
Abstract. The control of optical properties of biological
tissues irradiated by a cw laser source is considered. Within
the framework of the stationary model of the radiation
transfer, basic factors affecting the tomographic contrast of a
layered medium are revealed theoretically and numerically,
when immersion liquids, decreasing the radiation scattering
level in a medium, are used.
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1. Introduction

One of the important directions in modern biomedical
diagnostics is the development of methods aimed at
improving the visualisation quality of the biotissue struc-
ture [1, 2]. The main problem of the optical tomography is
related to the peculiarities of the light propagation in
biological tissues: the light éeld propagated through an
object is characterised by a signiécant predominance of the
multiply scattered component over the unscattered (ballis-
tic) component. Quite often, it is the latter component that
is the carrier of useful information in the visualisation of
the internal structure of the medium. This problem can be
solved by increasing the penetration depth of ballistic
photons in the object under study. To do this, the solutions
of glucose, glycerine, and other immersion liquids are
applied on the skin surface. The liquid diffusion into the
tissue depth leads to equalization of the refractive indices of
the main tissue and the scatterers, which results in a
controlled decrease in the scattering coefécient and an
increase in the ballistic components in a propagating signal
[1 ë 4].

Usually, due to the presence of the epidermal barrier, the
penetration depth of the immersion liquid does not exceed
150 ë 250 mm. This depth can be increased with the help of
intracutaneous injections of a solution, which is localised for
some time in the tissues of a patient. Despite the fact that
from the medical point of view the use of the cutaneous

introduction of the agent is more preferable, the eféciency of
the optical immersion is signiécantly higher in the case of
the intracutaneous injection [3]. Another technique allowing
one to increase the penetration depth of the immersion
liquid through the epidermal barrier is based on the
formation of penetrability islets by limiting the thermal
action of the corneous layer [5].

There is an opinion that the best visualisation quality of
the medium under study is achieved in the case of complete
equalization of the refractive indices of the basic substance
and scatterers, leading to the disappearance of scattering.
Indeed, in most cases, this statement is justiéed because it is
conérmed by numerical simulations and physical experi-
ments [1 ë 5]. However, much depends on the formulation of
the problem, the choice of the diagnostic methods, the
medium structure and its characteristics. In this paper, we
study analytically and numerically the control problems of
optical properties of biological tissues in order to increase
the tomographic contrast of the medium. It is shown that
the complete equalization of the refractive indices does not
always lead to an increase of that fraction of the ballistic
component of the measured signal, which is caused by the
presence of a foreign inclusion in the medium.

2. Formulation of the problem

We assume that the inhomogeneous medium where
radiation propagates has a plane geometry, élls the spatial
region G � fz : z 2 (z0; zp)g, and consists of p layers Gi �
fz : z 2 (ziÿ1; zi)g, i � 1; :::; p. For each Gi layer, we specify
the refractive index ni as well as the attenuation and
scattering coefécients m(z) � mi and ms(z) � ms;i, z 2 Gi.

The radiation propagation in the layer can be described
using the stationary transfer equation, which, in the absence
of internal radiation sources, can be written in the form
[1, 6, 7]

nfz�z; n� � m�z� f �z; n� � ms�z�
� 1

ÿ1
S�z; n; n 0� f �z; n 0�dn0: (1)

The function fz�z; n� means the radiation êux density at
point z 2 G in the direction making with the positive
direction of the symmetry axis of the medium an angle
whose cosine is equal to v. The phase scattering function
S(z; n; n 0) determines the character of the photon scattering
in the medium.

At the boundary of the region G, the densities of the
radiation êuxes entering the medium are speciéed:

f �z0; n� � h�n�; n > 0; f �zp; n� � h�n�; n < 0: (2)
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At the contact boundaries z � zi (i � 1; :::; pÿ 1), the
matching conditions [8 ë 11] are laid down, which reêect the
relations between the incident, mirror reêected and refracted
êuxes:

f �zi � 0; n� � Ri�n� f �zi � 0;ÿn� � Ti�n�

� f �zi ÿ 0;ci�; n 2 �ÿ1; 0�;
(3)

f �zi ÿ 0; n� � Ri�n� f �zi ÿ 0;ÿn� � Ti�n�

� f �zi � 0;ci�; n 2 �0; 1�:
Here

f �zi � 0; n) � lim
e!0;e>0

f �zi � e; n�

are the limiting values of the function f (z; n) at the medium
interfaces zi. The coefécients Ri(n) and Ti(n) characterise the
reêectivity and transmittivity of the interface surface z � zi
and for unpolarised radiation are determined by the
expressions:

Ri�n� �
1

2
�R2
k;i � R2

?;i�; Ti�n� � 1ÿ Ri�n�;

where

Rk;i�n� �
~ni�n�ci�n� ÿ n
~ni�n�ci�n� � n

; R?;i�n� �
ci�n� ÿ ~ni�n�n
ci�n� � ~ni�n�n

;

~ni�n� � ni�1=ni for 0 < n4 1;
ni=ni�1 for ÿ 14n < 0

�
is the relative refractive index of the boundary zi; the
quantity ci � ci(n) is related to v by the known Snell law
[12]:

ci�n� �

sgn n�1ÿ ~n 2
i �n��1ÿ n 2��1=2 for 1ÿ ~n 2

i �n��1ÿ n 2�5 0;
0 for 1ÿ ~n 2

i �n��1ÿ n 2�< 0:

�
One can easily see that at all v so that 1ÿ ~n2i (n)(1ÿ n 2)4 0,
the equalities Ri(n) � 1;Ti(n) � 0 are fulélled, which corre-
sponds to the case of the total internal reêection [12].

We will consider the problem of the optical tomography
of the skin layer in vivo under the following characteristic
experimental conditions. The source and the detector are
located at one boundary, for example, at z � z0, and the
characteristics of the medium are determined not in trans-
mission but by reêected and scattered radiation: f (z0; n),
ÿ14n < 0. The authors of papers [10, 11] considered
similar formulations of the problems. The searched-for
parameters in these problems were the relative refractive
indices and the optical thicknesses of the layers, which were
found by solving the transfer equation known only at the
boundary z0.

It was noted in [10, 11] during the computer experiments
that the error in the layer reconstruction increases with
increasing the layer depth. Therefore, by bleaching the entire
medium or its part, we decrease the total optical thickness of
the inhomogeneous layer and can expect the better visuali-

sation of the medium structure. Our further aim is to
formalise the formulation of the problem and give a
qualitative and quantitative description of the dependence
of the optimal refractive index of the bleaching liquid on the
characteristics of the biological tissue.

Let the refractive index in the jth layer be

nj � cjnc; j � �1ÿ cj�n0; j; (4)

where nc; j, n0; j are the refractive indices of scattering
microinhomogeneities and the basic substance in the jth
layer, and cj is the relative concentration of scattering
particles. We assume for simplicity that the scattering
coefécient ms;j of the jth layer is related to nc; j=n0; j by the
expression [2]

ms; j � sj

�
1ÿ nc; j

n0; j

�2
; (5)

and the absorption coefécient ma � mÿ ms is independent of
nc; j=n0; j. The quantity sj in (5) is determined by the density
and dimensions of the scatterers in the layer Gj [1].

In many important practical cases, the phase scattering
function S(z; n; n 0) in a separate jth layer depends only on
the angle y between the incident and scattered photons and
is well approximated by the Henyey ëGreenstein function
[1]:

Sj�y� �
1

2

1ÿ g 2
j

�1� g 2
j ÿ 2gj cos y�3=2

: (6)

The scattering anisotropy parameter gj is determined by the
characteristics of the scattering centres in the jth layer. The
case gj � 0 corresponds to isotropic scattering and gj � 1 ë
to the total forward scattering.

For many biological tissues, the scattering indicatrix S
has an elongated shape and the values of g lie in the range
from 0.6 to 0.9, and in some cases, for example for blood,
they can achieve 0.995 [1]. It is known that the introduction
of the immersion agent into the tissue leads, along with a
decrease in the scattering coefécient, to an increase in the
scattering anisotropy [13]. Usually, this dependence is
manifested signiécantly weaker. Thus, for example, paper
[13] presents analytic expressions of the linear dependence of
ms and g on the glucose concentration C in the intralipid
solution, the function gradient ms(C) exceeding by several
orders of magnitude the corresponding gradient g(C) in the
absolute quatity. Obviously, this is explained by the fact that
the dependence of the scattering anisotropy on the immer-
sion liquid concentration is sometimes neglected.

In the érst approximation, we can restrict our consid-
eration by the case when gj linearly depends on n0; j:

gj�n0; j� � g
�0�
j � �g �c�j ÿ g

�0�
j �

nc; j ÿ n0; j

nc; j ÿ n
�0�
0; j

;

n
�0�
0; j 4 n0; j 4 nc; j; (7)

where n
�0�
0; j and g

�0�
j is the refractive index of the basic

substance and the scattering anisotropy factor before the
introduction of the immersion liquid, respectively; g�c�j is the
anisotropy parameter at n0; j � nc; j.

We assume that in our problem the layer Gj � (zj; zj�1) is
bleaching and contains one foreign inclusion. Thus, instead
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of one layer Gj we obtain three: Gÿj �
(zj; z

�
j ); G

�
j � (z�j ; z

�
j�1) and G�j � (z �j�1; zj�1) (the region

G �j is interpreted as an inclusion or a microinhomogeneity).
We will use f and f � to designate the solutions of boundary
problem (1) ë (3) for the sets of inhomogeneous media
fG1;G2; :::;Gpg and fG1; :::;Gjÿ1;G

ÿ
j ;G

�
j ;G

�
j ;Gj�1; :::;Gpg,

respectively, the functions h and h � from conditions (2) (for
f and f �) being equal to each other, while the attenuation
and scattering coefécients and the refractive index in all the
layers, except for G �j , for the function f � coinciding with the
corresponding coefécients for f.

If the difference f � ÿ f at z � z0 and n 2 �ÿ1; 0� is equal
to zero, this, in fact, means that the use of G �j does not
inêuence the radiation emerging from the medium; in other
words, it is invisible in the light reêected and scattered by
the medium. From the mathematical point of view, this can
be interpreted as nonuniqueness of the inverse problem
solution which involves the determination of the character-
istics of the microinhomogeneities G �j by the solution of
direct problem (1) ë (3) known at the boundary z0. If at this
boundary f �b ÿ fb � 0, where f �b ; fb are the corresponding
ballistic components of the measured signals, then the
inclusion is invisible for the tomographic systems detecting
the unscattered part of the photons, which was formed due
to reêection (and re-reêection) from the internal boundaries
of the medium interface zi. The increase in the fraction of
unscattered photons caused by the presence of micro-
inhomogeneity G �j violates the condition f �b ÿ fb � 0 and
should favourably affect the reconstruction of the inclusion
in the medium.

There naturally appears the following extremal problem
(control problem).

Problem 1. It is required to énd the optimal refractive
index n0; j of the basic substance in the medium Gÿj [ G�j
from relations (1) ë (3) and the extremal condition

J1�n0; j� �
j f �b �z0 ÿ 0; n� ÿ fb�z0 ÿ 0; n�j

f ��z0 ÿ 0; n� ! max; (8)

if nj, ms; j, Sj and gj in Gÿj [ G�j are determined by relations
(4) ë (7), while the function h(n) and all other parameters of
the medium G are known.

The direction determined by v in condition (8) can be
chosen from different assumptions, in particular, using the
experimental technique for determining the medium struc-
ture.

For example, in optical coherence tomography [3] taking
into account additional interference effects of the measured
éeld, using the required devices information on the term,
whose quantity is proportional to the change in the
refractive index at the boundary z � zi, is extracted from
the ballistic signal with the direction n � ÿ1.

It was shown in papers [10, 11] that under some
conditions, the function qf �b �z0; n�=qn; n < 0 increases
inénitely when v tends to the value ni � ÿ�1ÿ
�ni=n1�2 �1=2. This condition allows one to determine the
corresponding refractive indices ni=n1 without knowing the
scattering characteristics of the medium because the non-
ballistic component in the output signal, having a large
smoothness with respect to the angular variable, is éltered
by the differentiation operation. Because v1 is known in
advance, it is obviously worth considering such formula-
tions of problem 1 when at the boundary z � z0 the

radiation êux density averaged in the directions
n 2 �ÿ1; 0� serves as target function J1.

3. Analytic solution of the auxiliary problem

Below, we will restrict our analysis to the case when n � ÿ1
in (8) and consider some auxiliary problem.

Problem 2. It is necessary to énd the optimal refractive
index n0; j of the basic substance in the medium Gÿj [ G�j
from relations (1) ë (3) and the extremal condition

J2�n0; j� �
j f �b �zj ÿ 0;ÿ1� ÿ fb�zj ÿ 0;ÿ1�j

f �b �zj � 0; 1� ! max; (9)

if nj, ms; j in Gÿj [ G�j are determined from (4) and (5), while
all other parameters of the media Gÿj ;G

�
j ; and G�j are

known.
For a medium with the microinhomogeneity G �j and

without it, the functional J2 represents a difference of the
ballistic êuxes emerging from the layer Gj. In this case, for
convenience, this difference is normalised to the quantity
f �b (zj � 0; 1). Problem 2 has a local character making it
possible to consider it for each layer separately, independ-
ently of other layers. In addition, the function J2 in extremal
condition (9) contains only the ballistic component. In this
case, problem 2 is simpler than problem 1 and allows
analytic solution under the assumptions made below.

Let fb�zj�1 ÿ 0;ÿ1� � f �b �zj�1 ÿ 0;ÿ1� � 0. The last
assumption is often justiéed, for example, at a rather large
optical thickness of the medium G�j , i.e. mjjzj�1 ÿ z �j�1j4 1.
Taking this into account, we have fb�zj ÿ 0;ÿ1� � 0 and

f �b �zj ÿ 0;ÿ1� � f �b �zj � 0; 1�R �j exp�ÿ2mjjz �j ÿ zjj�

�
�
1� �1ÿ R �j �2

exp�2m �j jz �j�1 ÿ z �j j� ÿ R�2j

�
: (10)

We use m �j and n �j to designate the attenuation coefécient
and the refractive index of the inclusion G �j and R �j to
designate the reêection coefécient at the medium interface
Gÿj ,G

�
j in the direction corresponding to v � 1. We will

consider the case most difécult and interesting for
tomography, when the searched-for inclusion is small, i.e.
its optical thickness m �j jz �j�1 ÿ z �j j tends to zero. Then,
taking into account (10), target function (9) has a relatively
simple form:

J2�n0; j� � ~J2�n0; j� � 2 exp�ÿ2mjjz �j ÿ zjj�
R �j

1� R �j
: (11)

The solution of problem 2 with the target function ~J2,
where ms; j is given by relation (5), is énally reduced to
determining the roots of the quintic equation with respect
to the variable n0; j. One of the roots of this equation,
n0; j � (n �j ÿ cjnc; j)=(1ÿ cj) corresponds to the vanishing
coefécient R �j , and, hence, to zero and the minimum of the
function ~J2. Only two roots from other four roots are real.
They are the local maxima of the function ~J2 and can be
expressed in radicals.

To analyse vividly the dependence of the optimal
solution of extremal problem 2 on the medium character-
istics, we will write the asymptotic expression for the root of
equation ~J 02(n0; j) � 0, which is in the vicinity of nc; j and
yields the maximum of the function ~J2(n0; j) � 0. By neglec-
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ting the terms of the second-order smallness with respect to
the quantity inverse to the layer thickness Gÿj , we have

n0; j � nc; j �
n 2
c; jn

�
j �nc; j � n �j ��1ÿ c�

2�nc; j ÿ n �j ��n2c; j � n�2j �sjjz �j ÿ zjj
; (12)

where sj is determined in (5).
A simple analysis of expression (12) shows that when

jz �j ÿ zjj increases, the optimal value of the refractive index
of the basic substance, as was expected, tends to the quantity
of the refractive index of scattering particles. However, the
difference nc; j ÿ n �j , which is in the denominator of the
second term in expression (12), can substantially affect the
proximity of n0; j and nc; j. In this case, if this difference is
greater than zero, the optimal refractive index of the basic
substance is larger than the refractive index of scattering
microinhomogeneities of the medium, and if the difference is
smaller than zero, we correspondingly have n0; j < nc; j.

In section 4 in computer experiments, we will use the
results of the solution of the auxiliary problem and show
that although the target function J1 signiécantly differs
quantitatively from the function ~J2, the optimal solutions of
problems 1 and 2 are rather close in a broad range of
variations in the parameters of the medium.

4. Numerical solution of extremal problem 1

To solve extremal problem 1, we should know the solution
f (z0 ÿ 0; n) of boundary problem (1) ë (3). The main
problem consists in the fact that the mentioned boundary
problem does not have an analytic solution; therefore, we
will need, érst of all, a numerical method for determining
the function f. For these purposes, we will use one of the
modiécations of the weight Monte Carlo methods, the so-
called method of conjugate directions [14]. As is known, the
main idea of the Monte Carlo method consists in the
simulation of a rather large number of photon trajectories
in order to accumulate some statistical information on the
required quantities. The main feature of the method used in
our paper is the fact that in numerical simulations, the
whole tree of trajectories is at once constructed and not
each branch separately. At each top, the tree is branched
into three branches corresponding to the effects of photon
refraction, reêection, and scattering. If we trace N acts of
the photon ëmedium interaction, 3N linear (physical)
trajectories correspond to this tree. In this case, only
scattering introduces a statistical error in the algorithm.
The reêection and refraction effects, except the errors of the
round-off and restriction in the number of acts of
interaction with the interface, are exactly taken into
account.

The main scheme of the method is as follows. For the
given point z, for example in the region Gi, and the éxed
direction determined by v, we estimate the contribution of
the photons fN, which experienced no more than N acts of
scattering, reêection, and refraction in the medium. A
photon with this direction can get to point z from the
same region during the acts of scattering or reêection from
the boundary or from an adjacent region during refraction
from the interface. If one of the region boundaries is
external, photons can arrive directly from the radiation
source.

Thus, the contributions of photons êying directly from
the external radiation source, which are either reêected from

the medium interface or refracted at this boundary, are
determined by the following quantities:

f0�z; n� � exp

�
ÿ mi

n
�zÿ zx�

�
h�zx; n�; (13)

�Rx�n� fNÿ1�zx;ÿn� � Tx�n�fNÿ1�zx;cx��

� exp

�
ÿ mi

n
�zÿ zx�

�
: (14)

Here

x � x�n� � i; n< 0,
iÿ 1; n> 0,

�

h�zx; n� � h�n�; x=0 or x=p,
0; otherwise,

�
and the function fNÿ1 describes a êux of particles
experiencing no more than Nÿ 1 acts of interaction with
the medium. The contribution of a scattered photon is
estimates by the quantity

li

�
1ÿ exp

�
ÿ mi

n
�zÿ zx�

��
fNÿ1�z 0k; n 0k�; (15)

where li � ms;i=mi < 1 is the single scattering albedo; z 0k are
the random points of the photon scattering distributed with
the probability densities

mi exp�ÿmi�zÿ z0k�=n�
nf1ÿ exp�ÿmi�zÿ zx�=n�g

;

n0k are the directions of the photon motion distributed with
the density Si(n; n

0
k), which is determined by expression (6)

at the corresponding anisotropy parameter gi. In this case,
the probability of the particle escape from the region Gi and
its absorption are taken into account with the help of the
weight multiplier lif1ÿ exp�ÿmi(zÿ zx)=n�g. Its use allows
one to simulate most informative trajectories, thereby
increasing the calculation accuracy.

The total intensity at point (z; n� produced by the
particles, which experienced no more than N acts of
interaction with the medium, is estimated using the corre-
sponding summations over the M trees. Naturally, if
scattering is absent in the medium, it is sufécient to
construct one tree (M � 1). Thus, the basic calculation
expression has the form:

fj�z; n� � �Rx�n� fjÿ1�zx;ÿn� � Tx�n� fjÿ1�zx;ci��

� exp

�
ÿ mi

n
�zÿ zx�

�
� li
M

�
1ÿ exp

�
ÿ mi

n
�zÿ zx�

��

�
XM
k�1

fjÿ1�z 0k; n 0k� � f0�z; n�; j � 1; :::;N: (16)

This approach presents, in fact, the solution by the method
of successive approximations of the integral equation
equivalent to boundary problem (1) ë (3) [7, 8, 11]. The
software realisation of recurrent relations (16) is easily
performed using recursive procedures. This feature of the
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algorithm poses additional requirements to the random-
access memory of the computer. In addition, the use of the
recursion decreases the statistical error of the algorithm
because it does not allow one to perform a random
selection of reêection and refraction events of a photon.

In computer simulations of the experiments, we will
consider a 1.5-mm-thick two-layer medium consisting of
0.1-mm-thick epidermis (G1) and 1.4-mm-thick derma (G2)
layers, respectively. It is assumed that the immersion agent is
introduced into the derma, which contains a foreign
inclusion G �2 ë a glass with the speciéed refractive index
and the scattering and absorption coefécients. Thus, the
medium to be bleached contains in fact four layers: G1, G

ÿ
2 ,

G �2 and G�2 .
The parameters of the layers G1;G

ÿ
2 ;G

�
2 ;and G�2 before

bleaching had the values typical of human skin in the
spectral region 600 ë 700 nm [3, 15, 16] (Table 1).

In the derma, the concentration of scattering particles is
usually 30% [16], and the refractive index corresponding to
them is equal to 1.46, i.e. c2 � 0:3, nc;2 � 1:46. According to
data of Table 1, n2 � 1:4; therefore, due to assumption (4),
the refractive index n

�0�
0;2 of the basic substance before

bleaching should be equal to (n2 ÿ c2nc;2)=(1ÿ c2) � 1:37.
The numerical experiments were performed using the

following scheme. The refractive index n0;2 varied from n
�0�
0;2

to nc;2 with a step 0.005. In accordance with relations
(4) ë (7), this lead to a change in other parameters of the
layers Gÿ2 and G�2 , the parameters of the media G1;G

�
2 being

invariable. On a discrete mesh of the values n0;2, we érst
calculated the solution of the direct problem f � at point
(z; n) � (z0;ÿ1) and then, the target function J1(n0;2) in
which the ballistic components fb and f �b were found
analytically. Solving the direct problem, we assumed that
radiation weakly collimated in the direction n � 1 enters the
medium G only through the boundary z � z0:

h(n) � exp�ÿ2�1ÿ n�2�; n> 0,
0; n< 0.

�
The number of trajectories simulated by the Mote Carlo
method, depending on the complexity of the experiment,
varied within M � 20000ÿ 100000.

From the obtained discrete set of the values of the
function J1, we selected the maximal one and refractive
index of the basic substance of the bleaching layer corre-
sponding to this value was taken as an approximate solution
of problem 1.

We performed two series of experiments. In the érst
series, the position of the foreign inclusion G2 in the medium
varies so that the thickness l of the layer Gÿ2 increases, being
0.05, 0.1, and 0.5 mm, while the thickness of the layer G�2 ,
on the contrary, decreases: 1:2ÿ l � 1:15; 1:1, and 0.7 mm.
The refractive index of the microinhomogeneity n �2 was
chosen equal to 1.48. The scattering indicatrix in each layer
was calculated by expression (6), the anisotropy parameter

g2(n0;2) in the bleaching layer varying from g
�0�
2 � 0:76 to

g
�c�
2 � 0:8.

Figure 1a presents the dependences of J1(n0;2) at n0;2 2
[1.37, 1.47] and different l. One can easily see that when l is
increased, the maximum of the target function is displaced
to the right and tends to the refractive index of scattering
particles, nc;2 � 1:46, in agreement with the qualitative
behaviour of asymptotic expression (12) for the optimal
solution. The speciéc optimal values of the refractive index
of the basic substance in the bleaching layer, obtained in this
series of the experiments, proved close to the corresponding
approximate solutions of the auxiliary extremal problem 2
with the target function ~J2 (Table 2).

The second series of the experiments was similar to the
érst series. The only difference is that the refractive index n �2
of the inclusions was smaller than the refractive index nc;2 of
the scattering particles and was equal to 1.42. In this case,
according to the results of the solution of the auxiliary
problem, the optimal refractive index should be higher than
nc;2 but due to physical assumptions with respect to the
anisotropy parameters and the scattering coefécient, the
solution of the problem is searched for in the interval
�n�0�0;2; nc;2�. Therefore, one can see from Fig. 1b that the
maximum of the function J1(n0;2) is achieved at the end of
the interval at point n0;2 � nc;2 for all three cases
(l � 0:05; 0:1, and 0.5 mm).

Note that the expansion of the possible variation range
of the anisotropy parameter g2(n0;2) from [0.76, 0.8] to
[0.76, 1] and, hence, the change in the scattering phase
function (6) almost did not change the plot of the target
function J1(n0;2). Although one should expect that the

Table 1. Optical properties of the biological tissue.

Layer Layer thickness
�
mm

Refractive
index

Scattering
coefécient

�
mmÿ1

Absorption
coefécient

�
mmÿ1

Scattering
anisotropy factor

Epidermis (G1) 0.1 1.35 45 0.15 0.8

Derma (Gÿ2 ) l 1.4 20 0.073 0.76

Glass (G �2 ) 0.2 n �2 0.22 0.18 0

Derma (G�2 ) 1:2ÿ l 1.4 20 0.073 0.76
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Figure 1. Target function J1�n0;2� for the refractive indices of the foreign
inclusion n �2 � 1:48 (a) and 1.42 (b) at different positions of the inclusion
in the bleaching layer: l � 0:05 ( 1 ), 0.1 ( 2 ), and 0.5 mm ( 3 ).

Table 2. Results of the numerical experiment at n �2 � 1:48:

Burial depth of the inclusion
in the bleaching layer

�
mm

Point of the func-
tion maximum J1�n0;2�

Point of the func-
tion maximum ~J2�n0;2�

0.05 1.410 1.417

0.1 1.430 1.426

0.5 1.455 1.449
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increase in the number of forward scattered photons should
lead to an increase in the ballistic component in the reêected
signal. In our opinion, one of the reasons consists in the fact
that in the formulation of the problem under study, the érst
layer is not bleaching and the anisotropy parameter in it
does not change. This leads to a noticeable suppression of
the ballistic component of radiation in the epidermis.

To conérm this assumption, we performed a series of
experiments with a model medium whose optical parameters
are presented in Table 1 in the case when the epidermis (the
layer G1) is excluded from it. The burial depth of the glass in
the derma was assumed equal to 0.1 mm.

In this case, an increase in the fraction of the ballistic
component is really observed with increasing the anisotropy
parameter (Fig. 2). Nevertheless, the position of the point of
the function maximum J1(n0;2) remains virtually invariable.

Therefore, the results of the experiments showed that the
optimal refractive index of the bleaching liquid signiécantly
depends on the parameters of the searched for micro-
inhomogeneity and is not obligatory close to the
refractive index of the radiation scatterers in the medium.

5. Conclusions

The experiments performed in this paper allow us to make
the following conclusions.

The results of tomographic investigations of biological
tissues with the help of bleaching liquids should be treated
with a certain degree of caution because in some cases their
use can lead to deterioration of the reconstruction quality of
the medium structure.

Obviously, reliable visualisation of the medium internal
structure can be achieved in experiments with different
immersion liquids including those whose refractive indices
are smaller or greater than the refractive indices of the
scatterers in the medium; in addition, it is necessary, if
possible, to performed tomographic measurements during
the time of the immersion liquid diffusion into the tissue. In
principle, this is often done to estimate the rate of diffusion
processes [3].

Another way is the use of a priori information about the
parameters of the required inclusions when choosing this or
that immersion liquid. In this case, to determine the optimal
bleaching liquid, it is possible to use the results of computer

simulations in solving problem 1 or analytic solutions of
simpliéed problem 2.

One of the serious assumptions of this paper is the
hypothesis about the medium stratiécation, including a
quite unrealistic hypothesis about the plane shape of the
inclusion. It is clear that such theoretical and numerical
investigations can be also performed for the general three-
dimensional case, which will be done elsewhere. However,
for real physical experiments this reénement of the model is
not always reasonable because in solving the extremal
problems of type 1 and 2, we cannot expect the high
accuracy of the a priori information on the structure of
the irradiated medium. This, in particular, can explain our
restriction to the quantity of foreign inclusions and bleach-
ing layers. The latter assumption has also allowed us to
obtain quite easily the analytic solution of problem 2 and to
compare it with the solution of problem 1. Note that for the
numerical algorithm determining the solution of problem 1,
the above restriction is not fundamental.
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Figure 2. Target function J1�n0;2� for the medium without epidermis at
the depth of the foreign inclusion l � 0:1 mm and the variation range of
the scattering anisotropy parameter in the derma 0:764 g4 0:8 ( 1 ),
0:764 g4 0:9 ( 2 ), and 0:764 g4 1 ( 3 ).
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