АКТИВНЫЕ СРЕДЫ

Неравновесная населенность первого колебательного уровня молекул $O_2(^{1}\Sigma)$ в потоке газа $O_2 - O_2(^{1}\Delta) - H_2O$ на выходе химического генератора синглетного кислорода

М.В.Загидуллин

По результатам измерений абсолютной спектральной светимости в диапазоне 600–800 нм газовой смеси $O_2 - O_2({}^1\Delta) - H_2O$ на выходе химического генератора синглетного кислорода (ГСК) определены концентрации электронно-возбужденных частиц. Отчетливо наблюдалась неравновесная населенность первого колебательного уровня молекул $O_2({}^1\Sigma)$ и найдена ее зависимость от содержания паров воды. В соответствии с результатами этих измерений и согласно анализу кинетики процессов в смеси $O_2 - O_2({}^1\Delta) - H_2O$ максимальное количество колебательных квантов, генерируемых в реакции $O_2({}^1\Delta) + O_2({}^1\Delta) \rightarrow O_2({}^1\Sigma) + O_2({}^3\Sigma)$, составило 0.05 ± 0.03 . Сделан вывод о том, что колебательная населенность $O_2({}^1\Delta)$ на выходе ГСК, используемого в химическом кислородно-иодном лазере, близка к тепловой равновесной населенности.

Ключевые слова: синглетный кислород, колебательное возбуждение, кислородно-иодный лазер.

1. Введение

Обмен колебательной энергией и ее релаксация в газовой смеси O₂-H₂O представляют интерес для физики атмосферы [1,2]; эти процессы исследовались также в послеразрядовом потоке кислорода [3]. Смесь $O_2 - O_2(a^1\Delta) - H_2O_2$ является источником энергии в химическом кислородноиодном лазере (ХКИЛ). Несмотря на значительные достижения в разработке мощных ХКИЛ, механизм диссоциации молекулярного иода при его подмешивании в поток $O_2 - O_2(a) - H_2O$ до сих пор до конца не понят. В некоторых кинетических моделях передачу энергии от колебательно-возбужденной молекулы О2(а) к молекуле иода предлагается считать первичной стадией его диссоциации [4]. В связи с этим интересно знать, насколько населенности уровней колебательно-возбужденных молекул кислорода в газовой смеси O₂-O₂(a)-H₂O превышают их тепловые равновесные населенности. Это превышение населенности колебательных уровней молекул кислорода над тепловой, очевидно, определяется соотношением скоростей накачки и релаксации колебательных уровней молекул кислорода. В химическом генераторе синглетного кислорода (ГСК) молекулы О₂(а) образуются в результате реакции газообразного хлора со щелочным раствором перекиси водорода (ЩРП) [5]. В смеси $O_2 - O_2(a) - H_2O_3$, выходящей из ЩРП, в реакции

$$O_2(a) + O_2(a) \rightarrow O_2(b) + O_2(X)$$
 (1)

образуются молекулы кислорода во втором электронновозбужденном состоянии $b^1\Sigma$. За реакцией (1) следует реакция тушения

$$O_2(b) + H_2O \rightarrow O_2(a)$$
 (или $O_2(X)$) + H_2O . (2)

Реакции (1), (2) могут быть первичными источниками колебательно-возбужденных молекул O₂ и H₂O [6-8]. Быстрые VV- [9] и ЕЕ-обмены [1] между молекулами кислорода приводят к формированию колебательного резервуара, включающего в себя молекулы кислорода в состояниях X, а и b. Молекулы воды присоединяются к этому резервуару через быстрый резонансный VV-обмен с молекулами кислорода [10]. Однако VR- и VT-релаксации, а также дезактивация на стенках приводят к потере энергии из данного колебательного резервуара. Ранее было установлено, что вероятность образования $O_2(b, v=2)$ в реакции (1) равна 0.64, тогда как вероятность образования $O_2(b, v = 1)$ не превышает 0.04 [3]. В более ранней публикации [6] вероятность образования $O_2(b, v = 1)$ в реакции (1) была равна ~0.05, но образования молекул $O_2(b, v=2)$ обнаружено не было. Насколько нам известно, других работ по количественному определению выхода колебательно-возбужденных молекул кислорода в реакциях (1) и (2) в литературе нет.

Цель настоящей работы – определить избыток содержания колебательно-возбужденных молекул $O_2(b)$, $O_2(a)$ над их тепловым равновесным содержанием в зависимости от количества паров воды в газовой смеси $O_2-O_2(a)$ – H_2O , генерируемой ГСК, и оценить максимальное число колебательных квантов, образующихся в молекулах кислорода в результате реакции (1).

2. Эксперимент и измерения

Схема экспериментальной установки представлена на рис.1. Газовая смесь $O_2-O_2(a)-H_2O$ производилась струйным ГСК [11], который работал при температуре ЩРП –13 °С и расходе хлора 0.4 ммоль/с, и пропускалась через ловушку паров воды (ЛПВ). За ЛПВ располагалась оптическая диагностическая секция (ОДС) – канал из капралона длиной 8 см с прямоугольным поперечным сечением шириной L = 2.5 см и высотой 0.8 или 1.5 см, в котором

М.В.Загидуллин. Самарский филиал Физического института им. П.Н.Лебедева РАН, Россия, 443011 Самара, ул. Ново-Садовая, 221; e-mail: marsel@fian.smr.ru

Поступила в редакцию 12 мая 2010 г., после доработки – 25 июня 2010 г.

Рис.1. Схема экспериментальной установки:

I – ГСК; *2* – ЛПВ; *3* – ванна с охладителем; *4* – ОДС; *5* – спектрометр AvaSpec-3648; *6* – оптическая ячейка.

было сделано несколько отверстий, закрытых оптическими окнами толщиной 2 мм. Эксперименты проводились при полном давлении в ГСК и ОДС, равном ~26 Тор. Абсолютная спектральная светимость в диапазоне 600-800 нм смеси О2-О2(а)-H2O измерялась оптоволоконным спектрометром AvaSpec-3648 (Avantes, Голландия) с линейкой ПЗС-приемников излучения. Абсолютная спектральная чувствительность спектрометра R (в фот. отсчет⁻¹ · см⁻² · нм⁻¹) прокалибрована изготовителем с точностью 9.5%. По определению величина $R(\lambda)\delta\lambda$ есть число фотонов, излученных с 1 см² поверхности диффузного источника сплошного спектра в узкий спектральный интервал λ , $\lambda + \delta \lambda$, соответствующий одному пикселю ПЗС-линейки, которое при нормальном направлении оси приемного волокна к излучающей поверхности приводит к увеличению числа его отсчетов на единицу. Приемный конец оптоволокна располагался непосредственно перед оптическим окном. Спектрометр регистрировал излучение только из объема газа, находящегося в конусе с углом 15° и вершиной в ядре оптоволокна, или только из центральной части газового потока – слоя высотой $\delta h \approx 2$ мм между стенками ОДС. Одновременно регистрировались спектры индуцированных столкновениями излучений (ИСИ): $O_2(a, v=0) +$ $O_2(a, v=0) \rightarrow O_2(X, v=0) + O_2(X, v=0) + hv$ (полоса (0,0-0,0), $\lambda = 634$ HM), $O_2(a, v=0) + O_2(a, v=0) \rightarrow O_2(X, v=1) + O_2(X,$ O₂(X,v=0) + hv (полоса (0,0−0,1), λ = 703 нм) и полос (0-0), (1-1), (1-0), (2-2) системы b \rightarrow X. По числу отсчетов ПЗС-линейки C(λ) определялась удельная объемная спектральная светимость $S_{\exp}(\lambda) = 4C(\lambda)R(\lambda)/(t_eLT_{\lambda})$ газа в ОДС. Здесь $T_{\lambda} \approx 0.92$ – пропускание оптического окна в диапазоне $\lambda = 600 - 800$ нм, t_e – время экспозиции. Абсолютные концентрации n_a , n_b молекул $O_2(a, v=0)$ и $O_2(b, v=0)$ находились из соотношений

$$k_{\rm d}n_{\rm a}^2 = \int S_{\rm exp}(\lambda) d\lambda, \quad A_{\rm b}n_{\rm b} = \int S_{\rm exp}(\lambda) d\lambda,$$
 (3)

где $k_{\rm d} = (6.06 \pm 0.19) \times 10^{-23} \, {\rm cm}^3/{\rm c}$ – константа скорости ИСИ (полоса 0,0–0,0); $A_{\rm b} = (7.48 \pm 0.08) \times 10^{-2} \, {\rm c}^{-1}$ – коэффициент Эйнштейна перехода b–X (0–0). Интегрирование в правых частях (3) проводилось по соответствующим спектральным полосам. Величина $k_{\rm d}$ была определена из соотношения

$$k_{\rm d} = \frac{g_{\rm low}}{g_{\rm up}} \frac{8\pi c}{\lambda^2} B_{\rm d},$$

где $B_d = (3.23 \pm 0.1) \times 10^{-43}$ см⁴ – интегральное сечение индуцированного столкновениями поглощения $O_2(X, v=0) + O_2(X, v=0) + hv \rightarrow O_2(a, v=0) + O_2(a, v=0)$ [12], $g_{low}/g_{up} = 1 - 0$ тношение статвесов состояний димолей $O_2(a): O_2(a)$ и $O_2(X): O_2(X)$, между которыми происходит радиационный процесс [13]; $\lambda = 634$ нм – центральная длина волны полосы ИСИ. Коэффициент Эйнштейна A_b вычислен с использованием последних данных для силы полосы b – X (0–0) [14].

Для оценки содержания паров воды в ОДС используется условие баланса скоростей реакций образования (1) и гибели (2) молекул $O_2(b): k_1 n_a^2 \approx k_2 n_w n_b$, откуда

$$n_{\rm W} \approx \frac{k_1}{k_2} \frac{n_{\rm a}^2}{n_{\rm b}},\tag{4}$$

где $n_{\rm w}$ – концентрация воды; $k_1 = (2.7 \pm 0.4) \times 10^{-17}$ см³/с и $k_2 = (6.7 \pm 0.53) \times 10^{-12}$ см³/с – константы скоростей реакций (1) [15] и (2) [16] соответственно. Как будет показано ниже, формула (4) достаточно точно определяет концентрацию воды, т. к. в экспериментах частота гибели молекул O₂(b) в реакции (2) значительно превышает частоту их гибели при столкновениях с молекулами O₂, Cl₂ и на стенках ОДС. При расчетах $n_{\rm w}$ предполагалось, что отношение k_1/k_2 не зависит от температуры в диапазоне 300–400 К. Ошибка определения $n_{\rm w}$ по формуле (4) из-за неопределенности значений k_1, k_2, R оценивается примерно в 30%.

Для оценки температуры газа и содержания $O_2(b, v=1)$ производилось сравнение экспериментального и синтезированного спектров излучения b-X перехода молекулы O_2 . Синтез частично разрешенной вращательной структуры полосы b-X(0-0) был осуществлен с использованием базы данных HITRAN [17] и аппаратной функции спектрометра на длине волны 762 нм. Суммарный синтезированный спектр полос b-X(0-0) и b-X(1-1) можно представить в виде

$$S(\lambda, T) = S_{00}(\lambda, T) + S_{11}(\lambda, T),$$
(5)

где $S_{00}(\lambda, T)$, $S_{11}(\lambda, T) = 0.85f_{b1}S_{00}(\lambda - \Delta\lambda, T)$ – синтезированные спектры полос (0-0), (1-1) при вращательной температуре T; $f_{b1} = n_{b1}/n_b$ – содержание $O_2(b, v=1)$; n_{b1} – концентрация $O_2(b, v=1)$; 0.85 – отношение факторов Франка–Кондона [18] переходов (1-1) и (0-0) системы b-X; $\Delta\lambda = 8.91$ нм – спектральный сдвиг полос (0-0) и (1-1). Как $S_{\exp}(\lambda)$, так и $S(\lambda, T)$ нормировались на единицу в пике спектра R-ветви полосы (0-0). Подгонка $S(\lambda, T)$ к $S_{\exp}(\lambda)$ в диапазоне длин волн 763–780 нм использовалась для определения T и f_{b1} . Полное содержание f_{b1} представлялось в виде суммы двух составляющих: $f_{b1} = f_{b1k} + f_{b1T}$, где $f_{b1T} = \exp(-2021/T)$ – тепловое равновесное содержание молекул $O_2(b, v=1)$, f_{b1k} – его неравновесная доля.

Концентрация хлора с точностью 2×10^{15} см⁻³ определялась по поглощению излучения азотного лазера в оптической ячейке, расположенной ниже ОДС по потоку, где температура газа равнялась температуре стенок (~295 К). Давления в ГСК, ОДС и оптической ячейке измерялись с точностью 1.5%. При известных давлении, температуре и концентрациях $n_{\rm w}$, $n_{\rm a}$, $n_{\rm b}$ в ОДС были рассчитаны концентрация хлора ($n_{\rm Cl}$) и полная концентрация кислорода ($n_{\rm O2}$), содержание воды ($F_{\rm w} = n_{\rm w}/n_{\rm O2}$), выход O₂(a) ($Y = n_{\rm a}/n_{\rm O2}$) и степень утилизации хлора ($U_{\rm Cl} = n_{\rm O2}/(n_{\rm Cl} + n_{\rm O2})$).

3. Результаты

Пример спектров $C(\lambda)$, зарегистрированных в течение времени экспозиции $t_e = 4$ с, представлен на рис.2. Эти спектры получены при температуре ЛПВ –80 °С для ОДС высотой 0.8 см через оптическое окно, расположенное на

Рис.2. Спектр излучения синглетного кислорода в диапазоне 600– 800 нм. На вставке – спектр излучения в диапазоне 680–710 нм, интенсивность которого увеличена в ~20 раз.

4 см ниже по потоку от выхода ЛПВ. Спектров излучения в полосах (2–2) (λ = 780 нм) и (2–1) (λ = 695 нм) перехода b-X обнаружено не было. Присутствие молекул $O_2(b, v=1)$ в потоке газа подтверждается наличием полосы излучения (1-0) (вставка на рис.2) на фоне полосы ИСИ (0,0-1,0). Нормированные спектры $S_{exp}(\lambda)$ и $S_{00}(\lambda, 370 \text{ K})$ системы b-X в диапазоне 763-778 нм представлены на рис.3. Сначала синтезированный спектр $S_{00}(\lambda, T)$ подгонялся к $S_{exp}(\lambda)$ около пика Р-ветви полосы b-X (0-0). Для иллюстрации процедуры подгонки на верхней вставке рис.3 представлена разность $S_{exp} - S_{00}(\lambda, T)$ в диапазоне 763.5-766.5 нм для трех значений температуры Т. Так как минимум $|S_{exp} - S_{00}(\lambda, T)|$ достигается при T = 370 K, а разности $|S_{00}(\lambda, 370 \text{ K}) - S_{00}(\lambda, 380 \text{ K})|$ и $|S_{00}(\lambda, 370 \text{ K}) S_{00}(\lambda, 360 \text{ K})$ превышают уровень относительного шума ПЗС-линейки, составляющий 10⁻³, температура газа равна

Рис.3. Нормированный экспериментальный спектр $S_{\exp}(\lambda)$ (•) и синтезированный спектр $S_{00}(\lambda, 370 \text{ K})$ (сплошная кривая) излучения $O_2(b)$ в диапазоне 763–778 нм. На вставках: вверху – разность $S_{\exp}(\lambda) - S_{00}(\lambda, T)$ в пике Р-ветви полосы b - X(0-0) при трех значениях температуры; внизу – разность $S_{\exp}(\lambda) - S_{00}(\lambda, 370 \text{ K})$ (*1*) и синтезированный спектр $S_{11}(\lambda, 370 \text{ K})$ (*2*) при $f_{b1} = 0.014$.

М.В.Загидуллин

370 К с погрешностью не более 10 К. На нижней вставке рис.3 представлена разность $S_{\exp}(\lambda) - S_{00}(\lambda, 370 \text{ K})$ в диапазоне длин волн 767-778 нм. Минимальное расхождение между $S_{11}(\lambda, 370 \text{ K})$ и $S_{\exp}(\lambda) - S_{00}(\lambda, 370 \text{ K})$ в уравнении (5) достигается при $f_{\rm b1} \approx 1.4 \times 10^{-2}$. Таким образом, для данного конкретного теста тепловая часть содержания колебательно-возбужденного O₂(b,v=1) составляет $f_{b1T} = (4.2 \pm 1) \times 10^{-3}$, а неравновесная $-f_{b1k} = f_{b1} - f_{b1T} \approx$ $(1 \pm 0.1) \times 10^{-2}$. Погрешность $\pm 10^{-3}$ в определении f_{b1k} обусловлена неопределенностью температуры газа (±10 K) и шумом ПЗС-линейки (±5 отсчетов). В данном конкретном эксперименте были получены следующие концентрации компонентов: $n_{\text{O}_2} = 6.6 \times 10^{17} \text{ см}^{-3}$, $n_{\text{a}} = 2.3 \times 10^{17} \text{ см}^{-3}$ ($Y \approx 34\%$), $n_{\text{b}} = 8.5 \times 10^{14} \text{ см}^{-3}$, $n_{\text{Cl}_2} = 2.8 \times 10^{16} \text{ см}^{-3}$ ($U_{\text{Cl}_2} \approx 94\%$) и $n_{\rm w} = 2 \times 10^{14}$ см⁻³ ($F_{\rm w} \approx 3 \times 10^{-4}$). Оценим погрешность определения n_w и F_w по (4) в данном тесте. При максимальном из известных значений вероятности гибели О2(b) на неметаллических поверхностях ~10⁻² [6] оценка частоты гибели $O_2(b)$ на стенках дает ~ 60 с⁻¹ [15]. Суммарная частота гибели $O_2(b)$ на молекулах $O_2(X)$, Cl_2 оценивается в 40 с⁻¹ при константах скоростей тушения на этих молекулах 4×10⁻¹⁷ см³/с [19] и 4.5×10⁻¹⁶ см³/с [20] соответственно. Частота гибели $O_2(b)$ в процессе (2) составляет ~1.3×10³ с⁻¹. Таким образом, систематическая погрешность в определении n_w по (4) не превышает 8%.

В серии экспериментов концентрация паров воды в потоке О₂(X)-О₂(а)-Н₂О изменялась путем изменения температур ЩРП и охладителя в ЛПВ. В зависимости от температуры ЛПВ и газодинамических условий степень утилизации хлора составляла 90%-98%, выход синглетного кислорода был равен 32%-38% на расстоянии 4 см от ЛПВ. Температура газа изменялась в пределах 340-390 К при изменении концентрации $O_2(a)$ в диапазоне (2.1–2.5)×10¹⁷ см⁻³. Полученная в серии экспериментов зависимость f_{b1k} от содержания паров воды *F*_w представлена на рис.4. Видно, что неравновесная доля $f_{\rm b1k}\approx 10^{-2}$ остается практически постоянной при $F_{\rm w}<10^{-3}.$ Погрешность в определении $F_{\rm w}$ может лишь сдвинуть верхнюю границу этого диапазона. Следовательно, в указанном диапазоне значений F_w молекулы воды не являются основным релаксантом колебательно-возбужденных молекул кислорода. Случайные изменения степени утилизации хлора в пределах 90%-98% от теста к тесту не влияли на величину f_{b1k} . Начиная со значения 10^{-3} , рост F_w приводит к уменьшению содержания f_{b1k} , что свидетельствует о возрастающей роли мо-

Рис.4. Неравновесное содержание колебательно-возбужденных молекул $O_2(b, v=1)$ в зависимости от доли паров воды в смеси $O_2(X) - O_2(a) - H_2O$ при высоте ОДС 8 мм (**a**) и 15 мм (**b**).

лекул воды в релаксации колебательной энергии. При $F_{\rm w} \ge 10^{-2}$ величина $f_{\rm b1k} \approx 0$ в пределах погрешности ~10⁻³.

При содержании паров воды $F_{\rm w} < 10^{-3}$ ряд экспериментов был проведен при расположении оптического окна на 1.5, 6 и 8 см ниже по потоку от ЛПВ. Увеличения $f_{\rm blk}$ с ростом расстояния от ЛПВ обнаружено не было. С увеличением расстояния от ЛПВ в пределах 4–8 см температура газа изменялась от 370 до 350 К, а концентрация $n_{\rm a}$ – в пределах (2.3–1.5)×10¹⁷ см⁻³. На расстоянии 1.5 см от ЛПВ температура газа составляла ~ 310 К. При установке ОДС с высотой канала 1.5 см величина $f_{\rm blk}$, как правило, достигала 1.2×10^{-2} . В нескольких экспериментах, результаты которых представлены на рис.4, достигалось $f_{\rm blk} \approx 1.5 \times 10^{-2}$.

4. Анализ и обсуждение

Свяжем число колебательных квантов, генерируемых в реакциях (1) и (2), с найденным неравновесным содержанием $O_2(b,v=1)$. Вслед за генерацией колебательновозбужденных O_2 и H_2O следуют быстрые резонансные EE- и VV-обмены между молекулами кислорода

$$O_2(b,v=1) + O_2(X,v=0) \iff O_2(X,v=1) + O_2(b,v=0), (6)$$

$$O_2(b,v=1) + O_2(a,v=0) \iff O_2(a,v=1) + O_2(b,v=0),$$
 (7)

$$O_2(a,v=1) + O_2(X,v=0) \iff O_2(X,v=1) + O_2(a,v=0), (8)$$

$$O_2(X,v=2) + O_2(X,v=0) \iff O_2(X,v=1) + O_2(X,v=1), (9)$$

VV-обмен с молекулами воды

$$H_2O(1) + O_2(0) \rightarrow H_2O(0) + O_2(1)$$
 (10)

и колебательная релаксация

$$O_2(1) + M \to O_2(0) + M,$$
 (11)

$$O_2(1)$$
 + стенка $\rightarrow O_2(0)$ + стенка, (12)

 $H_2O(1) + M \to H_2O(0) + M,$ (13)

$$H_2O(1)$$
 + стенка \rightarrow $H_2O(0)$ + стенка. (14)

Здесь $H_2O(1) = H_2O(010)$; $H_2O(0) = H_2O(000)$; $O_2(0)$ и $O_2(1)$ – молекула кислорода с v = 0 и v = 1 соответственно в любом электронном состоянии. Константы скоростей прямых реакций (в см³/с) таковы: $k_6 = 1.5 \times 10^{-11}$ [21], $k_8 = 5.6 \times 10^{-11}$ [1], $k_9 = 2 \times 10^{-13}$ [9], $k_{11}^{O_2}(M = O_2, T = 370 \text{ K}) = 10^{-17}$, $k_{11}^{W}(M = H_2O) = 4 \times 10^{-15}$, $k_{13}^{W}(M = H_2O) = 5.1 \times 10^{-11}$, $k_{13}^{O_2}(M = O_2) = 4 \times 10^{-14}$ [10], $k_{10}^{X} = 6.6 \times 10^{-13}$ для $O_2(X)$ [10]. Из-за близости энергий колебательных квантов молекул $O_2(X)$ и $O_2(a)$ вполне оправданным будет предположение, что $k_{10}^{a} \approx k_{10}^{X}$ для $O_2(a)$ в реакции (10). Константы скоростей обратных реакций $k_{10r}^{X} = k_{10}^{X} \exp[(E_X - E_w)/T]$ и $k_{10r}^{a} = k_{10}^{a} \exp[(E_a - E_w)/T]$, где $E_w = 2295$ К, $E_X = 2239$ К, $E_a = 2134$ К – колебательные энергии $H_2O(1)$, $O_2(X, v = 1)$, $O_2(a, v = 1)$ соответственно. Константа скорости $k_{11}^{O_2}$ предполагается одинаковой для молекул $O_2(X, v = 1)$ и $O_2(a, v = 1)$ [22, 23].

Насколько известно, константа скорости k_7 реакции (7) не измерялась, но уместно предположить, что, как и для реакций (6) и (8), она составляет ~10⁻¹¹ см³/с. Константы скоростей обратных реакций (6)–(8) таковы: $k_{6r} = k_6 \times \exp[(E_X - E_b)/T], k_{7r} = k_7 \exp[(E_a - E_b)/T], k_{8r} = k_8 \exp[(E_X - E_a)/T]$. Поскольку в настоящих экспериментах зависимость f_{b1k} от степени утилизации хлора не наблюдалась, можно предположить, что $k_{11}^{Cl_2}(M = Cl_2) \leq k_{11}^{O_2}$. Частоту гибели колебательно-возбужденных молекул *i*-го сорта на стенке ОДС, сосредоточенных в узком слое между ее стенками, можно оценить по формуле

$$K_{\rm ci} = \left(\frac{h^2}{8D} + \frac{2h}{\bar{u}\gamma_i}\right)^{-1},\tag{15}$$

где γ_i – коэффициент дезактивации на поверхности; \bar{u} – средняя тепловая скорость; D – коэффициент диффузии; h – высота ОДС. Для вероятности дезактивации H₂O(1) на стенке $\gamma_w \sim 1$ частота гибели H₂O(1) на стенках ОДС есть $K_{\rm cw} \sim 10^2 \,{\rm c}^{-1}$.

Найдем величину f_{b1k} при $F_w < 10^{-3}$. Скорости реакций ЕЕ-обмена (6)-(9) значительно превышают скорости реакций (10)-(14); так, в условиях настоящих экспериментов $n_{\rm w} \ll n_{\rm a}, n_{\rm X}, n_{\rm b} \ll n_{\rm a}, n_{\rm X}, n_{\rm b1} \ll n_{\rm a1}, n_{\rm X1},$ где $n_{\rm b1}, n_{\rm a1}, n_{\rm X1}, n_{\rm X} - n_{\rm b1}$ концентрации $O_2(b, v=1), O_2(a, v=1), O_2(X, v=1), O_2(X, v=0)$ соответственно. Возможное образование $O_2(X, v=2)$ в реакциях (1), (2) сопровождается быстрыми ЕЕ-обмена-Mи $O_2(b, v=2) + O_2(X, v=0) \rightarrow O_2(b, v=0) + O_2(X, v=2),$ $O_2(a,v=2) + O_2(X,v=0) \rightarrow O_2(a,v=0) + O_2(X,v=2)$ [1] и VV-обменом (9). В результате основная часть генерируемых колебательных квантов аккумулируется в молекулах $O_2(a,v=1)$ и $O_2(X,v=1)$. Временной масштаб, на котором происходят реакции (6)-(8), значительно меньше $\sim 3 \times 10^{-2}$ с – времени пролета газом расстояния 4 см от ЛПВ до точки регистрации спектров. В этих условиях в работах [24, 27] получены уравнения для квазистационарного относительного содержания $f_{a1} = n_{a1}/n_a$ и $f_{b1} = n_{b1}/n_b$ молекул $O_2(a, v=1), O_2(b, v=1)$:

$$f_{a1} = c_a f_{1k} + f_{a1T}, \ f_{b1} = c_b f_{1k} + \frac{p_{11}k_2 F_w}{k_6(1-Y) + k_7 Y} + f_{b1T}, \ (16)$$

где p_{11} – вероятность генерации $O_2(b, v=1)$ в реакции (1); $f_{1k} \approx (n_{a1k} + n_{X1k})/n_{O_2}$ – неравновесная часть относительного содержания молекул кислорода в колебательном состоянии с v = 1; n_{a1k} , n_{X1k} – неравновесные концентрации молекул $O_2(a, v=1)$ и $O_2(X, v=1)$ соответственно; $c_a = f_{a1T}[Yf_{a1T} + (1 - Y)f_{X1T}]^{-1}$; $c_b = f_{b1T}[Yf_{a1T} + (1 - Y)f_{X1T}]^{-1}$. Величины $f_{X1T} = \exp(-E_X/T)$, $f_{a1T} = \exp(-E_a/T)$ и ранее найденная величина f_{b1T} определяют тепловую равновесную долю колебательно-возбужденных молекул в соответствующем электронном состоянии.

Определим неравновесную часть f_{1k} относительного содержания молекул кислорода $O_2(a)$ и $O_2(X)$ в колебательном состоянии с v = 1 при $F_w < 10^{-3}$. Как было показано, f_{b1k} не увеличивается при прохождении газовым потоком расстояния 4–8 см от ЛПВ. Следовательно, как f_{1k} , так и f_{b1k} квазистационарны вдоль потока и определяются балансом между накачкой и релаксацией колебательной энергии. Реакции (1), (2) генерируют колебательные кванты молекул O_2 со скоростью $k_1n_a^2q_1 + k_2n_wn_bq_2 = k_1n_a^2(q_1 + q_2)$ и колебательные кванты молекул H_2O со скоростью $k_2n_wn_bm_2 = k_1n_a^2m_2$, т. к. $n_b = (k_1/k_2)n_a^2/n_w$. Здесь q_1, q_2 – среднее число колебательных квантов кислорода, генерируемых в реакциях (1) и (2); m_2 – среднее число «изгибных» колебательных квантов молекулы воды, генерируемых в реакции (2). Поскольку в условиях эксперимента $k_{10}n_{O_2} \gg K_{cw} + k_{13}^w n_w + k_{13}^{O_2} n_{O_2}$, то молекулы H₂O(1) в основном отдают колебательные кванты в резервуар O₂(1), а не в тепловой резервуар, и полная скорость генерации колебательных квантов кислорода равна $k_1n_a^2(q_1 + q_2 + m_2)$. Скорость релаксации неравновесной части колебательной энергии, не зависящая от концентрации воды, равна $f_{1k}n_{O_2}(K_{cO_2} + k_{11}^{O_2}n_{O_2})$, где K_{cO_2} – константа скорости колебательной релаксации O₂(1) на стенке в процессе (12). Из баланса скоростей образования и гибели колебательных квантов $k_1n_a^2(q_1 + q_2 + m_2) = f_{1k}n_{O_2}(K_{cO_2} + k_{12}^{O_2}n_{O_2})$ получим для неравновесной части относительного содержания O₂(b, v = 1)

$$f_{b1k} = \frac{c_b}{n_{O_2}} \frac{(q_1 + q_2 + m_2)k_1n_a^2}{K_{cO_2} + k_{11}^{O_2}n_{O_2}} + \frac{p_{11}k_2F_w}{k_6(1 - Y) + k_7Y}.$$
 (17)

Вторым членом в уравнении (17) при оценке $q_1 + q_2 + m_2$ можно пренебречь, т. к. он меньше 10^{-3} , а $f_{b1k} \ge 10^{-2}$ при $F_{\rm w} < 10^{-3}$. Согласно [15, 25], $k_1 = (3.5 \pm 0.5) \times 10^{-17}$ см³/с при T = 370 К. К сожалению, значение вероятности γ_{0} , для дезактивации O₂(1) в реакции (12) в литературе найти не удалось. Для оценки γ_{O_2} и K_{cO_2} воспользуемся тем фактом, что в проведенных экспериментах максимальное увеличение f_{b1k} составило 1.5 раза при увеличении высоты ОДС от 0.8 до 1.5 см. Использовав также уравнения (15), (17), получим оценку $\gamma_{O_2} \approx (0.4 - 1.5) \times 10^{-3}$. Эта величина близка к значению коэффициента релаксации молекул $N_2(v=1)$ на неметаллических поверхностях [26]. При T = 370 K, давлении 26 Тор и h = 0.8 см получаем $c_b = 1.61$ и скорость релаксации $K_{\rm cO_2} + k_{11}^{\rm O_2} n_{\rm O_2} \approx 18-30 \text{ c}^{-1}$. Подстановка $f_{\rm b1k} \approx 10^{-2}$ и $n_{\rm a} = 2.3 \times 10^{17} \text{ см}^{-3}$ в уравнение (17) дает $k_1 n_{\rm a}^2 (q_1 + q_2 + m_2) \approx$ 10^{17} см⁻³·с⁻¹ и $q_1 + q_2 + m_2 = 0.05 \pm 0.03$. Погрешность ± 0.03 для $q_1 + q_2 + m_2$ определяется погрешностями параметров k_1 (13%), n_a^2 (9.5%), f_{1k} (10%) и γ_{O_2} .

Максимальные значения $q_1 \approx 0.05$ и вероятностей $p_{11} =$ $q_1 \approx 0.05, p_{12} = q_1/2 \approx 0.025$ для образования соответственно $O_2(b, v=1)$ или $O_2(b, v=2)$ в реакции (1) достигаются в предположении $q_2 = m_2 = 0$ и нулевого вклада других потенциальных источников молекул $O_2(v \ge 0)$, $H_2O(v \ge 0)$. Например, если имеет место дезактивация O₂(a) + М → $O_2(X, v > 0) + M$, то по оценке параметр q_1 должен быть еще меньше. Величина $p_{11} = 0.05$ находится в согласии с результатом, полученным ранее в работе [6]. Полученная оценка вероятности $p_{12} = 0.025$ существенно меньше приведенного в [3] значения 0.64. Следует отметить, что в [3] вероятность $p_{12} \approx 0.64$ была получена путем сравнения интенсивностей излучения молекул O₂(b) с первых трех колебательных уровней в послеразрядном потоке О2. Как уже отмечалось в [21], высокое содержание молекул $O_2(b, v=2)$, наблюдаемое в [3] в послеразрядном потоке О2, вероятнее всего, объясняется вторичными процессами с участием атомарного кислорода.

В ХКИЛ наиболее часто используется ГСК, который генерирует газ $O_2-O_2(a)-H_2O$ при температуре T > 320 К и при относительных концентрациях $F_w > 3 \times 10^{-2}$ и $Y \approx 0.6$ [8]. В этом случае $[Yk_{10r}^a + (1 - Y)k_{10r}^X]n_w \gg (k_{11}^{O_2}n_{O_2} + k_{11}^w n_w + K_{cO_2}), (k_{13}^{O_2}n_{O_2} + k_{13}^w k n_w + K_{cw}) > [Yk_{10}^a + (1 - Y)k_{10}^X]n_{O_2}$, т.е. гибель молекул $O_2(1)$ происходит, главным образом, через передачу энергии молекулам $H_2O(0)$ в реакции (10) с последующей релаксацией $H_2O(1)$. Баланс накачки и

релаксации колебательной энергии молекул кислорода $[Yk_{10r}^{a} + (1 - Y)k_{10r}^{X}]n_{w}(f_{1k}n_{O,}) \approx k_{1}n_{a}^{2}(q_{1} + q_{2})$ дает [27]

$$f_{1k} = \frac{(q_1 + q_2)k_1Y^2}{[Yk_{10r}^a + (1 - Y)k_{10r}^X]F_w}.$$
(18)

После подстановки $q_1 + q_2 \le 0.08$, $F_{\rm w} > 3 \times 10^{-2}$, $k_1 \approx 3.5 \times 10^{-17}$ см³/с, $k_{10r}^{\rm a} \approx k_{10r}^{\rm X} \approx 5 \times 10^{-13}$ см³/с и Y = 0.6 в уравнение (18) получаем $f_{1k} < 10^{-4}$. Тепловое равновесное содержание $O_2(a, v = 1)$ на выходе ГСК превышает 10⁻³, тогда как его неравновесная часть $f_{a1k} = c_a f_{1k} < 10^{-4}$ при T > 320 К. Согласно работе [27] при $p_{12} = 0.025$ неравновесное содержание $O_2(a, v=2)$ по отношению к $O_2(a, v=0)$ равно $\sim 10^{-7}$, в то время как тепловое равновесное содержание $O_2(a, v=2)$ превышает 10⁻⁶ при *T* > 320 К. Следовательно, на выходе ГСК, который используется в ХКИЛ, колебательные населенности как $O_2(a, v=1)$ так и $O_2(a, v=2)$ практически равны тепловому равновесному значению. В работах [5, 28] в потоке газа O₂(X)-O₂(a)-H₂O при высоком давлении О₂(а) (несколько десятков торр) содержание $O_2(a, v=1)$ составляло ~10⁻². Такое большое содержание $O_2(a, v = 1)$ объясняется, вероятно, высокой температурой газа (свыше 450 К) на выходе ГСК, обусловленной тепловыделением в реакции (1) при высоком давлении $O_2(a)$ [29].

5. Выводы

В результате измерений абсолютной спектральной светимости в диапазоне 600-800 нм в газовой смеси О2-О2(а)-H₂O, образуемой химическим генератором синглетного кислорода, были определены концентрации электронновозбужденных частиц. Отчетливо наблюдалась неравновесная населенность первого колебательного уровня молекулы $O_2(b)$. Неравновесное содержание $O_2(b, v=1)$, равное $\sim 10^{-2}$, в условиях нашего эксперимента не зависит от концентрации паров воды при их относительном содержании, не превышающем 10-3. Согласно анализу полученных результатов с использованием данных по кинетическим процессам в смеси О2-О2(а)-H2O максимальное среднее число колебательных квантов, генерируемых в реакции (1), равно 0.05 ± 0.03 . Это значение согласуется с более ранним результатом, полученным в работе [6]. Прогнозируемое содержание $O_2(a,v=1)$ и $O_2(a,v=2)$ в газовой смеси на выходе наиболее часто используемого в химическом кислородно-иодном лазере ГСК скорее соответствует тепловому равновесному. Тем не менее этот вывод не исключает потенциально важной роли молекул $O_2(a, v=1), O_2(a, v=2)$ в механизме диссоциации молекулярного иода в активной среде кислородно-иодного лазера.

Автор благодарит А.Н.Хватова за помощь при проведении экспериментов и В.Н.Азязова, П.А.Михеева за полезные обсуждения.

- 1. Slanger T.M., Copeland R.A. Chem. Rev., 103, 4731 (2003).
- 2. Яновский В.Я. *Химическая физика*, **10**, 291 (1991).
- 3. Schurath U. J. Photochem., 4, 215 (1975).
- Бирюков А.С., Щеглов В.А. Квантовая электроника, 13, 510 (1986)
- 5. Browne R.J., Ogryzlo E.A. Proc. Chem. Soc., 117, 89 (1964).
- 6. Derwent R.G., Thrush B.A. Trans. Faraday Soc., 67, 2036 (1971).
- 7. Ogryzlo E.A., Thrush B.A. Chem. Phys. Lett., 24, 314 (1974).
- Waichman K., Rybalkin V., Katz A., et al. J. Appl. Phys., 102, 013108 (2007).

- Kalogerakis K.S., Copeland R.A., Slanger T.G. J. Chem. Phys., 123, 044309 (2005).
- 10. Huestis D.L. J. Phys. Chem. A., 110, 6638 (2006).
- Азязов В.Н., Загидуллин М.В., Николаев В.Д., Свистун М.И., Хватов Н.А. Квантовая электроника, 22, 443 (1995).
- 12. Naus H., Ubachs W. Appl. Opt., 38, 3423 (1999).
- 13. Borrel P., Rich N.H. Chem. Phys. Lett., 99, 144 (1983).
- Cheah S., Lee Y., Ogilvie J.F. J. Quantum Spectr. Rad. Transfer, 64, 467 (2000).
- Lilenfeld H.V., Carr P.A.G., Hovis F.E. J. Chem. Phys., 81, 5730 (1984).
- Aviles R.G., Muller D.F., Houston P.L. Appl. Phys. Lett., 37, 358 (1980).
- Rothman L.S., Jacquemart D., Barbe A., et al. J. Quantum Spectr. Rad. Transfer, 96, 139 (2005).
- 18. Krupenie P.H. J. Phys. Chem. Ref. Data, 1, 423 (1972).
- Knickelbein M.B., Marsh K.L., Sercel J., Siebert L.D., Busch G.E. IEEE J. Quantum Electron., 24, 1278 (1988).

- 20. Choo K.Y., Leu M. Int. J. Chem. Kinet., 17, 1155 (1985).
- Bloemink H.I., Copeland R.A., Slanger T.G. J. Chem. Phys., 109, 4237 (1998).
- 22. Borrell P.M., Borrell P., Grant K.R. J. Chem. Soc. Faraday Trans., 76, 923 (1980).
- 23. Parker J.G., Ritke D.N. J. Chem. Phys., 59, 3713 (1973).
- Antonov I.O., Azyazov V.N., Ufimzev N.I. J. Chem. Phys., 119, 10638 (2003).
- Heidner R.F., Gardner C.E., El-Sayed T.M., Segal G.I., Kasper J.V.V. J. Chem. Phys., 74, 5618 (1981).
- Black G., Wise H., Schechter S., Sharpless R.L. J. Chem. Phys., 60, 3526 (1974).
- 27. Азязов В.Н., Пичугин С.Ю., Сафонов В.С., Уфимцев Н.И. Квантовая электроника, **31**, 794 (2001).
- 28. Азязов В.Н., Николаев В.Д., Свистун М.И., Уфимцев Н.И. Квантовая электроника, **29**, 767 (1999).
- 29. Watanabe G., Sugimoto D., Tei K., Fujioka T. *IEEE J. Quantum Electron.*, **40**, 1030 (2004).