
Abstract. Linearised equations for the amplitudes of
harmonic perturbations of strong waves in quadratic and
cubic nonlinear media are obtained within the model of plane
monochromatic waves. The dependences of the gains of noise
components of the érst and second harmonic waves upon
frequency doubling on the B integral are found. The
maximally admissible noise level in the fundamental radiation
beam is calculated by the example of a 0.5-mm-long KDP
crystal at the peak intensity of 4.5 TW cmÿ2.

Keywords: second harmonic generation, intense laser éeld, small-
scale self-focusing.

1. Introduction

The feasibility of obtaining coherent femtosecond radiation
in the visible range as well as the necessity of increasing the
temporal contrast of super-high-power laser pulses has
aroused interest of the researchers in SHG since the
discovery of this effect in 1961 [1] till now. The second
harmonic generation of an intense laser éeld has a number
of peculiarities. Because the intense laser éelds, as a rule,
are produced in pulses with duration of several tens of
femtoseconds, the SHG eféciency depends on dispersion
phenomena ë the group velocity mismatch and dispersion
spreading of pulses at the fundamental and doubled
frequencies. However, the right choice of the crystal, its
length, and the optical axis orientation makes it possible to
minimise the effect of these phenomena [2 ë 8].

At the same time, effects caused by the cubic non-
linearity of the medium become signiécant in intense laser
éelds. High-power waves propagating through a cubic
nonlinear medium acquire an additional phase incursion
leading to a breakdown of the phase matching conditin and
a decrease in the conversion eféciency [2 ë 8]. The instability
of small-scale perturbations propagating in such a medium
leads to small-scale self-focusing during which there appear
élamentation [9 ë 11], supercontinuum generation, and
énally, nonlinear elements are damaged.

This paper is devoted to investigation of the SHG
peculiarities of a intense laser éeld. First, we consider the
problems on conversion of high-power (noiseless) waves
into second harmonic radiation in quadratic and cubic
nonlinear media. Then, in the linear approximation we
successively solve the problem of the small-scale self-
focusing development for an arbitrary spatial perturbation
(noise) spectrum. This problem is solved in analogy with the
classical paper [9] but taking into account the quadratic
nonlinearity: we found the gain of one perturbation har-
monic, determined the gain integral in the entire harmonic
spectrum, and estimated the maximum noise level at the
crystal input, which does not lead to its optical breakdown
and damage due to the small-scale self-focusing.

The linear stage of harmonic perturbation ampliécation
is of great interest because it allows one to describe correctly
the noise ampliécation (including the noise with a broad
spatial spectrum) up to its power comparable with the
fundamental wave power. The optical breakdown caused by
the small-scale self-focusing limits the possibilities of fre-
quency doubling at signiécantly lower noise powers; there-
fore, determination of its maximally admissible level (which
does not lead to the optical breakdown or the damage of the
nonlinear element) is an urgent problem in experiments on
highly efécient SHG of an intense laser éeld. We have
simulated the conversion of 1.5 ë 4.5-TW cmÿ2 radiation
from a petawatt femtosecond laser complex [12] into second
harmonic radiation and presented the estimates and meth-
ods for determining the admissible noise level by the power
in the érst harmonic beam.

2. Peculiarities of SHG of an intense laser éeld

Before analysing the wave instability in quadratic and cubic
nonlinear media, we will consider the conversion of intense
(noiseless) laser éelds into radiation at the second harmonic
frequency. Despite their pulsed character, we will use the
plane monochromatic wave approximation to describe the
SHG. This approach is valid when such dispersion effects as
the group velocity mismatch and dispersion spreading of
the érst and second harmonic pulses, is insigniécant at
distances in the order of the nonlinear element length of the
frequency doubler. Fulélment of the above requirements
for the highly efécient SHG is possible if the nonlinear
element length L meets the conditions:

Lnl < L < Lgr < L1;2;

where Lnl is the nonlinear length (characteristic scale of
conversion into the second harmonic); Lgr � T1j1=u1ÿ
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1=u2jÿ1 is the length of the group velocity mismatch of
pulses; u1 and u2 are the group velocities of the waves at the
érst and second harmonic frequencies, respectively;

Li � T 2
1

����4 ln 2 q 2ki
qo 2

����ÿ1
oi

�i � 1; 2�

are the lengths of dispersion spreading of the érst and
second harmonic pulses, respectively; T1 is the pulse
duration of fundamental radiation at the input to the
nonlinear element. For the KDP crystal at l � 910 nm and
T1 � 50 fs, Lgr � 0:13 cm, L1 � 8 cm, L2 � 1 cm, which is
signiécantly larger than the nonlinear length Lnl �
4� 10ÿ2 cm calculated at the input intensity
I0 � 1 TW cmÿ2.

Within the mentioned approximation frequency dou-
bling (hereafter we consider the érst type of wave
interaction, oo ë e) can be described with the help of a
system of nonlinear differential equations for the coupled-
wave amplitudes

de1
dz
� ÿibe2e�1eÿiDkz ÿ ig11je1j 2e1 ÿ ig12je2j 2e1;

(1)

de2
dz
� ÿibe 21 e iDkz ÿ ig21je1j 2e2 ÿ ig22je2j 2e2

with boundary conditions

e1�z � 0� � e10, e2�z � 0� � 0; (2)

where e1 � r1 exp (ij1) and e2 � r2 exp (ij2) are the com-
plex amplitudes of electric éeld strengths at the
fundamental and second harmonic frequencies, respectively;
z is the longitudinal coordinate of the wave propagation;
Dk � k2 ÿ 2k1 is the linear phase mismatch of wave vectors;
b, gij (i; j � 1, 2) are the nonlinear wave coupling coefé-
cients [5]. The terms with the coefécients g11 and g22 are
responsible for the self-action of the érst and second
harmonic waves, while the terms with g12 and g21 ë for the
cross-action.

The solutions of the system of equations (1) were
analysed in detail in papers [5 ë 8]. In converting an intense
laser éeld into radiation at the second harmonic frequency,
the terms in equations (1) responsible for self- and cross-
action play a signiécant role. The matter is that the cubic
nonlinearity leads to an additional phase accumulation in
the érst and second harmonic waves, which violates the
phase-matching condition and reduces the conversion
eféciency.

There exists a rather simple method to overcome this
effect. The nonlinear phase incursion can be compensated
for due to the change in the angle of radiation propagation
to the crystal optical axis. The idea was put forward by the
authors of papers [4, 5] and its experimental veriécation can
be found in [8, 13]. As applied to the model of plane
monochromatic waves, the optimal detuning of the wave
vectors can be found as follows [8]:

DkoptLnl � ÿ�2a� Dnl
0 �; (3)

where

a � 2g11 ÿ 2g12 ÿ g21 � g22
4b 2Lnl

; D nl
0 �

g21 ÿ 2g11
b 2Lnl

:

Using (3), it is easy to énd the expression for the optimal
angle of radiation propagation, yopt:

sin2yopt �
�n1 � Dn1�ÿ2 ÿ nÿ2o

nÿ2e ÿ nÿ2o
: (4)

Here, n1 is the refractive index of an ordinary wave of the
érst harmonic; no, ne are the main refractive indices for the
second harmonic wave; Dn1 � lA 2

10(2g11 � 2g12 ÿ g21ÿ
g22�=8p is an addition to the refractive index, caused by
the cubic nonlinearity of the medium. At I0 � 4:5 TW cmÿ2

and l � 910 nm, we have Dn1 � 3:43� 10ÿ4 5 1; therefore,
the detuning Dy from the phase-matching angle can be
found by using the Taylor series expansion of (4) over the
parameter Dn1:

Dy � Dn1
n 3
1 �nÿ2o ÿ nÿ21 �

�
nÿ21 ÿ nÿ2o

nÿ2e ÿ nÿ21

�1=2
.

The dependences Z � jA2�z�j 2=jA10j 2 of the conversion
eféciency in a 0.5-mm-long KDP crystal on the detuning
from the phase-matching angle for the speciéed radiation
parameters are presented in Fig. 1. We used expressions for
the coefécients b and gij from paper [5]. At the érst
harmonic wavelength l1 � 910 nm, the nonlinear wave
coupling coefécients in the KDP crystal are: g11 �
2:302� 10ÿ9, g12 � 1:711� 10ÿ9, g21 � 1:398� 10ÿ9 and
g22 � 2:872� 10ÿ9 CGS units, b � 3:329� 10ÿ4 CGS
units. Unlike the case gij � 0, the cubic nonlinearity leads
to the fact that the maximum eféciency is achieved at
Dy � ÿ0:458. Note that the quantity Dy is independent of
the quadratic nonlinearity and the nonlinear element length
and directly proportional to the input signal intensity. The
characteristic distance between the zeroes of the main
maximum is 20 mrad.

Let us compare the conversion eféciency of 910-nm,
4.5-TW cmÿ2 radiation into the second harmonic for the
wave vector detunings DkLnl � 0 and DkLnl � Dopt (Fig. 2).

One can see from Fig. 2 that at DkLnl � 0, the effect of
the cubic nonlinearity leads to the phase-matching violation
and inverse energy transfer, while at DkLnl � Dopt, the
conversion eféciency into the second harmonic radiation
increases. According to the model of the plane monochro-

gij 6� 0 gij � 0

0

0.2

0.4

0.6

0.8

Z

ÿ40 ÿ20 0 20 Dy
�
mrad

Figure 1. The conversion eféciency Z into the second harmonic versus
the detuning Dy from the phase-matching angle taking into account and
neglecting the cubic nonlinearity of the medium at I0 � 4:5 TW cmÿ2

and the KDP crystal length L � 0:5 mm.
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matic waves, the conversion eféciency of 4.5-TW cmÿ2

radiation into the second harmonic in a nonlinear
0.5-mm-long KDP element exceeds 90%. A detailed anal-
ysis of 50-fs frequency-doubled Gaussian pulses with the
same parameters of laser radiation and the nonlinear
element performed in paper [8] showed that the conversion
eféciency is 83%.

Therefore, the cubic nonlinearity can signiécantly affect
the conversion eféciency into the second harmonic. For each
value of the intensity at the nonlinear element input, it is
possible to select an optimal propagation angle ensuring the
highest conversion.

3. Instability of plane monochromatic waves
in media with quadratic and cubic nonlinearities

Consider the inêuence of the small-scale self-focusing
effects on the SHG in the KDP crystal at the érst
harmonic radiation intensities of 1.5 ë 4.5 TW cmÿ2. To
this end, we will calculate the gains of harmonic
perturbations in the érst and second harmonic radiation
and determine the critical noise level in the radiation of the
fundamental frequency.

3.1 Linear equations for amplitudes of harmonic
perturbations

Let us obtain the linear equations for the electric éeld
strength amplitudes of spatial harmonic perturbations of
the érst and second harmonic waves. As in the érst paper
on the small-scale self-focusing [9], we assume that the noise
component amplitudes are substantially smaller than the
strong wave amplitudes at the fundamental and doubled
frequencies (waves 1 and 2), i.e., the conditions

jeij5 je1j; je1j; i � 3ÿ 6 (5)

are fulélled. Here, i � 3, 4 corresponds to the harmonic
perturbation strengths of radiation at the fundamental
frequency, and i � 5, 6 ë at the second harmonic frequency
(Fig. 3).

By applying the standard linearisation procedure
[because conditions (5) are fulélled] to quasi-optic equations
describing the dynamics of variation of each frequency
component and by grouping the terms with the identical
transverse wave vectors, it is easy to obtain equations for the
amplitudes of harmonic perturbations:

de3
dz
� ÿi

cos a1 cos a2
�b�E �1E5 � E �4E2� � g11�E 2

1E
�
4

� 2jE1j2E3� � g12�jE2j2E3 � E1E2E
�
6 � E1E5E

�
2 ��

� exp�ik1z cos a1 cos a2�;

de4
dz
� ÿi

cos a1 cos a2
�b�E �1E6 � E �3E2� � g11�E 2

1E
�
3

� 2jE1j2E4� � g12�jE2j2E4 � E1E2E
�
5 � E1E6E

�
2 ��

� exp�ik1z cos a1 cos a2�;
(6)

de5
dz
� ÿi

cosf11 cosf12

�2bE3E1 � g21�jE1j2E5

�E1E2E
�
4 � E �1E2E3� � g22�jE2j2E �6 � 2jE2j2E5��

� exp�ik5z cosf11 cosf12�;

de6
dz
� ÿi

cosf21 cosf22

�2bE4E1 � g21�jE1j2E6

�E1E2E
�
3 � E �1E2E4� � g22�jE2j 2E �5 � 2jE2j 2E6��

� exp�ik6z cosf21 cosf22�:

Here, Ei � ei exp (ÿ ikizz); k1, k5, k6 are the wave-vector
moduli of radiation at the fundamental frequency and
harmonic perturbations of the second harmonic. The angles
a1 and a2 determine the propagation directions of harmonic
perturbations of the érst harmonic in the planes [noncritical
(a1) and critical (a2) with respect to the phase-matching
angle] of the nonlinear element of the frequency doubler
(see Fig. 3). The propagation direction of noise at the
second harmonic frequency in the nonlinear element planes
noncritical (f11;f21) and critical (f12;f22) with respect to
the phase-matching angle are determined from the boun-
dary conditions (7) responsible for the equality of the
corresponding transverse components of the wave vectors:

Z

0.8

0.6

0.4

0.2

0 0.1 0.2 0.3 0.4 L
�
mm

1
2

Figure 2. Dependences of the eféciency Z on the crystal length L at
I0 � 4:5 TW cmÿ2 for DkoptLnl � Dopt (1) and DkLnl � 0 (2).
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Figure 3. Scheme of propagation of the intense waves of the érst (wave
1) and second (wave 2) harmonics as well as their harmonic perturba-
tions (waves 3, 4 and 5, 6, respectively) in the planes noncritical (a) and
critical (b) with respect to the phase-matching angle.
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k1 sin a2 � k5 sinf12; k1 sin a2 � k6 sinf22;

k1 cos a2 sin a1 � k5 cosf12 sinf11; (7)

k1 cos a2 sin a1 � k6 cosf22 sinf21:

Let us assume that the boundary conditions

e3�z � 0� � e4�z � 0� � e30e
ij; e5;6�z � 0� � 0 (8)

are fulélled at the nonlinear element input, and boundary
condition (2) are valid for the strong-wave amplitudes.
Here, j is the initial phase of the harmonic perturbation of
the érst harmonic wave. The noise in the beam at the
second harmonic frequency appears due to the interaction
of the harmonic perturbations of the signal at the
fundamental frequency with a strong wave at the same
frequency. The second harmonic beam modulation acquired
in this way increases due to the inêuence of the cubic
nonlinearity, which may lead to the small-scale self-focusing
development and to destruction of the nonlinear element of
the frequency doubler.

3.2 Gains of harmonic perturbations

The gain dynamics of harmonic perturbations depends in a
complicated way on the high-power wave intensity at the
nonlinear element input, the quadratic and cubic non-
linearities of the frequency doubler medium, the linear
wave-vector detuning as well as on the initial phase j of the
éeld perturbations at the fundamental frequency at the
nonlinear element input.

Let us determine the gains Gi of harmonic perturbations
of the érst and second harmonic waves (i � 3ÿ 6):

Gi�z; a1; a2;j� �
jei�z; a1; a2;j�j 2

je30j 2
:

The initial phase j is, as a rule, a random quantity;
therefore, of greatest interest is the averaged gain

Gav i�z; a1; a2� �
1

2p

� 2p

0

Gi�z; a1; a2;j�dj.

For a medium with the cubic nonlinearity only, paper [14]
showed that in the case of an ideal (nonideal) phase, the
gain can be twice lower (greater) than the average gain Gav.

The dependences of Gav 1;2 on the propagation directions
of harmonic perturbations of the érst harmonic radiation
(a1, a2) are presented in Fig. 4 for a 0.5-mm-long crystal at
I0 � 4:5 TW cmÿ2 and D � Dopt.

According to Fig. 4 the maximal initial-phase-averaged
gains of the harmonic perturbations of the érst and second
harmonic waves at the nonlinear element output are as
follows: Gav 1 � 14, Gav 2 � 270.

The angular detuning in the plane critical with respect to
the phase-matching angle from the optimal direction of
wave propagation in the crystal imposes restrictions on
generation and ampliécation of parasitic waves. As a result,
the angular diagrams of the harmonic perturbation gains are
symmetric in the plane noncritical with respect to the phase-
matching angle, i.e., Gav i(z;ÿa1; a2) � Gav i(z; a1; a2);, and
asymmetric in the critical plane: Gav i(z; a1;ÿa2) 6�
Gav i(z; a1; a2). According to Fig. 4, the harmonic perturba-

tion of the second harmonic are maximally ampliéed for the
given parameters in the direction corresponding to the
angles a1 � 42 mrad and a2 � 0.

To check the results of the numerical calculations, we
will consider a medium without a quadratic nonlinearity,
i.e., we set b � 0. In this case, the distribution of Gav 1 can be
found analytically [10]:

Gtheor �
1

4

�
2 cosh 2�B11x� �

�
2B11x

k 2
1 ÿ 4B11

�2
sinh 2�B11x�

�
�
k 2
1 ÿ 4B11

2B11x

�2
sinh 2�B11x�

�
;

where B11 � g11A
2
10L is the B-integral; x 2 � k 2

1 =B11ÿ
k 4
1 =4B

2
11; k1 � k1?(L=k1�1=2 is the normalised transverse

wave vector.
Figure 5a presents the calculated angular dependence of

the initial-phase-averaged gain of harmonic perturbations in
a medium without a quadratic nonlinearity at B11 � 2:89
calculated for 910-nm, 4.5-TW cmÿ2 radiation propagating
in a 0.5-mm-long KDP crystal. The dependence of the
harmonic perturbation gain on a1, a2 represents a ring
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�
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�
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ÿ50
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ÿ50

0

50

ÿ50 0 50 a1
�
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Gav2

b

12

10

8

250

200
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2

Figure 4. Angular dependences of the harmonic perturbation gains Gav1;2

of the érst (a) and second (b) harmonic waves at the input of the 0.5-mm-
long KDP crystal on the propagation direction of harmonic perturba-
tions of érst harmonic radiation (a1, a2) at D � Dopt and I0 �
4:5 TW cmÿ2. The dependences were obtained by solving numerically
the system of equations (6) with boundary conditions (8).
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structure. In this case, according to Fig. 5b, the relative
error of numerical calculations does not exceed 2%.

Therefore, in the limiting case of passage to a medium
without a quadratic nonlinearity the results obtained with
the help of the considered model well agree with the theory
[10].

Another important parameter characterising the small-
scale self-focusing is the harmonic perturbation gain integral
over the angular spectrum. Let us determine this gain for the
problem under study as:

Gint j �
1

pa 2
cr

� �
O
Gav jdaj1daj2:

Here, j � 1, 2 corresponds to the gains of noise in the érst
and second harmonic beams; acr is the angle in the
noncritical plane at which the gain of the second harmonic
noise becomes e times smaller than its maximal value (or, in
the case of the medium with b � 0, the érst harmonic gain);
O is the circle of radius acr with the centre at the coordinate
origin. Despite the awkwardness of the integral gain
determination, it is rather physical because it takes into
account the non-isotropic gain structure (see Fig. 4a).

The integral gains Gint1 and Gint2 calculated in this way
at I0 � 4:5 TW cmÿ2, D � Dopt and L � 0:5 mm are equal
to 5 and 107, respectively. The dependences of the integral
gains on B11 are shown in Fig. 6.

One can see from Figs 4 and 6 that during the SHG of
an intense laser éeld harmonic perturbations in the second
harmonic experience a noticeable ampliécation (the initial-
phase-averaged gain is Gav2 � 270 and the integral gain is
Gint2 � 107), which can lead to a signiécant decrease in the
conversion eféciency and the small-scale self-focusing deve-
lopment accompanied by the destruction of the nonlinear
element of the frequency doubler. In this connection it is
necessary to determine the requirements to the critical noise
level in the beam at the érst harmonic frequency.

3.3 Estimates of the critical noise levels in a wave
at the érst harmonic frequency

Let us determine the critical noise level in the beam at the
érst harmonic frequency. The peak intensity Ipeak and its
roof-mean-square deviation Irms in the beam proéle from
the average value Iav are related to the relative noise power
Pn=P by the empirical expressions [10]:

Ipeak=Iav � �1� 5
�����������
Pn=P

p �2;
(9)

Irms=Iav � �1�
�����������
Pn=P

p �2 ÿ 1:

According to paper [15], the KDP crystal can endure the
peak intensity of 18.5 TW cmÿ2 at the laser pulse duration
of 100 fs and central wavelength of 795 nm. Suppose that
from the point of view of the crystal breakdown this peak
intensity is the threshold one. Then its ratio to the average
intensity at Iav � 4:5 TW cmÿ2 is Kth � Ipeak=Iav � 4:1.
Using (9) and taking into account the fact that the noise
power at the nonlinear element output is Pnout � GPn, it is
easy to énd the critical noise level with respect to power
Kn � Pn=P in the input beam at the érst harmonic
frequency:

Kn �
1

G

�
1

5
�
�������
Kth

p
ÿ 1�

� 2

.

Gav1

b
ÿ50 0 50 a1

�
mrad
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�
mrad
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�
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Figure 5. Angular dependence of the harmonic perturbation gain Gav1;2

of the érst harmonic wave (a) and the relative error of the numerical
calculation DG � jGtheor ÿ Gav1j=Gtheor (b) at the input of the 0.5-mm-
long KDP crystal on the propagation direction of harmonic perturba-
tions of érst harmonic radiation (a1, a2) at D � 0 and I0 � 4:5 TW cmÿ2.
The dependences were obtained by solving numerically the system of
equations (6) with boundary conditions (8) at b � 0.
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Figure 6. Dependences of the integral harmonic perturbation gains
Gint1;2 of the érst and second harmonics and Gint (at b � 0) on the
parameter B11 and the intensity for the 0.5-mm-long KDP crystal.
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For the gain G � 107, we obtain Kn � 4� 10ÿ4 and
Irms=Iav � 4� 10ÿ2 taking into account (9).

Thus, as applied to the frequency doubling in a 0.5-mm-
long nonlinear KDP element by 4.5-TW cmÿ2 radiation, the
root-mean-square intensity deviation should not exceed
4%. Minimisation of the small-self-focusing effects is
possible due to a decrease in the power noise level in the
input beam.

4. Conclusions

We have considered the peculiarities of the second
harmonic generation by highly intense laser pulses by the
example of the 0.5-mm-long KDP crystal at
I0 � 4:5 TW cmÿ2 and analysed the inêuence of the
small-scale self-focusing effects on this process. The
numerical solution of linearised equations has allowed us
to estimate the maximal gains of harmonic perturbations of
the waves at érst and second harmonic frequencies. We
have found that for the SHG the noise level with respect to
the power should not exceed 10ÿ4 ÿ 10ÿ5 of the peak input
power. When this condition is fulélled, the SHG eféciency
can exceed 80%. We plan to perform experiments on
frequency doubling of radiation with the peak power of
0.56 PW and the beam 10 cm in diameter in the 0.5-mm-
long KDP crystal.
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