергией 35-140 кэВ) и имеющие преимущественное направление разлета, перпендикулярное поверхности мишени, и основная группа ионов с зарядом $Z_i < 7$, разлетающихся с энергией 5-10 кэВ и имеющих более широкую диаграмму направленности;

 – найдены зависимости потоков массы и свободного заряда плазмы от интенсивности, длительности импульса и длины волны излучения греющего лазера;

 подтверждено, что с уменьшением длины волны лазерного излучения существенно возрастает доля поглощенной в плазме энергии, и получена зависимость, описывающая этот факт;

 показано, что для рассматриваемых в статье условий с увеличением длительности импульса растет доля поглощенной энергии, однако скорость ее роста уменьшается с увеличением длительности импульса.

Работа выполнена при поддержке Ведомственной целевой программы «Развитие научного потенциала высшей школы (2009–2010)» (проект 2.1.1/473) и РФФИ (грант № 09-08-01114).

- Korobkin Yu.V., Rozanov V.B., Vergunova G.A., Shikanov A.S. J. Rus. Laser Res., 19 (3), 101 (1998).
- Korobkin Yu.V., Romanov I.V., Rupasov A.A., et al. J. Appl. Phys., 97 (4), 044303 (2005).
- Korobkin Yu.V., Paperniy V.A., Romanov I.V., Rupasov A.A., Shikanov A.S. *Plasma Phys. Control. Fusion*, 50, 1 (2008).
- 4. Korobkin Yu.V. Proc. Conf. IRNANO-2009 (Delhi, 2009, p.145).
- Romanov I.V., Brantov V.A., Paperny V.L., et al. J. Phys. D: Appl. Phys., 43 (3), 035201 (2010).
- Лебо И.Г., Тишкин В.Ф. Исследование гидродинамической неустойчивости в задачах лазерного термоядерного синтеза (М.: Физматлит, 2006).
- Самарский А.А., Попов Ю.П. Разностные методы решения задач газовой динамики (М.: Наука, 1980).
- 8. Friedland L., Bernstein I.B. Phys. Rev. A, 21 (2), 666 (1980).
- Искаков А.Б., Лебо И.Г., Попов И.П., Розанов В.Б., Тишкин В.Ф. Кр. сооб. физ. ФИАН, № 1–2, 28 (1997).
- 10. More R.M. et al. Phys. Fluids, 31 (10), 3059 (1988).
- Зельдович Я.Б., Райзер М.П. Физика ударных волн и высокотемпературных гидродинамических явлений (М.: Наука, 1966).
- Афанасьев Ю.В., Гамалий Е.Г., Розанов В.Б. Труды ФИАН, 134, 10 (1982).
- Лебо А.И., Лебо И.Г., Батани Д. Квантовая электроника, 38 (8), 747 (2008).