
Abstract. This paper presents numerical simulations of two-
dimensional radiation transfer in a powder layer that resides
on a substrate of the same material and is exposed to a
normally incident laser beam with an axisymmetric bell-
shaped or top-hat intensity proéle. The powder layer is
treated as an equivalent homogeneous absorbing/scattering
medium with radiative properties deéned by the reêectance of
the solid phase, the porosity of the powder and its surface
area. The model used is applicable when the laser beam
diameter far exceeds the particle size of the powder. It is
shown that the absorptance of an optically thick layer of
opaque powder particles is a universal function of the
absorptance of the solid phase and is independent of surface
area and porosity, in agreement with experimental data in the
literature. The fraction of laser energy absorbed in the
powder-substrate system and that absorbed in the substrate
decrease with an increase in the reêectance of the material,
but the powder bed is then more uniformly heated.

Keywords: selective laser sintering, selective laser melting, radiation
transfer equation.

1. Introduction

Scanning a powder bed with a laser beam is a basic
operation in a variety of additive forming processes, such as
selective laser sintering or selective laser melting (SLM) [1].
In a typical SLM geometry, a laser beam is incident on a
powder bed along the normal to the substrate surface [2]. In
layerwise forming processes, thin powder layer deposition
and laser scanning are repeated many times, so that each
powder layer is applied to a substrate formed by the
underlying melted layers. Such a geometry (powder layer/
substrate) is also typical of laser cladding with preplaced
powder [3]. The incident laser radiation penetrates into the
powder through open pores [4] and delivers energy directly
to its bulk and to the substrate [2]. Radiative energy
transfer may prevail over heat conduction at a low thermal
conductivity of the powder [5], so the spatial distribution of

the deposited energy directly inêuences the local temper-
ature éeld [2].

Questions of major importance in laser processing are
the incident intensity loss distribution over backscattering
and absorption channels in the powder and substrate, the
through-thickness uniformity of energy deposition in the
powder and the broadening of the `energy deposition spot'
relative to the laser beam projection. The reêectance of the
powder-substrate system is directly related to the energy
eféciency of the process. Increasing the fraction of laser
radiation absorbed directly by the substrate is favourable
for metallurgical bonding between the melted powder and
substrate [2]. Improving the through-thickness uniformity of
energy deposition allows one to avoid surface overheating
and, hence, to reduce vaporisation losses. The depth and
width of the laser energy deposition zone are directly related
to the spatial resolution of the laser forming process.

Experimental studies of laser light reêection from
powder beds [6, 7] have shown that, in the case of highly
reêective materials (metals), the surface absorptance of a
powder bed considerably exceeds that of a smooth surface
of the same material. Theoretical analysis using computer
simulation of ray propagation [8] and a homogenised
radiation transfer equation (RTE) [4, 7] has shown that
there is a universal relation between the normal-incidence
absorptance of a powder and the absorptance of a smooth
surface of the same material. Experimental data available in
the literature are, on the whole, consistent with this relation
[7]. As pointed out by Van der Scheuren [9], laser radiation
penetrates into the powder bed rather than being absorbed
by the surface. In his work, the deposited-energy depth
proéle was assessed using form factors. Similar proéles were
obtained using ray-optics analysis [8] and the RTE [4]. The
theoretical laser light penetration depth in powder was
conérmed experimentally [10].

Radiation transfer in optically thick powder beds has
been analysed in detail [4, 7 ë 9], whereas thin layers have
been the subject of only a few simulation studies, with
perfectly [4] and partially [7] reêective substrates examined.
Those theoretical studies relied on one-dimensional (1D)
models, incapable of assessing the radial proéle of the
deposited energy. This work examines radiation transfer
in 2D cylindrical geometry in a powder bed on a solid
substrate of the same material.

2. Model

The problem of an axisymmetric laser beam incident on a
powder layer along the normal to its surface is analysed
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here in cylindrical coordinates. The beam axis, z, is directed
along the inward normal to the powder surface (Fig. 1a).
The powder, consisting of opaque particles, can be thought
of as an equivalent homogeneous absorbing/scattering
medium, and light propagation in this medium can be
described using the conventional RTE [11]. The radiation
intensity at point M with coordinates (z, r) (Fig. 1b) can
then be characterised by its average, I(X), where X is a unit
vector in the light propagation direction, deéned by a polar
angle (y) and azimuth (j) as illustrated in Fig. 1b. The
azimuth angle is measured not from a éxed direction but
from the plane passing through point M and the z axis. In
these coordinates, the RTE has the form [12]
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where the extinction coefécient b, scattering coefécient s
and scattering phase function P(X,X 0) [describes the
intensity scattered in the X 0(y 0,j 0) direction when the
initial propagation direction is X(y,j)] are effective
radiative characteristics of the powder layer.

The boundary condition on the powder surface (z � 0) is
set by the intensity of normally incident collimated radiation
with an energy êux density Q0(r):

I�y;j� � Q0

2p
d�cos yÿ 1�, y < p=2 , (2)

where d is the Dirac delta function. The substrate surface
(z � L) is assumed to be specular, with reêectance r:

I�y;j� � rI�pÿ y;j�, y > p=2. (3)

2.1 Effective radiative properties of a powder bed

According to general homogenisation theory [11], the
effective extinction coefécient of a statistically isotropic
packed bed of opaque particles is given by

b � S

4f0
, (4)

where S is the surface area per unit volume of the packed
bed and f0 is its porosity (the volume fraction of open
spaces). If the powder consists of n particle species (n
opaque phases) with a known particle surface to volume
ratio, Sa, for each species (surface area per unit volume of
phase a), we have

S �
Xn
a�1

Safa, (5)

where fa is the volume fraction of phase a. Metallic powders
prepared by atomisation processing [1], as are widely used
in laser forming, can be considered a mixture of several size
fractions, each consisting of spherical particles of diameter
Da. Therefore,

Sa �
6

Da
. (6)

For packed beds of monodisperse opaque spheres, we
obtain from Eqns (4) ë (6)

b � 3

2

1ÿ f0
f0D1

. (7)

The effective scattering coefécient s and scattering phase
function P of a statistically isotropic one-component
powder consisting of specular opaque particles can be
estimated as [11]

s
b
� r1, P � r 01

r1
, (8)

where r1 is the hemispherical reêectance and r 01 is the
directional reêectance (see Siegel and Howell [13] for
deénitions). Relations (8) can be generalised to a mixture of
n opaque phases with different ra and r 0a by averaging with
weights proportional to the surface area of each phase [4]:

s
b
� 1

S

Xn
a�1

raSa fa, P
s
b
� 1

S

Xn
a�1

r 0aSa fa. (9)

The directional reêectance r 0a of widely used metals, such as
Fe, Al and Cu, and many other highly reêective materials is
a weak function of the angle of incidence, except at grazing
incidence. Consequently, the scattering phase function
depends little on scattering angle except at small angles
(see Gusarov et al. [7] for examples). Therefore, the
isotropic phase function
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Figure 1. Geometry of the problem of radiation transfer in a powder
layer of thickness L on a partially reêective, opaque substrate: (a)
cylindrical coordinates; (b) light propagation direction in the substrate,
X, deéned by a polar angle and azimuth at point M.
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P � 1 (10)

provides a good approximation.

2.2 Numerical method

The radiation transfer equation (1) was solved numerically
using the discrete ordinates method. The light propagation
direction is deéned by the parameters m � cos y and j. The
region (ÿ1 < m < 1, 0 < j < p) is divided into Nm �Nj
identical rectangular cells of dimensions Dm� Dj (Dm �
2=Nm, Dj � p=Nj), centred at the points deéned by
mk � (k� 1=2)Dmÿ 1 and jl � (l� 1=2)Dj, with
k � 0, . . . , Nm ÿ 1 and l � 0, . . . , Nj ÿ 1. Integrating
Eqn (1) over cell (k, l ), we obtain
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where the scattering integral is represented as the sum of the
integrals over the cells. The angular intensity term I(m,j) is
assumed to vary little within a given cell, so it can be
replaced, to second-order accuracy, by its average, Ikl.
Equation (1) can thus be approximated to second-order
accuracy by the system of linear transfer equations
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where the scattering matrix is given by
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It can be found by numerically integrating (13) over the
(mk, jl) grid and is then used to numerically solve
Eqns (12).

System (12) can be solved numerically using iterations
modelling unsteady-state transfer; i.e., the unsteady-state
transfer equations
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involving the time variable t, can be solved with initial
conditions of zero, Ikl � 0, in the cylindrical region of
radius Rmax �0 < z < L, 0 < r < Rmax). The t variable
corresponds to the product of time with the `speed of
light' in an imaginary unsteady-state process and has the
dimensions of length. A steady-state solution to Eqns (14)
must meet Eqns (12).

Let us introduce a uniform grid (z �i� � iDz, r � j� � jDr),
where i � 0, . . . ,Mz and j � 0, . . . ,Mr, with grid spacings
Dz � L=Mz and Dr � Rmax=Mr. Equations (14) are approxi-
mated using a conservative implicit scheme accurate to
second order in space and to érst order in t:
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where Dt is the t increment, and the discrete intensity I
�i; j�
kl

at node (i, j ) is the average Ikl(z, r) over the toroidal region
with z � z �i� ÿ Dz=2, . . . , z �i� � Dz=2 and r � r � j� ÿ Dr=2,
. . . , r � j � � Dr=2. The values with half-integer i and j can be
found by the minmod slope-limiter method [14]. Typical
grid dimensions in this study are Nm � 128, Nj � 32,
Mz � 20 and Mr � 50. To ensure stability of the implicit
scheme (15), Dt is estimated using the Courant condition
[14].

2.3 One-dimensional approximation

If the incident beam is broad enough and the incident
power density, Q0 in (2), is a weak function of radial
coordinate r, the intensity I varies little with r and j, and
the second term on the right-hand side of (1) can be
neglected. This leads to a spatially homogeneous (1D) RTE.
Such a quasi-1D model can be treated using the numerical
method described in Gusarov et al. [7]. A numerical 1D
model is needed to explore directional radiative character-
istics, e.g. directional reêectance [7], although suféciently
accurate integral characteristics of radiation transfer, e.g.
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hemispherical reêectance, can be obtained in the four-
moment analytical approximation proposed earlier [4] for
the 1D RTE.

The solution to the 1D RTE

m
qI�z; m�

qz
� b

�
o
2

� 1

ÿ1
I�z; m 0�P�m 0; m�dm 0 ÿ I�z; m�

�
(16)

(where o is the scattering albedo) that meets the boundary
conditions (2) and (3) is approximated by a four-parameter
function [4] of the form

I�z; m� � Q��z�
2p

d�mÿ 1� �Qÿ�z�
2p

d�m� 1� � F�z; m�. (17)

Here Q� and Qÿ are the incident and backscattered
collimated radiation êux densities, corresponding to the
incident and reêected beams, and F is the diffuse intensity
resulting from (multiple) scattering of the collimated
components. Substituting (17) into (16) and using the
boundary conditions (2) and (3), we obtain a separate
problem for the collimated components [4],

dQ�
dz
� ÿbQ�,

dQÿ
dz
� bQÿ,

(18)

Q��0� � Q0, Qÿ�L� � rQ��L�
with the solution

Q� � Q0 exp�ÿx�, Qÿ � rQ0 exp�xÿ 2L� (19)

(where x � bz is a nondimensional coordinate and L � bL
is the optical thickness of the powder bed), and a boundary
value problem describing diffuse radiation [4]:
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F�0; m� � 0 for m > 0, F�L; m� � rF�L;ÿm� for m < 0. (21)

In the two-êux method, an approximate solution to
Eqns (20) and (21) is sought in the form

F�z; m� � F��z�h�m� � Fÿ�z��1ÿ h�m��, (22)

where h is the Heaviside step function. In the case of
isotropic scattering [see (10)], substitution of (22) into Eqn
(20) and integration over the ranges 0 < m < 1 and ÿ1 <
m < 0 give two moment equations for the nondimensional
coefécients f� � 2pF�=Q0,

� 1

2

df�
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� o

2
�q� � qÿ � f� � fÿ� ÿ f�, (23)

which contain the nondimensional functions q� � Q�=Q0

� exp (ÿ x) and qÿ � Qÿ=Q0 � r exp (xÿ 2L). The boun-
dary conditions for f� follow from (21):

f��0� � 0, fÿ�L� � rf��L�. (24)

The general solution to (23) can be obtained from the
relations

f� � fÿ � C1 exp�ÿ2ax� � C2 exp�2ax�
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where a � ������������
1ÿ o
p

. The constants C1 and C2 can be found
from the boundary conditions (24):
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D � �1ÿ a��1ÿ aÿ r�1� a�� exp�ÿ2aL�

ÿ�1� a��1� aÿ r�1ÿ a�� exp�2aL�. (29)

3. Results and discussion

The effect of radiation transfer on thermal processes [2] can
be described using the radiant êux density, Q, with the
components

Qz � 2

� p

0

dj
� 1

ÿ1
I cos yd cos y,

(30)
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cosjdj
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and the volumetric heat source

U � ÿdivQ � ÿ qQz

qz
ÿ 1

r

q�rQr�
qr

. (31)

These parameters can be obtained by numerically treating
the numerical solution to (1). In the 1D model, Qr � 0 and
Qz can be derived from the general solution (25) ë (29):
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ÿ 3�1ÿ o��exp�ÿx� ÿ r exp�xÿ 2L��
4oÿ 3

. (32)

3.1 Absorptance of optically thick powder beds

Absorptance, A, is the ratio of the radiant êux density (30)
across a surface to the incident radiant êux density. In the
case of a êat surface under uniform irradiation, this ratio is
equal to the normalised component qz(0) (32) in the 1D
analytical model. In the optically thick limit, we have

A � lim
L!1

qz�0� �
3a

1� 2a
. (33)

Numerical solutions to the RTE [7] for normal incidence
and isotropic scattering demonstrate high accuracy of this
analytical solution. According to (33), the absorptance of
an optically thick powder bed depends only on its albedo, o,
because a � ������������

1ÿ o
p

. The absorptance is independent of
particle morphology and powder density.

It follows from homogenisation theory [11] that the
albedo, o, of a statistically isotropic packed bed of opaque
particles is equal to the hemispherical reêectance, r1, of the
solid phase [see (8)]. Therefore, the absorptance can be
expressed directly through r1 or the absorptance, 1ÿ r1, of
the solid phase:

A � 3
�������������
1ÿ r1

p
1� 2

�������������
1ÿ r1

p . (34)

This function is shown in Fig. 2. The experimental data
presented in Fig. 2 are seen to be on the whole consistent
with the theoretical prediction. The deviations of the data
points from the theoretical curve, related to experimental
conditions, were analysed elsewhere [4, 6, 7].

Attempts to analyse the surface absorptance of powder
beds were also made earlier. In particular, using Monte
Carlo simulation in an absorbing/scattering medium
approximation [15], it was shown to depend on transport

albedo. The next step was the recognition that the albedo of
a one-component powder can be evaluated from the
absorptance of a smooth surface of the same material
[7]. Basically the same theoretical curve, obtained by a
different method, is shown in Fig. 2. The curve is compared
to experimental data from different studies for various
porosities. As seen, the absorptance of a powder bed
does correlate with that of a smooth surface of the same
material, as predicted theoretically.

3.2 Absorptance of an optically thick powder bed
on a substrate

The absorptance of a powder-substrate system, A, and the
fraction of radiation absorbed in the substrate, As, can be
obtained from the function qz(x) in (32):

A � q�0� � oa
�4oÿ 3�D f2�1ÿ r 2� exp�ÿL�

ÿ�3� r exp�ÿ2L��f�1� aÿ r�1ÿ a�� exp�2aL� (35)

��1ÿaÿr�1� a�� exp�ÿ2aL�ggÿ 3�1ÿ o��1ÿ r exp�ÿ2L��
4oÿ 3

,

As � q�L� � oa
�4oÿ 3�D f�1ÿ r 2� exp�ÿL�

���1ÿ a� exp�ÿ2aL� � �1� a� exp�2aL�� ÿ 2�1ÿ r�

��3� r exp�ÿ2L��g ÿ 3�1ÿ o��1ÿ r� exp�ÿL�
4oÿ 3

. (36)

Figure 3 shows the fraction of absorbed energy as a
function of the absorptance of the solid phase for a powder
bed and a substrate of the same material. The absorptance A
rises steadily as a function of the optical thickness of the
powder bed, L, approaching the limit given by (34) (see the
curve in Fig. 2).
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Figure 2. Absorptance, A, of an optically thick powder bed against the
absorptance of the solid phase, 1ÿ r1. The solid line shows the
theoretical curve and the points represent experimental data for mic-
ron-sized particles at different wavelengths.

L � 8

0 0.2 0.4 0.6 0.8 1ÿ r1

0.2

A, As

A

As

L � 1

2

1

1/2 1/4

4

2

1/2

1/4

0.4

0.6

0.8

1.0

Figure 3. Fraction of absorbed laser radiation as a function of the
absorptance of the solid phase, 1ÿ r1, for a powder bed and substrate of
the same material (A) and the substrate (A

s
) at different optical

thicknesses of the powder bed, L. The dotted line represents the limit
of the substrate with no powder.
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Thus, the energy eféciency of the laser processing of a
substrate covered with a powder bed of the same material
always exceeds that of the substrate without powder and
increases with bed thickness. The physical interpretation of
this effect is that the surface of an uncovered substrate
reêects the incident laser radiation only once. In the case of
a porous coating, some of the incident radiation penetrates
into pores and experiences multiple reêection. Since each
reêection event is accompanied by absorption of some
energy, the net fraction absorbed increases. Nevertheless,
the absorbed energy has a nonuniform depth proéle in the
powder, and the fraction of radiation that reaches the
substrate, As, decreases monotonically with increasing L
(Fig. 3), which is undesirable because it may lead to the
melting of only the top layer of the powder bed, with no
metallurgical bonding to the substrate. Heating and melting
of the substrate are often thought to be necessary conditions
for high-quality laser processing. Note that, at large optical
thicknesses, As as a function of r1 has a local maximum (see
e.g. the L � 4 curve in Fig. 3). This suggests that, varying
the laser wavelength, one can raise As because the r1 of a
given material is a function of wavelength.

3.3 Effect of the radial intensity proéle of the incident
beam

Figure 4 illustrates the effect of the radial intensity proéle
of the incident laser beam on radiation transfer in a powder
bed. A bell-shaped beam proéle is compared to two top-hat
proéles. The width of the broad top-hat beam is equal to
the full width of the bell-shaped proéle, and that of the

narrow top-hat beam, to the full width at half maximum of
the bell. The energy êux densities in Figs 4a ë 4c are
normalised to the maximum incident radiant êux density:
qz � Qz=Q0, qr � Qr=Q0. The absorbed energy in Fig. 4d is
normalised as follows: u � U=(bQ0).

The axial energy êux density, qz, in the powder (Fig. 4b)
reaches a maximum on the surface. Because of the back-
scattering, the height of the maximum is considerably lower
than the incident energy êux density. The axial êux density
on the surface is negative beyond the beam spot, where the
incident intensity is zero, but there is the backscattered
radiation. The attenuation of qz with increasing depth, z, is
caused by absorption. The radial êux qr (Fig. 4c), character-
ising transverse energy transfer, has a maximum at the
periphery of the laser beam. The weak tails in the deposited-
energy proéles beyond the beam spot (Fig. 4d) are due to
the radial transfer.

The above features are clearly seen in 1D sections of the
2D proéles in Fig. 5, which compares the rigorous 2D
description of radiation transfer using Eqn. (1) and the 1D
approximation, which neglects the radial component Qr of
the energy êux density. The curves in Fig. 5 illustrate the
results obtained in the analytical 1D two-êux model. With
the parameters under consideration, the 2D and 1D models
differ not very much. The broadening of the proéle is most
pronounced for the narrow top-hat beam (Fig. 5b). The
reduction in the energy deposited on the axis, due to the
transverse radiation transfer, is appreciable for the bell-
shaped and narrow top-hat beams (Fig. 5c).

The thermal conditions of laser processing depend on
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Figure 4. 2D laser radiation transfer in a powder bed of optical thickness L � 2 and albedo o � r1 � r � 0:7: (a) radial proéles of the incident laser
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the energy êux across the substrate surface (Fig. 5b) and the
volumetric heat source (Fig. 5c). Comparison of the 1D and
2D approximations for the relatively narrow laser beams
under consideration indicates that the radial transfer of
radiant energy can considerably reduce both the energy êux
and the volumetric source at the beam centre, whereas the
broadening of the radial proéle of the deposited energy is
less signiécant. For this reason, when the incident beam has
a bell-shaped proéle, the divergence of the scattered laser
light in the powder leads to the formation of weak tails in
the deposited-energy proéle beyond the beam spot (circles
and dashed curve in Fig. 5b). The broadening of top-hat
proéles can be thought of as smoothing of the lateral beam
proéle boundary (crosses, thin line, squares and heavy line
in Fig. 5b). The maximum temperature, which occurs at the

beam axis, is assumed to be lowered by the radial transfer,
whereas the corresponding rise in temperature beyond the
beam spot will be insufécient to cause any structural or
phase changes.

3.4 Effect of the reêectance of the solid phase

The reêectance of a material, r1 � r � o, and the
corresponding albedo of powder, o, can be tuned by
varying, e.g., the laser wavelength. This is illustrated in
Figs 6 and 7 for a éxed bell-shaped radial laser beam
proéle. A general trend is that, with increasing reêectance,
r, the depth proéle of the absorbed energy, U, becomes
more uniform (Fig. 6), whereas its peak value decreases
considerably. According to Fig. 6, the effect of reêectance
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on the width of the radial proéle of the deposited energy is
insigniécant.

Figure 7 shows sections of computed 2D proéles. In
particular, Fig. 7c presents the r � 0 sections of the 2D
proéles displayed in Fig. 6, and Figs 7a and 7b show,
respectively, the z � 0 and bz � 2 sections of qz proéles,
one of which is displayed at the left of Fig. 4b. The width of
the radial proéles in Figs 7a and 7b is essentially independ-
ent of r. The energy êux across the powder surface (Fig. 7a)
decreases with increasing r. The decrease is relatively small

at the beam centre and more signiécant at the periphery,
where there are negative êux values because the incident
intensity at the periphery is lower than the backscattered
intensity. This correlates with the 1D simulation results for
the absorptance A � qz(0) (Fig. 3). The energy êux
absorbed by the substrate surface (Fig. 7b) decreases
markedly with increasing r. The energy deposited in the
powder (Fig. 7c) also drops with increasing r, and its depth
proéle becomes more uniform.

The net energy eféciency of laser processing and the
heating of the substrate decrease with an increase in the
reêectance of the material, r. Therefore, high reêectances
are usually undesirable. At the same time, the powder bed is
more uniformly heated at a higher reêectance, which may be
beneécial in the case of relatively thick powder beds or when
overheating of the powder must be ruled out.

4. Conclusions

In the described model of radiation transfer, the absorp-
tance of an optically thick layer of opaque powder particles
is a universal function of the absorptance of the solid phase
and is independent of surface area and porosity, in
agreement with experimental data in the literature.

The net absorptance of the system comprising a powder
layer and a substrate of the same material is an increasing
function of the optical thickness of the layer and the
absorptance of the solid phase. The fraction of radiation
absorbed by the substrate decreases with an increase in the
optical thickness of the powder layer and may have a local
maximum, depending on the absorptance of the solid phase.

The radial transfer of radiant energy, due to the
scattering of the incident laser radiation by the powder,
may markedly reduce the energy deposition along the beam
axis. The radial deposited-energy proéle broadens relatively
little. The maximum temperature, which occurs near the
beam axis, is expected to be lowered by the radial transfer,
whereas the corresponding rise in temperature beyond the
beam spot will be insufécient to cause any structural or
phase changes.

The fraction of laser energy absorbed in the powder-
substrate system and that absorbed in the substrate decrease
with an increase in the reêectance of the material, but the
depth proéle of the energy deposited in the powder becomes
more uniform.
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